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Abstract

Background: The effect of low nutrient availability on plant-consumer interactions during early succession is poorly
understood. The low productivity and complexity of primary successional communities are expected to limit diversity and
abundance of arthropods, but few studies have examined arthropod responses to enhanced nutrient supply in this context.
We investigated the effects of nitrogen (N) and phosphorus (P) addition on plant productivity and arthropod abundance on
24-yr-old soils at Mount St. Helens volcano.

Methodology/Principal Findings: We measured the relative abundance of eight arthropod orders and five families in plots
that received N, P, or no nutrients for 3–5 years. We also measured plant % cover, leaf %N, and plant diversity. Vegetation
responded rapidly to N addition but showed a lagged response to P that, combined with evidence of increased N fixation,
suggested P-limitation to N availability. After 3 yrs of fertilization, orthopterans (primarily Anabrus simplex (Tettigoniidae) and
Melanoplus spp (Acrididae)) showed a striking attraction to P addition plots, while no other taxa responded to fertilization.
After 5 yrs of fertilization, orthopteran density in the same plots increased 80%–130% with P addition and 40% with N. Using
structural equation modeling, we show that in year 3 orthopteran abundance was associated with a P-mediated increase in
plant cover (or correlated increases in resource quality), whereas in year 5 orthopteran density was not related to cover,
diversity or plant %N, but rather to unmeasured effects of P, such as its influence on other aspects of resource quality.

Conclusions/Significance: The marked surprising response to P by orthopterans, combined with a previous observation of
P-limitation in lepidopteran herbivores at these sites, suggests that P-mediated effects of food quantity or quality are critical
to insect herbivores in this N-P co-limited primary successional system. Our results also support a previous suggestion that
the availability of N in these soils is P-limited.
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Introduction

In early successional terrestrial systems, low availability of

nitrogen (N) often limits plant productivity [1,2,3]. However, in

several cases phosphorus (P) or other rock-derived nutrients are

known to limit N fixation, especially during inchoate stages of

primary succession where P supply depends on the breakdown of

calcium apatite minerals [4,5,6,7]. Such systems are considered

co-limited by N and P. Insect herbivores may likewise experience

nutrient limitation during succession, either through a nutrient

limitation to host biomass or through low nutritional value of host

plants. This hypothesis has been examined many times in

secondary successional systems. For example, Ritchie [8] found

that N addition increased grasshopper populations in some abiotic

contexts, and Haddad et al [9] found that long-term N addition

decreased plant and herbivore diversity but increased plant

productivity and herbivore abundance. In one of the few studies

of resource limitation to arthropods during primary succession,

fertilization of 120-yr-old sites in Hawaii resulted in increased

density and biomass of insect herbivores and of spiders [10,11]. In

contrast, Rowe et al. [12] found that although fertilization of mine

wastes increased woody plant growth and N concentration, only

sap-feeding herbivores were affected. On primary successional

sites at Mount St. Helens volcano, lupin growing at high density

was lower in leaf %P and %N, and its specialist lepidopteran

herbivores responded negatively to low P concentration [13]. We

know of no other studies examining resource limitation of

arthropods during early primary succession.
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Tests of arthropod resource limitation often focus on N because

it is commonly limiting to plant productivity and because N

limitation appears particularly important for fitness of terrestrial

insect herbivores [14,15,16]. Thus, tests for bottom-up control of

herbivore populations typically manipulate soil N availability,

sometimes with dramatic enhancement of herbivore populations

[8,17,18,19,20]. Fewer studies distinguish between N-mediated

and P-mediated resource limitation of arthropods, but such

investigations are warranted for two reasons. First, recent

documentation that primary production in some systems is P-

limited [4,7,21,22] raises the possibility that consumers of P-

limited plant communities may themselves be P-limited. Second,

recent stoichiometric analyses of plant-herbivore interactions

suggest the possibility that inadequate P intake in insect herbivores

may occur more often than realized. Elser et al. [23] observed that

the N:P ratio in plant leaves is, on average, about 21% greater

than the N:P of the average terrestrial insect herbivore and

concluded that the nutrient demands of these herbivores should be

more imbalanced with respect to host P content than to host N. A

handful of more direct studies suggest P-limitation of terrestrial

insect herbivores [13,24,25,26,27,28] or have examined the

importance of P in relation to other elements [29,30,31,32], but

P-limitation of arthropods is still understudied. Identifying the

ecological contexts that may cause P-limitation is an important

step toward integrating successional studies with advances in

biogeochemistry and trophic ecology.

Here we explore whether major arthropod taxa respond to

nutrient addition in a primary successional plant community at

Mount St. Helens volcano, and extend our previous study of

vegetation response to N and P in order to relate it to arthropod

responses. The eruption of 1980 reduced an area of 60 km2 to

primary successional substrate, where colonization has been

dominated by the lupin Lupinus lepidus var. lobbii, an N-fixing

legume that strongly influences the rate and trajectory of

succession [33]. Feeding by several guilds of lepidopteran

herbivores dramatically affects the population growth and spread

of lupins across the landscape [34,35,36,37,38]. Soil N at these

sites has increased substantially but remains in a range inhibitory

to primary production [6,39,40]. Biomass and cover of non-N

fixing plants in this herb-dominated community respond rapidly to

N addition, while P addition causes a similar but time-lagged

response, probably through its effect on N-fixation by lupin [6].

Leaf-feeding lepidopteran herbivores of lupin are generally absent

from high-density lupin patches but abundant in low-density

patches, an unusual spatial distribution that appears partially

driven by P-limitation to larval growth and survivorship [13].

We hypothesized that N and P addition would have similar,

generally positive effects on arthropod abundance because of their

positive effects on plant productivity. On the other hand

differences in nutritional requirements among arthropod taxa

may lead to idiosyncratic responses if fertilization differentially

affects the tissue quality or abundance of a preferred host. To test

these hypotheses we quantified vegetation and arthropod respons-

es to N and P addition experiments conducted over a five year

span. To better understand the mechanisms of N and P effects, we

also quantified a correlate of food quality (leaf %N of a

representative host), and of N fixation (lupin leaf %N and

nodulation).

Materials and Methods

Research Area
Our research area was created by the 1980 eruption of Mount

St. Helens (46u159N, 122u109W), and is located on primary

successional pyroclastic deposits and on debris flow deposits on the

volcano’s north slope (1050–1170 m) (See ‘‘Fertilization plots’’ in

Fig. 1 of Gill et al. (2006) for additional site description). The mean

annual precipitation (1971–2004) was 224 cm with most precip-

itation falling in October-May. During the five years of our study

(2002–2006), the mean annual temperature was 6.6uC and mean

precipitation during the peak growing season (June 15–August 15)

was 3.5 cm [6].

