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During radiotherapy treatment for thoracic and abdomen cancers, for example, lung cancers, respiratory motion moves the target
tumor and thus badly affects the accuracy of radiation dose delivery into the target. A real-time image-guided technique can be
used to monitor such lung tumor motion for accurate dose delivery, but the system latency up to several hundred milliseconds for
repositioning the radiation beam also affects the accuracy. In order to compensate the latency, neural network prediction technique
with real-time retraining can be used. We have investigated real-time prediction of 3D time series of lung tumor motion on a
classical linear model, perceptron model, and on a class of higher-order neural network model that has more attractive attributes
regarding its optimization convergence and computational efficiency.The implemented static feed-forward neural architectures are
compared when using gradient descent adaptation and primarily the Levenberg-Marquardt batch algorithm as the ones of themost
common and most comprehensible learning algorithms. The proposed technique resulted in fast real-time retraining, so the total
computational time on a PC platform was equal to or even less than the real treatment time. For one-second prediction horizon,
the proposed techniques achieved accuracy less than one millimeter of 3D mean absolute error in one hundred seconds of total
treatment time.

1. Introduction

In radiation therapy, accurate and sufficient amount of dose
delivery only to the target tumor is required to not only max-
imize the therapeutic effects, but also minimize inaccurate
delivery of doses to healthy tissues surrounding the tumor.
Such accurate irradiation is, however, a nontrivial task due to
the body motion. For example, the respiratory motion com-
plicates the targeting of external radiation to tumors in lungs,
pancreas, and other thoracic and abdominal sites. The tumor
motion can be associatedwith the internalmovements caused
by respiration and cardiac cycles and also with systematic
drifts and patient’s stochasticmovements [1, 2]. Among them,
respiration is dominant and thus the respiratory motion has
been widely analyzed. In lung tumormotion, it is well known
to have amplitude between 0.5 and 2.5 cm, even some times

5 cm [3]. As a consequence, the dose distribution may be
delivered significantly different from the prescribed one and
increase the radiation toxicity dramatically [4–9]. The time
series of the lung respiration has a quasiperiodic nature and
the behavior may vary in time [2, 5, 10]. The respiration
motion becomes a complex nonstationary process; that is,
it changes amplitude and period over time. Some breathing
is highly irregular in patients whose pulmonary functions
are affected by disease [11–14]. Several methods have been
developed for the respiratory motion gated radiation therapy
or real-time tumor tracking, but their use is still questioned
[2, 10]. Three general approaches have been achieved to
predict respiration behavior [10].

In Isaksson et al. [5] it is shown that adaptive signal
processing filters can provide more accurate tumor posi-
tion estimates than stationary filters when presented with
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nonstationary breathing motion. Murphy and Dieterich
[10] analyzed linear versus nonlinear neural network filter
for predicting tumor motion when breathing behavior is
moderately to extremely irregular. In Homma et al. [15]
the authors developed a time series prediction based on a
seasonal ARIMAmodel by using the real-time compensation
of the time variant nature involved in the cyclic dynamics of
the respiration motion. Their evaluation by using a clinical
dataset showed that the proposed system can achieve a
clinically useful high accuracy and long-term prediction of
the average error 1.05 ± 0.99mm at 1-second prediction
ahead. Riaz et al. [16] proposed a linear adaptive filter with
gradient descent and support vector regression approach to
predict tumor movement up to 1 sec into the future. They
used data from 14 treatment sessions and a root mean square
error (RMSE) was used as a metric. Their support vector
regression gave them the best prediction accuracy for 400ms
and 1 sec, with RMSE less than 2mm at 1 s. In Ichiji et al. [17]
the authors proposed a tumor motion prediction using time
variant seasonal ARIMA (TVSARIMA) model; they took
attention in estimating the time variant periodical nature
of lung tumor motion. In order to obtain better prediction
accuracy, Ichiji et al. [17] combined TVSARIMA with three
more methods: unweighted average, multiple regression, and
multilayer perceptrons (MLPs) type of neural network (NN).
The authors reached the highest prediction accuracy by using
combination of TVSARIMA and MLP with 10 neurons in
a hidden layer and the mean absolute error was 0.7953 ±

0.0243mm at 0.5 s ahead and 0.8581 ± 0.0510mm for 1-
second prediction horizon. Yan et al. [7] presents an adaptive
approach to infer internal target position by external marker
positions. For both internal and external marker motions,
two networks with the same type were used. During a
simulation, a patient was immobilized and positioned as
if it were in a treatment room. The authors indicated that
their technique was capable of predicting target position for
short-term response time (less than 10ms). They achieved
prediction error 23% on average of internal target positions
based on the clinical data observed between external marker
and internalmarkermotions. InMa et al. [3] a tumor position
was detected by an electronic portal imaging device. The
methods used are adaptive filtering and nonlinear method
based on Takens theorem. The adaptive filtering algorithm
is fast whilst the strategy based on nonlinear time series
analysis approaches better precision with the price of higher
computational effort. In Murphy [18], neural networks are
analyzed to correlate surrogate and tumor motion temporal
prediction to compensate the lag time of tracking system;
when the correlation changes rapidly with time, the simple
stationary linear filter was unable tomake a useful prediction,
while the neural network provided the best prediction of the
data with time changing correlation.

