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Abstract

Transcriptome analysis has played an essential role for revealing gene expression and the complexity of regulations
at transcriptional level. RNA-seq is a powerful tool for transcriptome profiling, which uses deep-sequencing
technologies to directly determine the cDNA sequence. Here, we utilized RNA-seq to explore the transcriptome of
Mycobacterium marinum (M. marinum), which is a useful model to study the pathogenesis of Mycobacterium
tuberculosis (Mtb). Two profiles of exponential and early stationary phase cultures were generated after a physical
ribosome RNA removal step. We systematically described the transcriptome and analyzed the functions for the
differentiated expressed genes between the two phases. Furthermore, we predicted 360 operons throughout the
whole genome, and 13 out of 17 randomly selected operons were validated by qRT-PCR. In general, our study has
primarily uncovered M. marinum transcriptome, which could help to gain a better understanding of the regulation
system in Mtb that underlines disease pathogenesis.
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Introduction

Mycobacterium tuberculosis (Mtb) is a pathogen causing
tuberculosis (TB), which leads to approximately 2 million
deaths and 10 million new infections annually [1]. With the
emergence of multidrug-resistant (MDR) and extensively drug-
resistant (XDR) TB, the current situation is more challenging. In
order to search for new antibiotics and more optimized
treatment strategy against Mtb, a comprehensive
understanding of the intracellular lifestyle of this organism is
urgently needed [2,3]. Mycobacterium marinum (M. marinum),
a pathogenic mycobacterium that causes disease in fish and
amphibians, is genetically close to Mtb [4]. Recent studies by
Tobin, D.M., et al. and other researchers demonstrated that M.
marinum was a useful model to study the pathogenesis of TB,
and furthermore, to explore potential therapeutic drug target
[5-7].

Transcriptome analysis, which studies all the RNA transcripts
during a particular physiological condition, has played a central
role for detecting gene expression and transcriptional
regulation. It includes investment of transcript structure, operon

linkages and absolute abundance of transcripts. However,
these information has not been determined on a genome-wide
scale for any bacterium until 2009, Passalacqua, K.D., et al.
reported the first single-nucleotide resolution view of Bacillus
anthracis transcriptome [8]. Then a genome-wide map of
Helicobacter pylori transcriptional start sites (TSSs) and
operons were revealed by Sharma, C.M., et al. in 2010.
Through transcriptome study, they discovered hundreds TSSs
within operons and opposite to genes, which indicates the
complexity of gene expression in Helicobacter pylori by
uncoupling polycistrons and antisense transcription [9]. As for
the mycobacterial transcriptome study, Arnvig, K.B., et al.
revealed an extensive presence of non-coding RNA in
Mycobacterium tuberculosis, indicating that post-transcriptional
regulations might play an important role in bacterial adaptive
responses to changing environments [10]. All these
fundamental studies above applied RNA-seq technology, which
has led to a fast development of transcriptome study for its
relatively lower cost and much more precise measurement of
transcripts comparing with hybridization-based microarray
assays [11].
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RNA-seq is an excellent approach for transcriptome profiling,
which uses deep-sequencing technologies to directly determine
the cDNA sequence. Besides its relatively lower price and
precision mentioned above, RNA-seq is suited to the
application of detecting transcripts which correspond to existing
genomic sequence. Vera JC, et al have used RNA-seq to
reveal the transcriptome of the Glanville fritillary butterfly, which
makes RNA-seq especially attractive for non-model organisms
with genomic sequences not known [12]. RNA-seq can also
reveal the precise location of transcription boundaries to a
single-base resolution and have a relatively low background
comparing with microarray [11]. Comparison between the two
techniques has been reported in several species such as
Candida parapsilolis [13], Candida albicans [14] and
Caenorhabditis elegans [15]. It has also been applied to
discover non-coding RNA at genome wide range [10,16]. All
factors above make RNA-seq useful for studying complex
transcriptomes. However, the transcriptome of M. marinum has
not been revealed experimentally up to now although current
tools and database (http://mycobrowser.epfl.ch/marinolist.html)
have already enabled us to scan its genome and transcriptome
from in silico prediction [17].