Nutrient addition plots
Sets of four 9 m2 plots were established at each of eight sites (four

on pyroclastic deposits, four on debris flow deposits) in 2002. Plots at

each site received a factorial fertilization treatment with N and P in

June of each year from 2002 to 2006. To further examine the effect

of P, in 2003 eight additional pairs of plots were established on the

pyroclastic deposits. One member of each pair received P at the

same rates and times as those begun in 2002. We refer to the plots

from the two different years as ‘‘2002’’ and ‘‘2003’’ plots or

experiments. Both debris flow and pyroclastic soils are rudimentary

and susceptible to drought. All sites are in regions of high lupin

density referred to in previous papers as ‘‘core areas’’ [36,37] and

had high % cover of low-growing herbaceous plants and moss

(primarily Rhacomitrium spp.). Additional description of the plots

and the early response of vegetation to fertilization are provided in

[6]. The N and P addition rates for the four treatments were: 1) 0 g

N and P, 2) N: 7.8 g m22 yr–1 as NO3NH4, 3) P: 10 g m22 yr21 as

superphosphate, and 4) both N and P. The amount of N added was

,10x the annual input of N from atmospheric deposition in the

region [6]. The rate of P addition was 5–10% of the recommended

rate for legume crops. Observational surveys conducted within these

experiments are summarized in Appendix S1.

Figure 1. Response of arthropods to N and P addition. Mean
loge(treatment/control) ±95% CI for taxa sampled in 2004.
Squares represent loge(P treatment/control), circles represent loge(N
treatment/control). Lepidoptera are represented by larvae only;
Formicidae were primarily Formica pacifica and comprised .90% of
hymenopterans. Acrididae and Anabrus were the most abundant
orthopterans.
doi:10.1371/journal.pone.0013598.g001

N, P and Orthopteran Abundance

PLoS ONE | www.plosone.org 2 October 2010 | Volume 5 | Issue 10 | e13598



Arthropod surveys
In May 2004 one pitfall trap was placed in control, N, and P

nutrient addition plots at seven of eight sites of the 2002

experiment, for a total of 21 traps. N+P plots and one site were

omitted due to logistical constraints. Traps were dug 10 cm deep,

lined with PVC pipe, into which a large plastic cup containing

ethylene glycol was inserted. Traps were protected by a piece of

plywood supported ,4 cm above each trap and were closed when

traps were inactive. Pitfalls were opened for three ,one-week

periods spanning the most active part of the growing season: June

25th through July 2nd, July 13th through July 21st and July 29th

through August 7th. At the end of each period, contents were

transferred to 70% ethanol, sorted to order or family, and counted.

Relative abundance of eight arthropod orders were compared

among treatments using a linear mixed model regression with site

treated as a random effect and treatment as a fixed effect, with

treatment nested within site. Arthropod count data met regression

assumptions after loge transformation. All analyses were conducted

using R 2.9.2 [41]. Representative R models and output for most

analyses are presented in Appendix S1. Arthropod community

analyses were not conducted because pitfall trapping is not an

equally effective sampling method for all taxa.

Motivated by strong treatment effects on orthopterans in 2004

(see Results), we further investigated effects of N and P on

orthopterans in 2006. Orthopteran density was quantified by

counting the number of grasshoppers and Mormon crickets within

circular targets of nylon rope (30 cm diameter) [42] in all sites and

all treatments of the 2002 experiment and seven sites of the 2003

experiment. Beginning on July 24, 2006, all sites and treatments in

the 2002 experiment were surveyed once per day for seven of the

next 11 days, Targets were also surveyed in the 2003 plots (P vs.

control) at seven sites on four of those days. Surveys were

conducted by slowly approaching the plot and counting animals as

they left the circular target. Grasshoppers fleeing the circle left the

entire plot more than 50% of the time, in effect redistributing them

and allowing the opportunity for patch choice prior to the next

survey. By design, the observers were unaware of our specific

hypotheses regarding nutrient effects on grasshopper abundance.

Grasshopper counts were summarized as mean number per day,

and analyzed by a linear mixed effects model as described above.

2002 and 2003 experiments were analyzed separately.

Vegetation
In order to assess effects of fertilization on primary productivity,

percent cover was assayed in all plots of both experiments in mid-

July from 2004–2006. Cover was estimated for each plant species

in two 1 m2 quadrats within each plot, using the same protocol as

in Gill et al. (2006). Plant community response to nutrients was

analyzed as effects on % cover of plant functional groups, total %

cover of vascular plants, and on the Shannon diversity index.

Plants were partitioned into commonly used functional groups

[43]: broad-leafed herbaceous species were divided into legumi-

nous and non-leguminous forbs, and grasses and sedges were

combined as graminoids. Forbs were dominated by Hypochaeris

radicata and graminoids were dominated by Agrostis pallens, while L.

lepidus was the only legume. The Shannon diversity index (H) was

calculated based on % cover of each species, using the Vegan 1.8–

6 package for R [44]. Treatment effects on functional groups were

analyzed with a mixed effects model as described for arthropod

data, with treatment nested within site to account for non-

independence of quadrats, and including an NxP interaction term

for the 2002 experiment. Cover was square root-transformed and

H was exponentiated (i.e. eH, denoted H’), which estimates the

effective number of species [45], for all analyses. The 2002 and

2003 experiments were analyzed separately.

Nodulation and nutrient concentration
To better understand the mechanism by which P affects

vegetation, we measured lupin nodulation and leaf %N. Lupin

nodule production in the first season of the 2003 experiment was

measured in seedlings because earlier work demonstrated much

higher rates of N fixation in seedlings at these sites [39], and we

expected them to respond more quickly to fertilization. Nodules/

cm of root length were counted for 12 seedlings/site (six seedlings/

treatment) from the eight 2003 sites, and from several seedlings

from each of 10 more recently colonized locations with low lupin

density. Loge(nodules cm21 +1) was analyzed in a mixed effects

model as described above.

Lupin leaf tissue was collected for analysis of nutrient

concentration on August 13, 2003, from 6–8 plants in each of

the 2003 P addition and control plots at 4 sites (N = 54 plants). On

August 15, 2005, lupin leaves and culms of Agrostis pallens were

collected from all plots at all sixteen 2002 and 2003 sites. A. pallens

was chosen because it was the most common graminoid and

occurred in all plots. Plant tissue %N was determined using a

Eurovector Elemental Analyzer.