From the above reviewed achievements, it is apparent that
feedforward NNs or MLPs have promising capabilities for
implementation to lung motion time series prediction, and
lung motion prediction with NN is a subject of great interest
in medicine due to the possibility of capturing dynamics and
structural aspects [4, 10]. Some authors are convinced that
deep analysis is still needed [4, 10, 16, 19].

From the theoretical point of view, we shall also recall the
publication of Hornik et al., 1989 [20], where it is presented
that MLP can approximate a function to an arbitrary degree
of accuracy that has become often cited in publications on
NNs by many authors up to nowadays; however, it is not usu-
ally mentioned explicitly that the statement about arbitrary
degree of accuracy of MLPs is limited only to training data
because the very precise training does not necessarily imply
correct functionality of the trained NN for new data, that is,
for testing. Then we talk about the well known issues such
as generalization capability, overfitting (overtraining) issue,
or about the local minima issue of MLPs that makes proper
training of NNs, especially for nonstationary data such as
lung motion, a nontrivial issue.

Regarding the above mentioned issues of MLPs and con-
sidering our experience with higher-order nonlinear neural
architectures we also extend our study with focus on a
second-order nonlinear neural unit which is the so called
quadratic neural unit (QNU) [21–25]. QNU can be con-
sidered a standalone second-order neural unit of higher-
order NNs (HONN) or a class of polynomial NNs [26–
28]. For fundamental works on higher-order NNs we can
refer to works of [29–34]. We may recall that polynomial
neural networks (including QNU) are attractive due to the
reliable theoretical results for their universal approximation
abilities according to the Weierstrass theorem and for their
generalization power measured by the Vapnik-Chervonenkis
(VC) dimension [27].

For the fact we study implementation of static NNs,
we use the most popular learning algorithm; that is, the
Levenberg-Marquardt (L-M) algorithm [35, 36] that is a
powerful optimization algorithm and it is easy to be imple-
mented. L-M technique is used for nonlinear least-squares
problems. We also briefly compare the performance of a
classical gradient descent (GD) adaptation algorithmwith the
best performing predictor in our experiments. Also, because
of the nonstationary nature of lung tumor motion in time,
we implemented sliding window retraining (e.g., [37, 38])
to capture temporal variations in time series validity of the
neural model at every sample of prediction.

In this paper, we propose and study predictionmethod of
lung tumor motion, first, with the use of conventional static
MLP with a single hidden perceptron layer and, second, with
the static QNU, that is, a class of polynomial neural network
(or a higher-order neural unit). We also demonstrate that
QNU can be trained in a very efficient and fast way for real-
time retraining. The objective of our study was to achieve
the prediction accuracy within 1mm for prediction horizon
𝑡pred = 1 second by using NN approaches and to study
capabilities of the simplest yet powerful NN models. That is,
we adopt static MLPs and QNUs to achieve better prediction
accuracy than in published and comparable works that are
referenced above. The QNU was chosen for its high quality
of nonlinear approximation and its excellent convergence due
to its in-parameter linearity that implies a linear optimization
problem while the predictor is nonlinear [23].

Section 2 describes 3D lung tumor motion data used for
the experimental study. Section 3 describes the NN models,
that is, theMLP andQNU, the real-time retraining technique,
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Figure 1: Preprocessed time series of the observed lung tumor
marker position. The sampling frequency 𝑓 = 30Hz.

the used L-M and GD learning algorithms, and the modi-
fications of the L-M learning algorithm (later as MLM) to
increase efficiency and the speed of the retraining for real-
time computation. Section 4 presents results with real lung
tumor 3D motion data, and these are discussed in Section 5
with directions for further research on unexpected move
processing, on increasing the accuracy via online estimation
accuracy with connotations to intensitymodulated approach.
At the very end, more results are shown also on additional
artificial time series featuring respiration nonlinear dynamics
and unexpected move in Appendix, where also the evidence
of lower accuracy of linear predictor is shown for both
artificial and real data.