In this research, we took advantage of RNA-seq technology
to study the transcriptome of M. marinum in exponential and
early stationary phase cultures, and investigated the functions
for genes that expressed differently in these two phases. To
compare the expression levels of different genes, data for
CDSs were presented in the form of reads per kilobase per
million reads (RPKM). In addition, we predicted potential
operons and used qRT-PCR for validation.

Results

High quality RNA preparation and sequencing profile
Ribosome RNA (rRNA) removal before cDNA library

construction.  Removal of signals from rRNA is a vital step of
RNA-seq technology because these signals may reduce the
coverage of mapped results, while decreasing the sequencing
meantime. There is only one set of rRNA genes throughout the
whole genome of M. marinum while they account for 85% of
total RNA according to our previous trial (data not shown). In
terms of this, we applied an rRNA removal step before cDNA
library construction. As a result, 0.3 million reads mapped to
rRNA were left in either log phase or early stationary phase
culture, which account for 1.38% and 2.64% of total sequenced
reads separately (Figure 1, Table S1). All 5452 genes were
detected within two million uniquely mapped reads in log phase
sample. While in the early stationary phase sample, one million
uniquely mapped reads could cover all genes in the genome
(Figure S1 in File S1). A biological replicate of log phase
culture was set to evaluate the reproducibility of gene
expression profiles using RNA-seq technology. The Spearman
correlation coefficient between two samples (r=0.867) indicates
the overall pattern of relative gene expression appears quite
similar between two biological replicates (Figure S2 in File S1).

The genome-wide distribution of sequenced reads.  In
order to investigate the transcriptome of M. marinum by RNA
seq, we harvest bacteria cultures at OD600=0.8 (log phase)

and at 4.0 (early stationary phase). RNA was extracted initially,
and then followed by the rRNA removal step described above
to generate the cDNA library, which was analyzed by Illumina-
based sequencing eventually.

Two transcriptome files, a log phase of 19.2 million reads
and an early stationary phase culture of 12.5 million reads,
were generated in total. Adapters of all reads were removed
before next step. The generated reads have an average length
of 100bp and the sequencing quality of all reads was shown in
Figure S3 in File S1. Reads with sequencing error or low
quality value (more than 50% of all bases in a single read have
quality value <5) were filtered and the rests were defined as
clean data. Respectively, 11.9 million and 8.5 million clean
reads were generated from two phases’ transcriptome files,
accounting for 62.01% and 67.94% of their total reads. The
result of reads mapping was shown in Figure 1.

The transcriptome of M. marinum
Gene expression profile analysis.  To study the gene

expression profile of M. marinum, we focused on CDSs with
RPKM≥5 in either sense or antisense direction [10] (Table S2).
There were 5245 genes with RPKM≥5 during log phase
culture, while in early stationary phase culture, the number is
5434. Among these genes whose RPKM≥5 between two
samples, 5240 were shared and 5 genes merely expressed in
log phase, while 194 genes were specific during early
stationary phase (Table S3). All CDSs were grouped according
to the functional classes of their homologs in Mtb [18]. 2184
CDSs have no homologs in Mtb, which accounts for 40.1% of
all annotated CDSs in M. marinum. The rest CDSs were
classified into 10 categories (http://genolist.pasteur.fr/
TubercuList/help/classif-search.html). To emphasize, in our
results there were no “category 4” which stands for “stable
RNAs”. Figure 2A shows distribution of RPKM along with the
number of genes in each category of two samples. The median
RPKM of each category was shown in Table S4. Then we
analyzed the RPKM distribution of each category between two
samples using Wilcoxon test. “Information pathways” (category
2) were significantly up regulated (p<0.001) in log phase
culture as well as “Intermediary metabolism and respiration”
(category 7, p<0.05). In early stationary phase culture,
“PE/PPE family” (category 6) and category X (No homologue
with H37Rv) were significantly up regulated (p<0.001)
comparing with those in log phase culture. To verify the results,
we randomly selected 24 genes (10 from up- regulated genes,
10 from down-regulated genes and 4 from unchanged genes)
to perform qRT-PCR experiment (Table S5). For the 10 genes
which were down-regulated in RNA-seq data, eight of them
were confirmed by qRT-PCR. However, only half of the up-
regulated genes (five out of ten genes) could be verified by
qRT-PCR, while the rest of genes belonging to this category
did not have significant changes. The qRT-PCR results of
unchanged genes were in accordance with the results
observed in our RNA-seq data.