Arthropod relationship to vegetation
Counts for each arthropod taxon were loge-transformed and

regressed on H’ and % vascular plant cover. Orthopteran counts

were also regressed on Agrostis %N from 2005 (regressions on L.

lepidus %N were not conducted because of evidence that these

plants were strongly avoided). Although the %N was measured on

samples from the end of the 2005 growing season, it should

provide a reasonable index of the effects of N and P addition on N

concentration [8,17,46]. Structural equation modeling (SEM) was

conducted in order to partition the effects of N and P addition on

orthopteran abundance into direct effects of N and P (which likely

act through unmeasured variables such as leaf nutritional value),

and indirect effects occurring through the influence of N and P

addition on % cover, diversity, and leaf %N. Analyses were

conducted using the SEM 0.9–19 package for R 2.9.2 [41] and

diagrams were drawn using Graphviz (www.graphviz.org). Anal-

yses were based on models specified a priori (presented in Results)

that included direct effects of site type (pyroclastic flow vs. debris

flow) on % cover and diversity. Paths illustrating the effect of site

are omitted from the diagrams for clarity of presentation (but

illustrated in Appendix S1). %N was dropped from the 2004

model and the NxP interaction term was dropped from the 2006

model because doing so caused large improvements in model fit

indices (Appendix S1). Tests of significance and fit are based on

loge- and square root-transformed variables, but coefficients are

reported for back-transformed variables.

Results

Arthropod abundance
In 2004, nine orders of arthropods (Coleoptera, Diptera,

Hemiptera, Homoptera, Hymenoptera (Formicidae only), Lepi-

doptera, Orthoptera, Araneae and Opilionidae) were collected in

numbers large enough to be analyzed by ANOVA. There was a

significant and striking increase in the relative abundance of

orthopterans in P addition plots relative to control plots in 2004

(F1,12 = 18.8, p = 0.001; Fig. 1). The average increase in orthop-

teran individuals in P plots relative to controls was 48.7663.1

animals, a 200% increase relative to controls, while N plots only

increased by 1.14625.7 animals (a 9% increase). Post-hoc tests

N, P and Orthopteran Abundance
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indicated that P plots attracted significantly more animals than did

N (F1,6 = 10.2, p = 0.02). Among orthopterans there was a

preponderance of Mormon crickets (Anabrus simplex (Tettigoniidae),

83%), followed by spur-throated grasshoppers (Acrididae; subfam-

ily Melanoplinae, including Melanoplus sanguinipes, M. bruneri, and

M. femurrubrum) at 12%, band-winged grasshoppers at 2%

(subfamily Oedipodinae), with 3% remaining unidentified. When

analyzed individually, Acridid grasshoppers and Mormon crickets

each showed a significant response to P (Acrididae: F1,12 = 10.3,

p,0.01, mean increase = 3.763.4 per trap; Mormon crickets:

F1,12 = 23.1, p,0.001, mean increase = 38.6 per trap). No

significant differences in the abundances of other orders were

found among treatments after adjusting for multiple tests, although

there was a significant increase in homopterans and lepidopteran

larvae in response to P prior to adjustment for multiple tests.

Analyses were also conducted at the family level for five taxa

(Carabidae, Elateridae, Cicindellidae, Formicidae, and Lycosidae).

With the exception of the Elateridae, these are completely or

frequently predatory taxa. There was no effect of treatment on

these families and no significant correlations between predatory

taxa and orthopteran distribution.

Our follow-up survey of orthopteran density in 2006, after 5 yrs of

fertilization, revealed significant positive effects of both N and P, as

determined by counts in circular targets in 2002 plots (N:

F1,21 = 36.8.1, p,0.0001; P: F1,21 = 117.2, p,0.0001; Fig. 2). Post-

hoc tests indicated that orthopteran counts were highest in N + P plots,

followed by P, then N, then control (all p,0.003). A significant positive

effect of P was also observed in the 2003 plots (Fig. 2; F1,6 = 30.0,

p = 0.002). To summarize, P addition resulted in very highly significant

increases in orthopterans in two separate experiments in each of two

years despite using two different sampling methods.

Vegetation
The addition of P and N strongly affected vascular plant cover

and species composition in the 2002 experiment in 2004 and 2005,

three and four yrs after beginning fertilization. Most notably, both

treatments increased forbs (primarily non-native Hypochaeris

radicata) in both years, while P positively affected lupin in 2004

and N negatively affected lupin (Table 1). A model that included

site type (not shown) found no difference in P effects on lupin cover

between debris and pyroclastic flow sites. P also positively affected

total vascular plant cover in 2005, and both N and P increased

diversity in both years. In all cases the effect of N+P combined was

additive but not significantly greater than N or P effects (based on

post-hoc tests). P also had significant positive effects on lupin in

2004 in the 2003 experiment, followed by increased cover of

graminoids and total cover in 2005. These effects of P contrast

with a lack of P effects on non-legumes in the first year of

fertilization [6]. In 2006, there were few significant effects of

treatments on any vegetation categories in either experiment. Our

field observations suggest that fertilization attracted gophers

(beginning in 2004), whose preferential feeding in the N and P

addition plots prevented the N- and P-related increases in cover in

2006 that were observed in most previous years.

Plant nutrient content
N addition increased tissue %N in the dominant graminoid,

Agrostis pallens, to 1.69x (average N mass increase = 0.35%) of

control plants collected in August 2005 (Tables 2 & 3; ANOVA for

A. pallens, all sites: N addition: F1,19 = 13.0, p = 0.0007; P addition:

F1,19 = 1.8, p = 0.14; N x P: F1,19 = 0.3, p = 0.47). In contrast, N

addition decreased %N in L. lepidus, while P addition increased leaf

%N on pyroclastic sites by an average of 1.125x in 2005, but not

on debris flow sites (Table 2; P x Site type interaction: F1,16 = 4.53,

p = 0.05; see Appendix S1 for full ANOVA). In 2003 plots, which

are also on pyroclastic flows, P addition dramatically increased

lupin leaf %N by 0.65%N, 1.31x of the %N in controls (Table 3).

P addition also increased the density of nodules on lupin seedlings

in 2003 by 53% (Mean 6 SE: P addition: 0.5560.042 cm21;

Control: 0.3660.040 cm21; F1,87 = 7.7, p = 0.007). In younger,

low density areas, mean nodules cm21 = 0.83, and was unaffected

by P addition (analysis not shown).