2. Data Description

The three-dimensional time series of lung tumormotion data
(Figure 1) with uncontrolled respiration of a patient were
obtained courtesy of Hokkaido University Hospital. To mea-
sure the three-dimensional coordinates of the tumor motion
as shown in Figure 1, a fiducial gold marker was implanted
into the lung tumor or its neighbour, and the motion was
measured in the directions of the lateral, cephalocaudal,
and anteroposterior axes, respectively [15, 17]. The original
sampling frequency was 30Hz, and the spatial resolution
was 0.01mm; the time series were preprocessed by applying
Kalman filter and statistical filters in order to reduce the noise
and avoid abnormal data included in rough data of the time
series [15, 17, 39].

The elements of vector y(𝑘) are

y (𝑘) = [𝑦1 (𝑘) 𝑦
2
(𝑘) 𝑦

3
(𝑘)] . (1)

The dominant periods of the time series are varying around
3 seconds.

3. Prediction Methods

This section describes the neural network models used in
this study. Section 3.1 gives the necessary details on the slid-
ing window retraining technique that increased prediction
accuracy (as discussed in Section 5 later). Section 3.2 gives
details on the implemented classical perceptron-type static
feedforward NN with a single hidden layer of neurons with
sigmoidal output function (Figure 3) and the L-M algorithm
used for batch training of this neural architecture is recalled.
Section 3.3 presents weight-by-weight modification of L-M
that accelerates real-time computation by avoiding inverse
matrix computation. Section 3.4 describes the implemented
static QNU (Figure 4, equations (11) and (13)) that performs
nonlinear input-output mapping yet its linear optimization
nature suppresses the issue of local minima for convergence
of neural weights. Also modification of the L-M algorithm
(9)–(14) for enhanced computational speed of QNU is
described as the inverse matrix computation is avoided and
the Jacobian is constant for static QNU.

3.1. Sliding Window Retraining. Because the respiration time
series are naturally nonstationary and thus quasiperiodic
with time varying frequency, mean, and amplitudes, it is
impossible to obtain a generally valid model from a single
training data set. Therefore, we investigated the effect of real-
time retraining of the above described predictive models
(Figures 3 and 4) to their prediction accuracy. By retraining
with the most recent history of measured values, we capture
the contemporary valid governing laws of a nonstationary
system. We retrained the models at every new measured
sample, that is, before each new sample prediction. This
approach can be referred to as a sliding window approach
(e.g., [37, 40]). Before NN retrainings, every sliding window
was normalized by subtracting the mean and divided by
standard deviation, respectively, for each signal (y

1
, y
2
, y
3
).

The retraining (sliding) window for the predictive models
(Figures 3 and 4) is shown in Figure 2, where 𝑓NN stands for
the mapping function of the NN model (MLP or QNU).

After the current window training is performed, the
NN predicts the unknown 𝑛

𝑠
samples ahead from the new

measured value and then the data normalization, retraining,
and prediction repeat when a new sample is available.

3.2. Perceptron Neural Network with Levenberg-Marquardt
Adaptation. The static MLP NN with discrete time notation
𝑘 and with a single hidden layer is given by the following
equation:

𝑦 (𝑘 + 𝑛
𝑠
) = wout ⋅ 𝜉 (𝑘) = wout ⋅ 𝜙 (W (𝑘) ⋅ x) , (2)

where 𝑦(𝑘+𝑛
𝑠
) is the output of the network calculated at time

𝑘 as an 𝑛
𝑠
samples ahead predicted value.W is a weightmatrix

whose rows correspond to weights of neurons in a hidden
layer, 𝑤out is a weight vector for the output neuron, and the
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Figure 2: The principle of sliding (retraining) window for model
retraining at every new measured sample, the window slides ahead
with each new measured sample. The total length of a (re)training
window is denoted by 𝑁train.

input vector x is given for the static model (2), that is, for a
directly predicting (static) model as

x (𝑘) =

[
[
[
[
[
[
[
[

[

1

𝑦 (𝑘)

𝑦 (𝑘 − 1)

.

.

.

𝑦 (𝑘 − 𝑛 + 1)

]
]
]
]
]
]
]
]

]

, (3)

where the length of input vector x is 𝑛 + 1, and the sigmoidal
output function of neurons in the hidden layer is given as
follows:

𝜙 (]) =
2

1 + exp (−])
− 1. (4)

This network architecture (2)–(4) with 𝑛
1
neurons in its

hidden layer is sketched in Figure 3, and this model was
studied as a classical NN model for direct prediction of
time series in Figure 1 with sliding window retraining was
described in Section 3.1.