Association between expression level and gene
function.  To test for the association between expression level
and gene function, 10% of CDSs with the highest RPKM from
both samples were selected and studied according to their
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function distribution as described above. By comparing the
frequency of each category across the whole genome, we
found that category 0 (Virulence, detoxification, adaptation),
and 2 (Information pathways) were significantly over-
represented (P-value<0.0001, Fisher’s exact test). This shares
a same tendency with category 1 (Lipid metabolism), 8
(Unknown), and 10 (Conserved hypotheticals) (P-value<0.05)
(Figure 2B), which is consistent with what is expected for log
phase culture. The actively growing bacteria over-represented
mRNA transcripts encoding proteins involved in “lipid
metabolism” and “information pathways”. Category X (No
homologue with H37Rv) (P-value<0.0001) and transcripts
belonging to “intermediary metabolism and respiration” (P-
value<0.05) were under-represented in log phase culture. The
early stationary phase culture showed similar results with
category 0, 2 (P-value<0.0001) and 10 (P-value<0.05) (Figure
2C) being over-represented. These results were also reflected
in Table 1, where we showed 30 CDSs with highest RPKM and
the corresponding functional classes. For both log and early

stationary phase culture, almost one-third of highest RPKM
belong to the category “cell wall and cell processes”.
Meanwhile, there were also representatives of “information
pathways” and “PE/PPE family”. We also compared our results
with previous transciptome study in Mtb by Arnvig, K.B., et al
[10]. RPKM of M. marinum genes and their homologues in
H37Rv were compared, and spearman correlation coefficients
were 0.495 and 0.326 for log phase and early stationary phase
separately (Figure S4 in File S1). Then we further analyzed
correlation coefficient of each functional category (Figure S5 in
File S1). For the log phase culture, there were four categories
with spearman correlation coefficient above 0.5 (0 Virulence,
detoxification, adaptation; 2 Information pathways; 3 Cell wall
and cell processes; 8 Unknown), while for the early stationary
phase culture, spearman correlation coefficient of category 2
(Information pathways) and category 8 (Unknown) were above
0.5.

Significant gene expression changes.  To further explore
the two gene expression profiles, we looked into those genes

Figure 1.  RNA sequencing profiles for both exponential and early stationary phase cultures of M. marinum.  Number of
reads obtained from data processing/mapping results and their percentage were indicated for both exponential and early stationary
phase cultures.
doi: 10.1371/journal.pone.0075828.g001
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with significant changes between two samples. Genes with at
least 2-fold change and FDR (false discovery rate) less than
0.001 were defined as differentially expressed genes (See
Materials and Methods). Totally, 1446 genes were up-regulated
in early stationary phase culture and 847 genes were down-

regulated compared with log phase culture. Then these up and
down regulated genes were grouped according to their
functional classes as described above (Figure 2D). Among
those genes belonging to “information pathways”, 95 were
down regulated, which accounts for 88.0% of all 108 changed