Arthropod abundance, vegetation, and nitrogen
Orthopteran abundance was positively correlated to total %

cover of vascular plants in 2004, while arachnids (Araneae) and

hemipterans responded positively to vascular plant diversity but

not % cover (Table 4; Fig. 3). Based on sequential regression, the

positive response of the total number of arthropods to both plant

diversity and % cover (Table 4) was driven by the combined

influence of at least 5 taxa. In 2006, orthopteran density was more

weakly related to cover and diversity (Fig. 3; Table 4). Since these

predictors are expected to be influenced by experimental addition

of N and P, we employed structural equation models (SEM) to

disentangle the effects of N and P addition on orthopterans acting

through unmeasured variables from indirect effects acting through

these measured predictors. Our SEM was based on an a priori

causal model (represented in Fig. 4). In addition to the paths

shown in Fig. 4, site type (debris flow vs. pyroclastic flow) was

allowed to affect all variables except other independent variables

(N and P). We omit site from the path diagram for clarity (See

Appendix S1 for full diagram). Models for both years fit the data

well (2004: X2
4 = 7.24, p = 0.13, Bentler-Bonnett NFI = 0.87;

2006: X2
6 = 8.07, p = 0.23, Bentler-Bonnett NFI = 0.91; See [47]

for explanation of SEM fit indices). In 2004, SEM indicates that

the strong effect of P on orthopterans was primarily through its

effect on percent cover of vascular plants (or unmeasured effects

on tissue quality that correlated with % cover). In fact, the addition

of P increases orthopteran abundance by 52 animals/trap through

Figure 2. Density of orthopterans (mean ± SE, m22day21) in
July 2006, based on visual surveys (see Methods). Treatment
labels denote N addition (N), P addition (P), N+P (N & P addition), or
control (C), and 02 and 03 denote the experiment start year.
Independent variables are on y-axis to facilitate visual comparison of
treatments. Corresponding analyses were conducted separately for the
two experiments (2002 and 2003).
doi:10.1371/journal.pone.0013598.g002

N, P and Orthopteran Abundance
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its effect on % cover (Fig. 4a). Substituting percent cover of forbs

for cover of vascular plants yielded nearly the same model (results

not shown). The net effect of P in 2004 was an increase of 47.2

animals/trap, whereas the net effect of N was approximately 1

animal/trap. In 2006, P strongly affected orthopteran density

through a direct path, causing an increase of 19.6 animals/day/m2

(Fig. 4b). N addition also positively affected orthopterans in 2006,

with a net effect of 12.6 animals/day/m2, primarily through

increasing tissue %N (6.9 animals/day/m2).

Discussion

Our results support Gill et al’s (2006) conclusion that primary

production on Mount St. Helens’ Pumice Plain is limited directly

by N availability, but that there is a P-limitation to the supply of N.

The effect of P on plant cover lagged behind that of N by 1–2

years, but eventually equaled it. With one exception, arthropod

taxa showed no significant responses to N or P either individually

or in aggregate. However, orthopterans responded dramatically to

P addition in both 2004 and 2006, suggesting that P-limitation

travels upward to some consumer taxa more strongly than does N.

Primary production co-limited by N and P
Gill et al’s (2006) conclusions of N-limitation and a possible P

limitation to N-availability were based on the first three years of

Table 1. Vegetation response to N and P addition treatments: ANOVA results and means (6SD).

2004 2002 Experiment 2003 Experiment

Response Variable Control N addition P addition N+P Control P addition

Forbs (except lupin) 13.1 (7.8) 17.8 (8.2) * 21.2 (11.7)*** 24.8 (11.7) 8.0 (8.3) 7.1 (8.0)

Graminoids 5.8 (12.2) 7.2 (8.5) 6.2 (7.6) 12.1 (14.4) 5.5 (7.4) 5.7 (6.6)

Lupinus lepidus 18.3 (10.7) 8.6 (10.7) *** 25.6 (18.7)* 10.6 (10.6) 30.9 (14.5) 43.3 (16.9)**

Total cover, no moss 41.0 (20.3) 37.2 (18.7) 50.1 (22.2)** 44.1 (19.2) 46.6 (24.9) 56.2 (18.6)

H 1.04 (0.28) 1.28 (0.41)* 1.10 (0.31)* 1.45 (0.34) 1.00 (0.28) 0.97 (0.23)

2005

Forbs (except lupin) 18.6 (15.8) 26.9 (9.9)** 24.9 (11.8)* 36.0 (18.0) 10.4 (7.7) 13.4 (10.0)

Graminoids 11.2 (23.1) 16.3 (19.0) 14.1 (18.0) 19.1 (19.8) 2.6 (3.3) 11.9 (16.1)**

Lupinus lepidus 3.4 (3.4) 2.0 (2.9) 1.9 (3.1) 1.3 (2.8) 4.3 (3.5) 2.8 (2.4)

Total cover, no moss 33.1 (21.6) 45.0 (17.4)** 41.5 (20.6)** 55.2 (23.4) 17.2 (7.0) 30.1 (15.0)**

H 0.96 (0.28) 1.22 (0.30)** 1.13 (0.31)* 1.32 (0.30) 1.02 (0.33) 1.20 (0.26)

Agrostis %N 0.56 (0.16) 0.91 (0.43)* 0.60 (0.15) 1.0 (0.59) 0.51 (0.15) 0.54 (0.21)

2006

Forbs (except lupin) 21.0 (12.9) 29.5 (19.2) 25.9 (16.1) 31.3 (23.3) 18.5 (7.7) 20.4 (6.2)

Graminoids 13.2 (19.3) 15.3 (16.6) 20.2 (24.6) 26.5 (30.9) 8.2 (4.9) 12.4 (7.5)*

Lupinus lepidus 7.4 (7.0) 0.9 (1.5)*** 2.6 (6.4) 0.7 (1.6) 12.0 (6.6) 9.1 (7.6)

Total cover, no moss 41.7 (10.6) 45.7 (17.3) 48.7 (19.7) 58.7 (24.0) 38.6 (11.3) 41.8 (14.9)

H 1.15 (0.17) 1.17 (0.24) 1.17 (0.28) 1.23 (0.34) 1.21 (0.16) 1.26 (0.21)

(***: p#0.001; **: p#0.01; *: p#0.05).
P-values for the 2002 (N and P factorial addition) and 2003 (P addition) experiments are from mixed effect ANOVAs (See Appendix S1 for model details). There were no
significant N+P interaction terms. Transformations used for analyses: Loge (%N, Forbs, Graminoids), H’ ( = eH), and (total cover)1/2. Bold font highlights significant effects.
We report the untransformed values.
doi:10.1371/journal.pone.0013598.t001

Table 2. Nitrogen concentration in lupin leaves and Agrostis
stems: 2002 experiment measured in 2005.

Tissue %N

Agpa 2005 Lule 2005

Debris Pyro. Debris Pyro.