The common formula for L-M algorithm for weight
increments of the 𝑖th hidden neuron at every epoch of
training is then given as follows:

Δw
𝑖
= [J𝑇
𝑖
× J
𝑖
+

1

𝜇
× I]
−1

× J𝑇
𝑖
× e, (5)

where elements of Δw
𝑖
are weight increments of the 𝑖th

neuron, I is (𝑛 + 1) × (𝑛 + 1) identity matrix, 𝜇 is a learning
rate that is optionally adjustable (see below), e is a vector of
errors between real values and neural outputs (7), 𝑇 stands
for matrix transposition, and J

𝑖
is the Jacobian matrix that

contains the first derivatives of the network outputs with
respect to weights of the 𝑖th neuron as follows:

J
𝑖
=

[
[
[
[
[
[
[
[
[
[
[
[

[

𝜕𝑦 (𝑘 = 1)

𝜕𝑤
𝑖,0

𝜕𝑦 (1)

𝜕𝑤
𝑖,1

⋅ ⋅ ⋅
𝜕𝑦 (1)

𝜕𝑤
𝑖,𝑛

𝜕𝑦 (2)

𝜕𝑤
𝑖,0

𝜕𝑦 (2)

𝜕𝑤
𝑖,1

⋅ ⋅ ⋅
𝜕𝑦 (2)

𝜕𝑤
𝑖,𝑛

.

.

.

.

.

. d
.
.
.

𝜕𝑦 (𝑁)

𝜕𝑤
𝑖,0

𝜕𝑦 (𝑁)

𝜕𝑤
𝑖,1

⋅ ⋅ ⋅
𝜕𝑦 (𝑁)

𝜕𝑤
𝑖,𝑛

]
]
]
]
]
]
]
]
]
]
]
]

]

, (6)

where 𝑁 is the length of training data (the number of
samples). A training performance is for 𝑁 training samples
given as the sum of square errors

𝑄 (epoch) =

𝑁

∑

𝑘=1

𝑒(𝑘)
2
, where 𝑒 (𝑘) = 𝑦 (𝑘) − 𝑦 (𝑘) . (7)

TheL-Malgorithm for the perceptron-type network as in (2)–
(4) (Figure 3) requires computation of the Jacobian matrix
J
𝑖
as in (6) at each epoch, so the matrix inverse has to

be always calculated according to the basic L-M formula
(5) epoch times. The inverse matrix calculation as in (5)
for the network (3) results in slowing down the real-time
computation. Modified Levenberq-marquard algorithm is
able to avoid that and the retraining and prediction run faster;
this is presented in Section 3.3.

3.3. Perceptron Neural Network with Modified Levenberg-
Marquardt Adaptation. The resulting formula for modified
L-M algorithm for the 𝑗th weight increment of the 𝑖th hidden
neuron at every epoch of training is then given as follows:

Δ𝑤
𝑖,𝑗

= [j𝑇
𝑖,𝑗

× j
𝑖,𝑗

+
1

𝜇
× I]
−1

× j𝑇
𝑖,𝑗

× e, (8)

Δ𝑤
𝑖,𝑗

=

j𝑇
𝑖,𝑗

j𝑇
𝑖,𝑗

× j
𝑖,𝑗

+ 1/𝜇
× e = j̃

𝑖,𝑗
× e, (9)

where Δ𝑤
𝑖,𝑗
is a 𝑗th weight increment of the 𝑖th neuron, I is

(𝑛+1)×(𝑛+1) identitymatrix, 𝜇 is a learning rate, e is a vector
of errors between real values and neural outputs (7), 𝑇 stands
for matrix transposition, and j

𝑖,𝑗
is the Jacobian vector:

j
𝑖,𝑗

=

[
[
[
[
[
[
[
[
[
[
[

[

𝜕𝑦 (1)

𝜕𝑤
𝑖,𝑗

𝜕𝑦 (2)

𝜕𝑤
𝑖,𝑗

.

.

.

𝜕𝑦 (𝑁)

𝜕𝑤
𝑖,𝑗

]
]
]
]
]
]
]
]
]
]
]

]

(10)

that contains the first derivatives of the network outputs
with respect to 𝑗th weight of the 𝑖th neuron as follows. Per-
ceptron neural network predictor with this modification of
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Levenberg-Marquardt learning algorithm is further denoted
as MLP predictor with MLM learning.

In next subsection we show QNU and its linear nature of
optimization (by L-M algorithm) that, in principle, prevents
QNU from local minima issue for a given training data set, so
the weight convergence of QNU is superior to conventional
perceptron-type neural networks [23, 41].

3.4. Quadratic Neural Unit with Levenberg-Marquardt Adap-
tation. QNU may be considered as a special case of higher-
order neural unit or as a case of polynomial NN. The static
QNU is sketched in Figure 4.