Figure 2.  Representation of functional categories in log- and early stationary phase transcriptome.  (A) Genes of M.m were
grouped according to their homologs in M.tb. Numbers on the x-axis indicates 11 categories and gene numbers contained in each
category. Numbers on the y-axis represents RPKM values. RPKM values of each category were analyzed between two samples
using Wilcoxon test. * p<0.05, *** p<0.001. (B and C) Values on the x-axis indicate the difference in percentage; positive values
indicate over-representation of a particular category compared to the percentage observed in the annotated genome whereas
negative values represent under-representation. (B) Difference in percentage of selected categories of top 10% log phase
transcripts (n=525, Fisher’s exact test). (C) Difference in percentage of selected categories of top 10% early stationary phase
transcripts (n=544, Fisher’s exact test). (D) Genes with significant changes (fold change>2, q value<0.001) were grouped.
doi: 10.1371/journal.pone.0075828.g002
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Table 1. Ranking of the most abundant coding transcripts in
log and early stationary phase.

 name length Category RPKM
Log phase    
 esxB 303 3 50652.89
 MMAR_5556 315 X 40854.49
 esxA 288 3 26542.65
 esxP_2 297 3 20071.38
 fdxA_2 345 7 18528.19
 acpM 348 X 15257.81
 MMAR_4786 300 6 14794.73
 esxP 297 3 13370.97
 whiB1 255 9 12950.39
 MMAR_3655 318 8 10954.16
 rpmC 243 2 10034.55
 MMAR_5447 297 6 9540.277
 rpmJ 114 2 8349.4
 cspA_1 204 0 8046.823
 esxN_1 285 3 7653.413
 cspA 204 0 7647.709
 whiB4 351 9 6735.596
 MMAR_1426 411 X 6444.57
 MMAR_0966 210 10 6250.998
 rpsG 471 2 5777.113
 MMAR_5437 288 9 5673.893
 rpmG2 168 X 5395.081
 MMAR_0724 333 X 5349.003
 atpE 246 7 5313.055
 esxB_1 303 3 4960.48
 MMAR_4277 333 3 4670.253
 esxN_3 285 3 4649.54
 MMAR_4306 156 X 4612.031
 MMAR_1457 231 X 4462.532
 MMAR_5440 312 10 4193.604
Early stationary phase    
 MMAR_5556 315 X 431455.2
 esxB 303 3 54927.45
 esxP_2 297 3 45801.19
 MMAR_3655 318 8 38003.32
 esxP 297 3 23859.81
 glnB 339 9 15081.94
 esxA 288 3 13469.56
 esxM 297 3 12781.58
 MMAR_4786 300 6 12211.53
 whiB4 351 3 7220.467
 MMAR_5447 297 9 6391.867
 esxN_3 285 6 5895.651
 cspA_1 204 3 5792.304
 acpM 348 0 5277.71
 rpmJ 114 X 4535.116
 MMAR_3248 357 2 4488.187
 esxN 285 10 4032.88
 MMAR_4277 333 3 3946.844
 MMAR_4167 312 3 3796.862
 MMAR_1893 381 10 3760.808
 MMAR_2878 417 10 3726.62

genes (Table S6). In early stationary phase, genes of “PE/PPE
family” with significant changes were dominantly up regulated
(116/121). Meantime, 262 genes belonging to “intermediary
metabolism and respiration” changed at least 2-fold, among
which 106 were up regulated and 156 were down regulated.
For these genes with no homologues in Mtb, 1052 have
significant changes between two samples and mostly (82.8%)
were up regulated. Furthermore, 8 out of 9 genes were up
regulated for the category of “insertion seqs and phage”. In
contrast, when we refer to the category of “virulence,
detoxification and adaptation”, more genes turn out to be down-
regulated. Besides, genes encoding early secreted antigenic
target of 6 kDa (ESAT-6) and culture filtrate protein of 10
(CFP-10) stayed unchanged between two samples, together
with most of the key components forming ESX-1 secretion
system (Table S7). Three genes (MMAR_5439, MMAR_5368
and MMAR_1553) encoding proteins known to be secreted by
ESX-1 were down regulated in early stationary culture [19,20].
In addition, genes constituting ESX-5 secretion system were
generally up regulated in early stationary phase culture
together with a gene known to encode ESX-5 dependent
secreting protein MMAR-3728.