Control 0.50 0.62 2.48 1.86

P added 0.54 0.65 2.29 2.15*

N added 0.67** 1.08* 2.33 1.70**

N+P added 0.78 1.30 2.46 1.68 **

(***: p#0.001; **: p#0.01; *: p#0.05; x: p#0.08).
‘‘Lule’’ denotes Lupinus lepidus and ‘‘Agpa’’ denotes Agrostis pallens.
Data are from four sites each on a debris flow and a pyroclastic flow.
Results based on linear mixed effects models with site as a random effect and
df = 1,16. See Appendix S1 for model. Bold font highlights significant results.
doi:10.1371/journal.pone.0013598.t002

Table 3. Nitrogen concentration in lupin leaves and Agrostis
stems: 2003 experiment measured in 2003 and 2005.

Tissue %N

Agpa 2005 Lule 2003 Lule 2005

Control 0.49 2.09 1.86

P added 0.51 2.74*** 2.05*

Notation as in Table 2.
Data are from eight sites on a pyroclastic flow.
Results based on mixed effects model (2003 data, df = 1, 49), or on paired t-tests
with df = 7 (2005 data). Bold font highlights significant results.
doi:10.1371/journal.pone.0013598.t003
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data (2002–2004) from the same 2002 fertilization experiment

analyzed here. To that we have added results from two more years

of monitoring (2005–2006) and from a second experiment (the

2003 P addition experiment), as well as new analyses of the 2004

data. The hypothesis that P affects the plant community through

facilitation of N-fixation is supported by several observations. First

is the immediate effect of P on lupin cover in both experiments,

followed by an increase in N-limited taxa in the 2002 experiment.

P addition increased lupin cover in years 1–3 (Gill et. al. 2006, and

Table 1), followed by proportional increases in non-legumes of 25–

40% (Table 1) in years 3 and 4 (2004 & 2005). Similarly, in the

2003 experiment there was an initial 50% increase in lupin,

followed by a 75% increase in other species. Other findings that

support the hypothesis are the P-mediated increases in lupin

nodulation, seed production (Gill et. al. 2006), and leaf %N.

Interestingly, combined N and P addition exhibited additive effects

on non-legume cover while suppressing lupins as much as N

addition alone, possibly indicating a direct role for P once N-

limitation is removed.

A few other studies have demonstrated P-limitation in early

successional systems, although P-limitation is more common on

ancient soils [4,5,7,21,48,49]. Although primary successional

systems initially contain little available P, its availability increases

over time through weathering of apatite minerals in the parent

material, which at Mount St. Helens contain ,0.2% P2O5 [50].

Weathering of P is probably rapid in pumice materials typical of

our sites because of its high glass content, surface area, and

friability. This release may be accelerated by lupin, which is

capable of liberating mineral-bound P through concentrated

exudation of organic acids [51].

Nutrient limitation of consumers
Given the strongly nutrient-limited soils of the Pumice Plain

we expected a general arthropod response to both N and P

addition. Instead, only a single herbivorous taxon was affected,

and it responded primarily to P. P addition dramatically

increased the abundance of Orthoptera (primarily Mormon

crickets, Anabrus simplex, and spur-throated grasshoppers (family

Acrididae)) in both 2004 and 2006. While N addition also

increased orthopteran density in 2006, its effect was significantly

less than that of P. These results contrast with several other

studies. For example, Gruner [10,11] fertilized Metrosideros, the

dominant tree on 120-yr-old Hawaiian basalt flows that also

experience N-P co-limitation and found a more general increase

in arthropods at several trophic levels, which was attributable to

an increase in host plant quality. Our results also contrast with

those of a recent study with a similar design to ours, in which

grasshoppers in long term fertilization plots in an N-limited

prairie did not increase in abundance with either N or P addition,

although fertilization did alter leaf stoichiometry and diet

composition [30].

In a separate study at Mount St. Helens we found that the

fitness of specialist lepidopteran herbivores feeding on L. lepidus

was sensitive to natural variation in plant P content and N:P

ratio [13]. However, the response of Orthoptera to P is not

directly due to an increase in lupin: we found that Melanoplus spp.

grasshoppers feeding on L. lepidus died within one week

(unpublished data), and the 2006 response to P occurred

despite very low amounts of lupin cover. We suggest that P-

limitation to consumers is especially likely on N-fixing plants

under P-limited conditions. This hypothesis is congruent with

several other studies. For example, P addition in secondary

tropical forest significantly increased foliage P and herbivory in

leguminous trees growing in young P-limited sites, but not in

older, less P-limited sites [31], and the abundance of weevils on

Prosopis, a leguminous desert shrub, tracked soil P availability

[28]. However, our results with Orthoptera also indicate that P-

limitation may not be confined to herbivores feeding on N-fixers

in these systems.

The lack of response to nutrient addition by most other taxa,

including predatory taxa (Table 4) is of interest. A few

predators, represented by hemipterans (especially predators in

the Nabidae), and spiders (especially in the family Lycosidae)

did show a positive response to plant species diversity but not to

% cover. This general lack of arthropod response seems

surprising since both plant biomass and nutritional quality

responded to nutrient addition, but we must add a number of

caveats to this conclusion. First, pitfall traps are ineffective at

assessing many taxa, especially parasitoid wasps, flies, and

lepidopterans. Second, and perhaps most importantly, both the

plant response to fertilization and the response by herbivorous

arthropods were undoubtedly blunted by the effects of

herbivory by vertebrates and orthopterans. Although we were

unable to quantify the effect of orthopterans on plants, we

estimated a mean orthopteran density of 23 individuals/m2 in

2006, (ranging up to 60/m2), and these animals visibly affected

vegetation at our sites. In addition, plant biomass responses

were greatly diminished by dramatic effects of vertebrate

herbivores, especially northern pocket gophers (Thomomys

talpoides). Biomass removal by gophers explains the apparent

lack of plant response to N in 2004 and 2006. The invasion of

Table 4. Arthropod response to plant community
characteristics: Mean abundance (per trap) for different
arthropod taxa, and regression coefficients for effects of plant
diversity (H’) and % Cover1/2.