The output of QNU from Figure 4 can be written in a
vector multiplication form that can be decomposed into a
long vector representation as follows:

𝑦 (𝑘 + 𝑛
𝑠
) =

𝑛

∑

𝑖=0

𝑛

∑

𝑗=0

𝑥
𝑖
𝑥
𝑗
𝑤
𝑖,𝑗

= 𝑤
0,0

𝑥
2

0
+ 𝑤
0,1

𝑥
0
𝑥
1
+ ⋅ ⋅ ⋅ + 𝑤

𝑖,𝑗
𝑥
𝑖
𝑥
𝑗

+ ⋅ ⋅ ⋅ + 𝑤
𝑛,𝑛

𝑥
𝑛
𝑥
𝑛

= w ⋅ colx,

(11)

where 𝑥
0
= 1 (as shown in Figure 4), 𝑦 is a predicted value,

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
are external neural inputs at a sample time

𝑘, 𝑤
𝑖,𝑗

are neural weights of QNU, w is a long-vector
representation of weight matrix of QNU, and colx is a long

column vector of polynomial terms of neural inputs defined
as follows:

colx (𝑘) = [{𝑥
𝑖
(𝑘) 𝑥
𝑗
(𝑘)}] : 𝑖 = 0 . . . 𝑛, 𝑗 = 𝑖 . . . 𝑛,

where 𝑥
0
= 1.

(12)

Notice that for weight optimization of polynomial static
model (11), all 𝑥

𝑖
and 𝑦(𝑘 + 𝑛

𝑠
) are substituted with measured

training data, so (11) yields a linear combination of neural
weights that has, in principle, a unique solution for a given
training data. Thus, contrary to MLP networks, the linear
optimization nature of QNU implies that QNU avoids the
local minima issue for a given training data while the neural
model maintains high quality of nonlinear approximation
that we have observed so far [23, 41].

Another advantage of QNU against MLP is the fact that
the Jacobian matrix of QNU, that is, J, derived accordingly
to (6), becomes merely function of inputs; thus the J of QNU
becomes a constant for its all training epochs.Then, J ofQNU
is given for its all weights as follows:

J =

[
[
[
[
[

[

1 𝑥
1
(𝑘 = 1) ⋅ ⋅ ⋅ 𝑥

𝑖
(1) 𝑥
𝑗
(1) ⋅ ⋅ ⋅ 𝑥

𝑛
(1)
2

1 𝑥
2
(2) ⋅ ⋅ ⋅ 𝑥

𝑖
(2) 𝑥
𝑗
(2) ⋅ ⋅ ⋅ 𝑥

𝑛
(2)
2

.

.

.

.

.

.

.

.

.

.

.

.

1 𝑥
1
(𝑁) ⋅ ⋅ ⋅ 𝑥

𝑖
(𝑁) 𝑥

𝑗
(𝑁) ⋅ ⋅ ⋅ 𝑥

𝑛
(𝑁)
2

]
]
]
]
]

]

, (13)

and this matrix (13) is evaluated only once, so the weight
updates by L-M formula (5) can be evaluated with only
varying error 𝑒 that is recalculated at each epoch of training,
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so the the matrix multiplications and inversion with J are
calculated only once for each retraining of QNU. However,
the natural disadvantage ofQNU is the exponentially increas-
ing number of weights with number of inputs (e.g., QNU
with 𝑛 = 30 external inputs has 𝑚 = 496 weights), so the
inverse matrix operation in the L-M formula significantly
slows down the retraining even if it is calculated once for all
epochs. Also, choice of a proper technique for computation
of precise inverse matrix may be an issue itself that can
negatively influence the training technique.Thereforewemay
implement a weight-by-weight calculation approach (mod-
ified Levenberg-Marquardt adaptation) that avoids matrix
inversion to calculate all neural weight updates by the L-M
algorithm (as indicated in previous section and also used for
MLP in that same subsection).The approach is shown in next
subsection, where we show that Jacobian matrix (6) of static
QNU can be calculated only once and that also the matrix
inversion (5) can be avoided for QNU (Section 3.5). Thus
the QNU becomes computationally fast enough for real-time
calculation even on a PC (Ubuntu 12.04, Intel i5).

3.5. Quadratic Neural Unit with Modified Levenberg-Mar-
quardt Adaptation. In this subsection, we present how we
modified L-M algorithm to accelerate training of QNU by
avoiding the inverse matrix computation. A general column
of Jacobian matrix of QNU (10) that corresponds to a general
weight 𝑤

𝑖,𝑗
is 𝑁 × 1 vector denoted as j

𝑖,𝑗
and it is written as

follows:

j
𝑖,𝑗

=

[
[
[
[

[

𝑥
𝑖
(1) 𝑥
𝑗
(1)

𝑥
𝑖
(2) 𝑥
𝑗
(2)

.