Mean (SD)b Community Effects

H % Cover

2004 Pitfall data

Orthoptera 68 (87.8) 28.0*** 3.88***

Anabrus 56.1 (92.2) 29.1 4.00**

Acrididae 7.9 (6.6) 27.4 0.05

Dipteraa 24.6 (17.6) 5.42 2014

Hemiptera 7.7 (5.3) 14.2** 20.04

Homoptera 4.7 (2.4) 1.9 20.00

Opilionidae 28.1 (17.6) 29.5 20.72*

Araneae 48.1 (16) 39.4 20.34

Coleoptera 22.1 (10.2) 13.9 20.20

Formicidae 78.1 1.3*** 0.02

Total Arthropodsc 219.4 (91.4) 70.2*** 3.86**

2006 Orthopterad,e

2002 plots 1.65 (1.23) 1.62* 0.023*

2003 plots 0.98 (0.88) 0.58 20.002

(***: p#0.001; **: p#0.01; *: p#0.05).
Arthropod counts were all loge-transformed. Regression coefficients are back-
transformed. Bold font highlights significant results.
aNone of the Diptera were parasitic tachinids.
bMean number of individuals/trap.
cFormicidae (ants) omitted.
dMean number per 0.07 m2 target per day; 7 plot pairs for 2003 experiment, 8

plot sets for 2002 experiment.
doi:10.1371/journal.pone.0013598.t004
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gophers in N and P addition plots, which began in 2004, was

striking in its visual impact, with mounded soil dominating the

plot and defining the plot boundaries. However, it is important

to note that even in 2006, when plant responses to N and P plots

were equally blunted by gophers, there was still a highly

significant effect of P on orthopteran density.

Orthopteran response to P
The potential mechanisms through which P addition (and N

addition in 2006) affected orthopterans include increased

primary production, compositional changes that increase the

abundance of preferred hosts, or changes in the nutritional

value of host plants. A correspondence analysis of the 2004 data

(Appendix S2) indicated that orthopteran numbers increased

with increased cover of a large number of herbaceous forbs and

grasses, but decreased with the abundance of two other grasses,

consistent with a general relationship to primary production.

Structural equation modeling (SEM) also indicated that in

2004, the effect of P was primarily through its positive effect on

productivity (i.e. percent cover of vascular plants) (Fig. 4).

Substituting % cover of forbs for that of vascular plants

produced nearly as strong a model, consistent with reports that

the three Melanoplus species we identified may prefer forbs or

legumes over grasses [52,53]. However, because P addition, %

cover, and orthopteran abundance were very highly correlated,

effects of P acting through the nutritional quality of hosts could

have been masked by the correlation with % cover. Indeed, in

2006 there was no effect of P on percent cover, nor any effects of

%cover on Orthoptera, and here the SEM indicated a strong

‘‘direct’’ effect of P on Orthoptera. We surmise that this direct

effect most likely occurred through changes in the P-content of

host plants. Unfortunately we were unable to measure tissue P

content for these samples, but similar studies indicate an

increase in tissue %P in grasses and forbs with phosphate

addition [30]. We did measure tissue N content and found that

the significant effect of N addition in 2006 was entirely through

its effect on Agrostis %N (which likely is an indicator of %N

across grasses and forbs in the plot) (Fig. 4), supporting the

hypothesis that Orthoptera are responding to increased nutrient

concentration.

The possibility that Orthoptera are responding positively to

tissue %P as well as %N is interesting in light of the extensive

study of grasshopper and cricket nutritional ecology. Both

generalist feeders and relative specialists (for example, graminoid

feeders) generally rely on non-optimal food sources, and by

actively composing diets from several non-optimal sources they

can attain optimal target intake ratios of protein and carbohy-

drates [30,54,55,56]. Orthoptera also alter diet composition to

minimize exposure to defensive compounds or to obtain specific

dietary components, such as phenylalanine, which is needed by

young nymphs for cuticle formation [57,58,59]. Orthoptera are

highly mobile and clearly capable of discriminating and choosing

among food sources of different quality. However, nearly all of

these nutritional studies have focused on protein and carbohy-

Figure 3. Relationship of orthopteran counts to % cover of
vascular plants in 2004 (A) and 2006 (B) and Agrostis %N (C) in
2006 after accounting for inter-site variation. A. 2002 experiment
sampled in 2004; B &C. Both experiments, sampled in 2006 (count data);
In Fig. 3C, note that P addition plots always have more orthopterans
than N addition or Control plots with equal or greater leaf N. In all three
plots, inter-site variation was removed by regressing each variable on site
identity (random effect) and plotting the mean + residuals.
doi:10.1371/journal.pone.0013598.g003
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drates, and none have included explicit study of nucleic acids, the

principal biological source of P (but see [60], who found protein,

but not P affected grasshopper performance). Interestingly, a

recent examination of field crickets (Gryllus texensis) found

surprising levels of variation in carcass nutrient composition:

400% variation in %P but only 50% variation in %N [61].

Because ribosomal RNA represents the principal pool of tissue P,

this suggests that variation in %P could be linked to growth rate

[23]. In a companion study, G. texensis males exhibited a

correlation between carcass %P and long distance mate

signaling, a sexually selected trait [62]. These results support

the possibility that dietary P is at times limiting to orthopteran

fitness. Several other studies on specialist terrestrial insect

herbivores also suggest that P may be more limiting than commonly

thought [13,24,28]. Our results clearly warrant further investigation

into P limitation of Orthoptera at Mount St. Helens. In addition,

our results suggest that investigating spatiotemporal variation in N

and P availability will lead to a better understanding of consumer

dynamics in primary succession.

Supporting Information

Appendix S1 Supplementary information regarding sampling

and statistical analyses. This file contains supplementary informa-

tion regarding sampling and analyses. Section 1 describes the

sampling patterns for vegetation, arthropods, and other variables

within the fertilization plots. Section 2 provides representative R

models and results for the analyses described in the main text.

Section 3 contains full SEM models and additional information

regarding model choice.

Found at: doi:10.1371/journal.pone.0013598.s001 (0.11 MB

DOC)

Appendix S2 Detrended correspondence analysis of vegetation

data. Detrended correspondence analysis of Mount St. Helens

vegetation data from control, N addition, and P addition plots.

Plots received N and P additions in 2002, 2003, and 2004;

quadrats were assessed for % cover in 2004. Species abbrevia-

tions are in Appendix S1 Table 1. The best species spread in

ordination space was achieved without data transformations and

without down-weighting the influence of rare species. A second

matrix of grasshopper abundance was mapped onto the

vegetation data matrix. Thus, a ‘‘gh’’ vector shows the direction

of increased grasshopper abundance (to the right) in the plots in

2004. PC-ORD was used for analysis and graphics (MJM

Software 2002).

Found at: doi:10.1371/journal.pone.0013598.s002 (0.05 MB

DOC)

Acknowledgments

We thank Becky Irwin for discussion, Rachel Ikehara-Martin, Jennifer

Griffith, Rudy Salakory, and Matthew Hodges for field assistance and

insect sorting, Ray Lee for assistance with nutrient analyses, and several

anonymous reviewers for useful comments on the manuscript.

Author Contributions

Conceived and designed the experiments: JGB NBO JLA. Performed the

experiments: JGB NBO JHT JLA RAG LW. Analyzed the data: JGB JHT.

Wrote the paper: JGB NBO.