.

.

𝑥
𝑖
(𝑁) 𝑥

𝑗
(𝑁)

]
]
]
]

]

. (14)

Then a single-weight increment is formally calculated
according to original L-M formula (5) and because the term
j𝑇
𝑖,𝑗

× j
𝑖,𝑗
results in a scalar, we can use formula (9).

It is much faster to calculate individual vectors j̃
𝑖,𝑗
corre-

spondingly to individual weights in a for loop using merely
division (14) rather than to calculate all weight updates once
by the original L-M formulawith the inverse of a largematrix,
that is, for QNU with too many inputs. Notice that all j̃

𝑖,𝑗
are

calculated only once before the training in epochs starts and
then we also calculate the weight updates only with varying
e that is the only vector that is recalculated at every epoch
in the modified L-M formula (14). As a result of the above
modification of the L-Malgorithm forQNU, the computation
speed of QNUwith retraining and prediction at every sample
increased significantly (Figure 6). In other words, we are
capable to implement the real-time predictionwith retraining
on a commonly available computational hardware without
the need for more powerful one and the prototype of the
software can be typically implemented either in Python or
Matlab. The technique is further denoted as QNU predictor
with MLM learning.

3.6. Quadratic Neural Unit with Normalised Gradient Descent
Adaptation. In this subsection we present the normalized

gradient descent algorithm [42, 43] for QNUwith adaptation
for prediction of lung tumor motion. This method of adap-
tation recalculates weights for every new sample. The weight
update formula could be presented as follows:

Δw (𝑘 + 1) = 𝜇 (𝑘) ⋅ 𝑒 (𝑘) ⋅
𝜕𝑦 (𝑘)

𝜕𝑤 (𝑘)

= 𝜇 (𝑘) ⋅ 𝑒 (𝑘) ⋅ colx𝑇 (𝑘) ,
(15)

where 𝜇 is the normalised learning rate (16), 𝑒 is prediction
error (7), and the colx is vector of inputs, obtained from
vector x (3) as shown in (12).

To improve stability of weight update system (15) during
GD adaptation, the learning rate 𝜇 is normalized at every
sample time as follows:

𝜇 (𝑘) =
𝜇
0

1 + (colx (𝑘) ⋅ colx𝑇 (𝑘))
2
, (16)

where 𝜇
0
stands for learning rate defined before the start of

the simulation.

4. Experimental Analysis

4.1. Evaluation Criteria. Experimental analysis was per-
formed on real respiration data of lungmotion as described in
Section 2 and using the two predictive models and the tech-
niques described in Section 3. The objective of the analysis
is to investigate the potentials for the prediction accuracy of
1mm for prediction horizon of 1 s. We also present a more
exhaustive study and comparison of static NN performance
for prediction of lung motion using the real-time retraining
technique. To evaluate the performance under the long-term
condition required for clinical use, we highlight the results for
prediction of the prediction horizons of 0.5 s and 1 s.

As the lungmotion ismeasured in three axes, we analysed
the predicting accuracy for various configurations by a 3D
mean absolute error (MAE) as follows:

𝑒
3D (𝑘) = √𝑒

1
(𝑘)
2
+ 𝑒
2
(𝑘)
2
+ 𝑒
3
(𝑘)
2
, (17)

where 𝑒
1
, 𝑒
2
, and 𝑒

3
are the predicting errors of corresponding

axes, respectively. From the 3D errorwe can get theMAEwith
formula as follows:

MAE =
1

𝑁

𝑁

∑

𝑘=1

𝑒
3D (𝑘) , (18)

where𝑁 is the number of testing samples.

4.2. Experiments Setups. Also, the effect of various input
configurations of the length of neural inputs 𝑛 for the NN
architectures (MLP in Figure 3, QNU in Figure 4) was stud-
ied. The optimum number of input-output training patterns
𝑁train and number of neurons in the hidden layer 𝑛

1
(in the

case of MLP) were estimated after experiments. For MLP,
we run each setup for the number of neurons in hidden
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Figure 5: Mean absolute errors for 1-second prediction of 3D lung tumor motion with uncontrolled respiration for all predictors and
simulation settings.

Table 1: General configuration for the predicting models (all for 1-second prediction horizon 𝑡, 𝑛 . . .(3),𝑁train . . .Figure 2).

Model Learning algorithm Sampling (also 𝑛
𝑠
) n [samples] 𝑁train[samples]

MLP L-M 15 15 30 180 270 360
30 30 60 90 135 180

QNU L-M 15 15 30 180 270 360
30 30 60 90 135 180

QNU GD 15 15 30 180 270 360
30 30 60 90 135 180

layer as 𝑛
1
= 1, 2, 3, 5, 7 (Figure 3) and this each instance of

MLP predictor was repeated 10× from allays different random
initial conditions. We highlight the results for prediction
horizon 𝑡pred = 1 s as summarized in Table 1.