References

1. Walker LR, Chapin FS, III (1986) Physiological controls over seedling growth in

primary succession on an Alaskan floodplain. Ecology 67: 1508–1523.

2. Vitousek PM, Walker LR (1987) Colonization, succession, and resource

availability: ecosystem-level interactions. In: Gray AJ, Crawley MJ,

Edwards PJ, eds. Colonization, Succession, and Stability: Symposium of the

British Ecological Society. Oxford, UK: Blackwell Press. pp 207–224.

3. Vitousek PM, Walker LR, Whiteaker LD, Mueller-Dombois D, Matson PA

(1987) Biological invasion by Myrica faya alters ecosystem development in

Hawaii. Science 238: 802–804.

4. Richardson SJ, Peltzer DA, Allen RB, McGlone MS, Parfitt RL (2004) Rapid

development of phosphorus limitation in temperate rainforest along the Franz

Josef soil chronosequence. Oecologia 139: 267–276.

Figure 4. Path diagrams from Structural Equation Models. Results
indicate that P affects orthopterans through its effect on cover in
2004, but through an unidentified mechanism such as tissue %P,
in 2006. Site variable is omitted from diagrams for clarity (see Appendix S1).
Path coefficients in this figure are un-standardized and based on
untransformed variables. Significance levels and fit indices (see Results) are
based on transformed variables. In 2004, Orthop represents Orthoptera per
trap over 27 days of trapping. In 2006, Orthop represents Orthoptera per day
per m2. Diversity is the Shannon Wiener Diversity index (H), % Cover is of
vascular plants, and % N is for Agrostis spp. Indirect effects are obtained by
multiplying paths coefficients, and net effects can be obtained by summing
direct and indirect effects. In 2004 for example, the indirect effect of P
addition through % cover = 15.31% *3.41 orthopterans/1% cover change
= 52.2 orthopterans/trap, and the net effect of P through all paths = 47.2
individuals/trap. (****: p#0.0001; ***: p#0.001; *: p#0.05).
doi:10.1371/journal.pone.0013598.g004

N, P and Orthopteran Abundance

PLoS ONE | www.plosone.org 8 October 2010 | Volume 5 | Issue 10 | e13598



5. Chapin DM, Bliss LC, Bledsoe LJ (1991) Environmental regulation of dinitrogen

fixation in a high arctic lowland ecosystem. Canadian Journal of Botany 69:
2744–2755.

6. Gill RA, Boie JA, Bishop JG, Larsen L, Apple JL, et al. (2006) Linking

community and ecosystem development on Mount Saint Helens. Oecologia 148:
312–324.

7. Vitousek PM (1999) Nutrient limitation to nitrogen fixation in young volcanic
sites. Ecosystems 2: 505–510.

8. Ritchie ME (2000) Nitrogen limitation and trophic vs. abiotic influences on

insect herbivores in a temperate grassland. Ecology 81: 1601–1612.

9. Haddad NM, Haarstad J, Tilman D (2000) The effects of long-term nutrient

loading on grassland insect communities. Oecologia 124: 73–84.

10. Gruner DS (2004) Attenuation of top-down and bottom-up forces in a complex

terrestrial community. Ecology’ 85: 3010–3022.

11. Gruner DS, Taylor AD, Forkner RE (2005) The effects of foliar pubescence and
nutrient enrichment on arthropod communities of Metrosideros polymorpha

(Myrtaceae). Ecological Entomology. pp 428–443.

12. Rowe EC, Healey JR, Edwards-Jones G, Hills J, Howells M, et al. (2006)

Fertilizer application during primary succession changes the structure of plant

and herbivore communities. Biological Conservation 131: 510–522.

13. Apple JL, Wink M, Wills SE, Bishop JG (2009) Successional change in

phosphorus stoichiometry explains the inverse relationship between herbivory
and lupin density on Mount St. Helens. PLoS One 4: e7807.

14. Slansky F, Feeny P (1977) Stabilization of the rate of nitrogen accumulation by
larvae of the cabbage butterfly on wild and cultivated plants. Ecological

Monographs 47: 209–228.

15. White TCR (1993) The inadequate environment: Nitrogen and the abundance
of animals. Berlin, Germany: Springer-Verlag.

16. McNeill S, Southwood TRE (1978) The role of nitrogen in the development of
insect/plant relationships. In: Harborne JB, ed. Biochemical aspects of plant and

animal coevolution. London, UK: Academic Press. pp 77–98.

17. Throop HL, Lerdau MT (2004) Effects of nitrogen deposition on insect
herbivory: Implications for community and ecosystem processes. Ecosystems 7:

109–133.

18. Denno RF, Gratton C, Peterson MA, Langellotto GA, Finke DL, et al. (2002)

Bottom-up forces mediate natural-enemy impact in a phytophagous insect

community. Ecology 83: 1443–1458.

19. Strengbom J, Witzell J, Nordin A, Ericson L (2005) Do multitrophic interactions

override N fertilization effects on Operophtera larvae? Oecologia 143: 241–250.

20. Stiling P, Moon DC (2005) Quality of quantity: the direct and indirect effects of

host plants on herbivores and their natural enemies. Oecologia 142: 413–420.

21. Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest
decline in contrasting long term chronosequences. Nature 305: 509–513.

22. Ritchie ME, Tilman D (1995) Responses of legumes to herbivores and nutrients
during succession on a nitrogen-poor soil. Ecology 76: 2648–2655.

23. Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, et al. (2000)

Nutritional constraints on terrestrial and freshwater foodwebs. Nature 408:
578–580.

24. Perkins MC, Woods HA, Harrison JF, Elser JJ (2004) Dietary phosphorus affects
the growth of larval Manduca sexta. Archives of Insect Biochemistry and

Physiology 55: 153–168.

25. Hunter MD, Watt AD, Docherty M (1991) Outbreaks of the winter moth on

Sitka Spruce in Scotland are not influenced by nutrient deficiencies of trees, tree

budburst, or pupal predation. Oecologia 86: 62–69.

26. Popp MP, Wilkinson RC, Jokela EJ, Harding RB, Phillips TW (1989) Effects of

slash pine phloem nutrition on the reproductive performance of Ips calligraphus

(Coleoptera: Scolytidae). Environmental Entomology 18: 795–799.

27. Clancy KM, King RM (1993) Defining the western spruce budworm’s

nutritional niche with response surface methodology. Ecology 74: 442–454.

28. Schade JD, Kyle M, Hobbie SE, Fagan WF, Elser JJ (2003) Stoichiometric

tracking of soil nutrients by a desert insect herbivore. Ecology Letters 6: 1–6.

29. Busch JW, Phelan PL (1999) Mixture models of soybean growth and herbivore

performance in response to nitrogen-sulphur-phosphorus nutrient interactions.

Ecological Entomology 24: 132–145.

30. Jonas JL, Joern A (2008) Host-plant quality alters grass/forb consumption by a

mixed-feeding insect herbivore, Melanoplus bivittatus (Orthoptera: Acrididae).
Ecological Entomology 33: 546–554.

31. Campo J, Dirzo R (2003) Leaf quality and herbivory responses to soil nutrient

addition in secondary tropical dry forests of Yucata’n, Mexico. Journal of
Tropical Ecology 19: 525–530.

32. Ayres MP, Wilkens RT, Ruel JJ, Lombardero MJ, Vallery E (2000) Nitrogen
budgets of phloem-feeding bark beetles with and without symbiotic fungi.

Ecology 81: 2198–2210.

33. del Moral R, Rozzell L (2005) Long-term effects of Lupinus lepidus on vegetation
dynamics at Mount St. Helens. Vegetatio 181: 203–215.

34. Bishop JG (2002) Early primary succession on Mount St. Helens: The impact of

insect herbivores on colonizing lupines. Ecology 83: 191–202.
35. del Moral R (2009) Increasing deterministic control of primary succession on

Mount St. Helens, Washington. Journal of Vegetation Science 20: 1145–1154.

36. Bishop JG, Fagan WF, Schade JD, Crisafulli CM (2005) Causes and
consequences of herbivory on prairie lupine (Lupinus lepidus) in early primary

succession. In: Dale VH, Swanson F, Crisafulli CM, eds. Ecological Responses
to the 1980 Eruptions of Mount St Helens: Springer Verlag. pp 151–161.

37. Fagan WF, Bishop JG (2000) Trophic interactions during primary succession:

Herbivores slow a plant reinvasion at Mount St. Helens. American Naturalist
155: 238–251.

38. Fagan WF, Lewis M, Neubert M, Aumann C, Apple JL, et al. (2005) When can
herbivores slow or reverse the spread of an invading plant? A test case from

Mount St. Helens. American Naturalist 166: 669–685.
39. Halvorson JJ, Smith JL, Kennedy AC (2005) Lupine effects on soil development

and function during early primary succession at Mount St. Helens. In: Dale VH,

Swanson F, Crisafulli CM, eds. Ecological Responses to the 1980 Eruptions of
Mount St Helens: Springer-Verlag. pp 243–254.

40. Fagan WF, Bishop JG, Schade JD (2004) Spatially structured herbivory and
primary succession at Mount St. Helens: a role for nutrients? Ecological

Entomology 29: 398–409.

41. Fox J (2006) Structural Equation Modeling With the sem Package in R.
Structural Equation Modeling 13: 465–486.

42. Onsager JA, Results JE (1977) A method for estimating the density of
grasshoppers (Orthoptera: Acrididae) in experimental plots. Acrida 6: 231–237.

43. Tilman D (1997) Community invasibility, recruitment limitation, and grassland
biodiversity. Ecology 78: 81–92.

44. Oksanen J, Kindt R, Legendre P, O’Hara RB (2007) vegan: Community

Ecology Package. 1.8-6 ed.
45. Jost L (2006) Entropy and Diversity. Oikos 113: 363–375.

46. Schoenfelder A, Martinson H, Bishop JG, Fagan WF (Unpublished manuscript)
Resource use efficiency and community effects of invasive and native plants

during primary succession. Oecologia, In review. Oecologia.

47. Bishop JG, Schemske DW (1998) Variation in flowering phenology and its
consequences for lupines colonizing Mount St. Helens. Ecology 79: 534–546.

48. Raich JW, Russell AE, Crews TE, Farrington H, Vitousek PM (1996) Both
nitrogen and phosphorus limit plant production on young Hawaiian lava flows.

Biogeochemistry 32: 1–14.
49. Uliassi DD, Ruess RW (2002) Limitations to symbiotic nitrogen fixation in

primary succession on the Tanana River floodplain. Ecology 83: 88–103.

50. Lipman PW, Mullineaux DR, eds (1981) The 1980 eruptions of Mount St.
Helens, Washington. Washington, D.C., USA: U.S: Government Printing

Office.
51. Neumann G, Martinoia E (2002) Cluster roots – an underground adaptation for

survival in extreme environments. Trends in Plant Science 7: 162–168.

52. Mulkern GB, Pruess KP, Knutson H, Hagen AF, Campbell JB, et al. (1969)
Food habits and preferences of grassland grasshoppers of the north central Great

Plains. FargoND: Agricultural Experiment Station, North Dakota State
University.

53. Johnston J (2001) Grasshopper movement in a patchy environment: A case study
of Melanoplus bruneri [M.S.]. TempeAZ: Arizona State University.

54. Joern A, Behmer ST (1998) Impact of diet quality on demographic attributes in

adult grasshoppers and the nitrogen limitation hypothesis. Ecological Entomol-
ogy 23: 174–184.

55. Raubenheimer D, Simpson SJ (2003) Nutrient balancing in grasshoppers:
behavioural and physiological correlates of dietary breadth. The Journal of

Experimental Biology 206: 1669–1681.

56. Raubenheimer D, Simpson SJ (2004) Organismal stoichiometry: Quantifying
non-independence among food components. Ecology 85: 1203–1216.

57. Behmer ST, Simpson SJ, Raubenheimer D (2002) Herbivore foraging in
chemically heterogeneous environments: nutrients and secondary metabolites.

Ecology 83: 2489–2501.

58. Behmer ST, Joern A (1993) Diet choice by a grass-feeding grasshopper based on
the need for a limiting nutrient. Functional Ecology 7: 522–527.

59. Behmer ST, Lloyd CM, Raubenheimer D, Stewart-Clark J, Knight J, et al.
(2005) Metal hyperaccumulation in plants: mechanisms of defence against insect

herbivores. Functional Ecology 19: 55–66.
60. Loaiza V, Jonas JL, Joern A (2008) Does dietary P affect feeding and

performance in the mixed-feeding grasshopper (Acrididae) Melanoplus bivitta-

tus? Environmental Entomology 37: 333–339.
61. Bertram SM, Bowen M, Kyle M, Schade J () Extensive natural intraspecific

variation in stoichiometric (C:N:P) composition in two terrestrial insect species.
Journal of Insect Science, (In Press).

62. Bertram SM, Schade J, Elser JJ (2006) Signalling and phosphorus: correlations

between mate signalling effort and body elemental composition. Animal
Behavior 72: 899–907.

N, P and Orthopteran Abundance

PLoS ONE | www.plosone.org 9 October 2010 | Volume 5 | Issue 10 | e13598