4.3. Results. As it was specified in previous subsection, we
ran 356 simulations for QNU and 2475 for MLP for real lung
tumor motion time series shown in Figure 1. The results for
all settings are shown in pivot chart ofMAE in Figure 5. Aswe
can see in that chart, results vary according to all parameters
of simulation.

We concluded to setup 5 to 8 epochs for the sliding
window retraining for MLP and 8 epochs for QNU as we
could notice that the mean absolute error was not improved
with more number of training epochs into the window
especially for long-term prediction (up to 1 s). For pretraining
before actual prediction we concluded to use 800 epochs for

MLP and QNU using Levenberg-Marquardt adaptation and
400 epochs for QNU using gradient descent adaptation.

We have to highlight that results of simulations withMLP
depended more on random selection of initial weights than
with QNU. The standard deviation of MAE of QNU was
superior to MLPs as it is shown also in Table 2. This is most
naturaly due to the known local minima issue of MLP with
L-M algorithm while QNU is linear in its parameters, so
QNU features a single minimum optimization problem. The
lowest MAE was achieved by QNU with MLM adaptation
and sampling 15Hz as it is shown in Table 3. And in general,
it is possible to say that simulations with smaller size of
𝑁train, that is, covering the range of about two respiration
cycles, have better results. Difference of the MAE between
using L-M and MLM can also be caused by initial random
weights. However, the initial randomweights were important
to verify the general validity of this prediction approach.
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Figure 6: Computational speeds (sps) (PC, i5, Ubuntu) related to Figure 5 for all predictors and for all settings show the best suitability of
QNU also for a possible real-time implementation.

Also in general we can see from Figure 5 that QNU was
more accurate than MLP. Figure 6 shows the pivot chart
of computational speeds of all simulations. The higher the
value on 𝑦-axis means the higher the computational speed.
The fastest prediction was achieved with GD and MLM in
combination with QNU for sampling 15Hz, but the accuracy
of GD with QNU was much worse than on with MLM. For
almost of all used settings, the MLM was the fastest learning
algorithm as it avoids inverse Jacobianmatrix calculation. For
the MLP predictor, the difference in computational speed of
MLM and L-M was not that high as the Jacobian matrices
of MLP were not so large here. The computation speed of
QNU with MLM is significantly fastest as QNU calculates
Jacobian only once and MLM avoids its inversion. The most
accurate predictions and also the second fastest ones were
obtained for QNU with the slower sampling 15Hz, faster
sampling 30Hz, and with MLM learning algorithm as it is
shown in Table 2. The prediction including retraining with
QNU performed (PC, Ubuntu 12.04, Intel i5) in average 16
samples per second for one time series that is faster than real
time. QNU performed also statistically better for all setups
than MLP as regards the mean and standard deviation of
MAE as it is shown in Table 3.

5. Discussion

As shown in Section 4.3, the results vary according to big
amount of simulation settings. So far, we found the best

algorithm for lung tumor motion prediction to be the QNU
in combination with MLM. This prediction model achieved
better accuracy than MLP and also it was fast in comparison
with MLP model. Another advantage of QNU was better
independence from initial weights for Levenberg-Marquardt
algorithm. The choice of initial weights affected the pre-
diction precision of MLP models (because of local minima
issue mentioned earlier) and that accuracy issue can be a
crucial problem for real-time usage of L-M algorithm with
MLP predictors. According to our research that is presented
in this paper, we can recommend the QNU predictor with
MLM algorithm as a more suitable method than MLP or
other reviewed approaches for fast respiratory time series
prediction. However, the MLP predictors shall be further
investigated as they are, in principle, capable of very high
prediction accuracy and other suitable learning algorithm
shall be investigated. For real implementations in a near-
future, the computational speed (of MLP and of other
approaches) might be significantly improved by nowadays
spreading chipset on board and FPGA technologies. Our
proposed prediction method is based on real-time retraining
that can capture varying dynamics of a patient respiration.
It shall be highlighted that our method was applied to lung
tumor motion without any control of patient respiration.
This implies that the dynamics of the patient respiration
was varying unexpectedly. As regards instant variations of
respiration dynamics and unexpected moves of a patient,
we focus our research toward adaptive novelty detection for
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Table 2:The best achieved results of MAE [mm] for 3D lung tumormotion prediction with uncontrolled respiration and the setups for QNU
and MLP architectures (MLPs (Figure 3) were investigated for 𝑛

1
= 1, 2, 3, 5, 7).

Architecture Learning 𝑁train 𝑛 𝑛
𝑠

𝜇 Epochs 0 Epochs MAE [mm] 𝜎(MAE) [mm] sps Count of trials
QNU MLM 90 30 15 5.00𝐸 − 05 800 8 0.987 0.001 16.05 42

MLP LM 180 30 15 0.01 800 8 1.034 0.033 3.11 150
MLM 270 60 30 0.01 800 8 1.041 0.039 1.76 90

Table 3: The statistical comparison of MAE [mm] for MLP versus
QNU over all various setups (on the 3D lung tumor motion
prediction for prediction horizon of 1 second).

Learning Data Architecture
MLP QNU LNU

GD
Min of MAE 1.54
Average of MAE 2.33
Standard deviation of MAE 0.75

LM
Min of MAE 1.03 1.01
Average of MAE 1.18 1.08
Standard deviation of MAE 0.08 0.04

MLM
Min of MAE 1.04 0.99 1.13
Average of MAE 1.18 1.06 1.28
Standard deviation of MAE 0.08 0.04 0.13

estimation of actual prediction accuracy [44]. Such approach
seems to be promising for further improvement of prediction
accuracy and for instant detection of unexpected moves with
prospects to intensity modulated radiation tracking therapy.

6. Conclusions

In this paper, we have proposed and investigated real-time
series predictive models of lung tumor 3D time series. A
MLP with one hidden layer and quadratic neural unit were
proposed and studied as predictive models. The studied
learning rules for the models were the gradient descent adap-
tation (GD) and Levenberg-Marquardt batch optimization
implemented as real-time retraining technique. We further
modified L-M algorithm for faster real-time calculation. We
demonstrated and compared the predictive capability of the
models and algorithms on respiratory 3D lung tumormotion
time series for real-time prediction. For the GD and L-M
algorithm, we can conclude the superiority of QNU over
MLP as regards the accuracy and real-time computational
efficiency and reproducibility of the results.The in-parameter
linearity of QNU avoided local minima issue during opti-
mization while the initial weight setup of MLP importantly
affects retraining accuracy for these comprehensible learning
algorithms. The prediction results obtained by the predictive
models satisfied the goals of our work for the prediction
accuracy of 3DMAE of 1mm for 1-second prediction horizon
while the computational time was well shorter than the real
treatment time.
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Figure 7: Artificial time series featuring nonlinear dynamics with
random perturbations. Main frequency components correspond to
respiration when considering sampling of 30Hz.

Appendix

Artificial Data Experiment

Up to date, we unfortunately have not obtained another
real lung tumor 3D motion data with uncontrolled patient
respiration. Thus we generated three artificial time series
shown in Figure 7 to validate the proposed approach. We
created first time series 𝑦1 by a nonlinear function (A.1) as
follows

𝑦 (𝑡) = 5 ⋅ sin(
2𝜋

3
𝑡)

− sin(2𝜋/3)(1/2)
,

𝑡 =
𝑘

30
, 𝑘 = 1, . . . , 1000,

(A.1)

and the second time series 𝑦
2
was generated by (A.1) with

randomly varying main frequency every 3 samples. The
third time series 𝑦

3
was generated using the famous chaotic

Mackey-Glass equation as follows:

𝑑𝑦 (𝑡)

𝑑𝑡
=

𝑏 ⋅ 𝑦 (𝑡 − 𝜏)

1 + 𝑦(𝑡 − 𝜏)
10

− 𝑔 ⋅ (𝑡) , (A.2)
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Figure 9: Computational speeds for MAE for artificial data computations shown in Figure 8.
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Figure 11: Minimum of 3D MAE for artificial data from all
experiments for linear (LNU) and nonlinear predictors (QNU,
MLP).

where 𝑡 denotes continuous time, and the chaotic behavior
was generated by the setup of 𝑏 = 0.2, 𝑔 = 0.1, and the lag
𝜏 = 17.

The results on 3D MAE and speed of computation are
shown in Figures 8, 9, 10, and 11. These results confirm
our achievements on real data sets, in particularly, the
QNU appears accurate and efficient predictor in comparison
to conventional MLP networks when GD, L-M, or MLM
learning are used.

For completeness of this study, we show results achieved
with (with real-time retraining) linear predictor LNU (linear
neural unit) that demonstrates the need for nonlinear predic-
tive models because of prediction accuracy.

For validation of result reproducibility, we also performed
the computations on artifical data with another HW (PC,
Windows 7, i7), so the computational speeds can differ from
the ones achieved for real data. The results on artifical data

confirm our achievements with real tumor motion data with
uncontrolled respiration.
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