Operons prediction and validation by qRT-PCR
Operons are direct structures to determine whether genes

next to each other are transcribed together, so we predicted
operons on a genome-wide scale. We considered gene
expression level in our sequence profile, coverage of intergenic
regions (IGRs) and gene orientation as basic principles for
operon prediction (See Materials and Methods). As a result,
898 operons were predicted in total throughout M. marinum
genome from log phase culture and 978 from early stationary
phase culture. In addition, there were 360 predicted operons in
common between these two samples (Table S8). In both
samples, most predicted operons were small transcriptional
units containing only 2 or 3 genes. For example, in log phase
culture, 860 operons have two or three genes, accounting for
96% of the total operons predicted (76% and 20% separately).

Table 1 (continued).

 name length Category RPKM
 MMAR_1457 231 X 3723.4
 MMAR_2879 195 X 3673.473
 whiB1 255 X 3644.408
 esxB_1 303 9 3581.075
 MMAR_2706 495 3 3222.692
 MMAR_2905 261 10 3211.932
 MMAR_4784 915 X 3154.366
 MMAR_1868 975 X 3115.166
 cyp278A1 1284 X 3046.001

* 0 Virulence, detoxification, adaptation; 1 Lipid metabolism; 2 Information
pathways; 3 Cell wall and cell processes; 5 Insertion seqs and phage; 6 PE/PPE; 7
Intermediary metabolism and respiration; 8 Unknown; 9 Regulatory proteins; 10
Conserved hypotheticals; X No homologue with H37Rv
doi: 10.1371/journal.pone.0075828.t001
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In addition, 38 operons, almost 4% of all, contain 4 genes or
more in our predicted results. The biggest operon predicted in
log phase culture, MMAR_1772--MMAR_1777, includes six
genes. These six genes encode five pps (polyketide synthase)
family (ppsA-ppsE) and fadD26, the former of which
participates in lipid metabolism while the latter has a potential
role in activation substrates for the pps polyketide synthase.

Then we randomly selected 17 operons from log phase
culture for validation using qRT-PCR. Of the 17 operons
selected, 14 operons contain two genes and 3 operons contain
three genes. Primers were designed to amplify the intergenic
region between two genes using cDNA. In the case of operons
having three genes, region between the first and the last gene
was amplified (Figure S6 in File S1). Figure 3A shows six
representative operons and their expression profile. And qRT-
PCR results were shown in Figure S7 in File S1, from which we
could find that 13 out of 17 selected operons were confirmed
positive. Among these 13 operons, 11 operons have two genes
and 2 operons have three genes. Figure 3B shows
representative qRT-PCR results corresponding to predicted
operon maps in Figure 3A.

Discussion

Removal of signals from rRNA and high quality RNA
preparation are crucial steps of RNA-seq technology. M.
marinum genome has three rRNA copies, which encodes
around 85% of total RNA content (data not shown). This
number is close to previously reported 82% by Haas, B.J., et
al., when they evaluated the effect of rRNA depletion on RNA-
seq transcriptome profiles of E. coli [21]. Such high abundance
of rRNA not only reduces the coverage of mapped results, but
also decreases the sequencing depth when initial number of

sequenced reads is set. To overcome this obstacle, a physical
removal step has been applied before sequencing [22,23]. In
this study, we used a newly developed Kit designed specifically
for Gram-positive Bacteria to get rid of rRNA. As a result, less
than 3% of reads were mapped to rRNA. Saturation curves
were drawn to evaluate the coverage of CDSs within certain
amount of reads using Number of genes detected against
Number of uniquely mapped reads. Within two million uniquely
mapped reads, all genes were detected in log phase sample.
And the number of reads needed was one million to cover all
genes for early stationary phase culture. These results
benefited from the rRNA removal step before sequencing.

Gene expression profile as well as the association between
expression level and gene function of M. marinum was
investigated using RNA-seq in our study. PE/PPE family
represents 9.1% of the coding capacity of M. marinum,
compared with 7.1% for Mtb [4]. And it has been proposed that
genes belong to PE/PPE family coevolved with the ESX loci,
they underwent a specific expansion in the common progenitor
of M. marinum, M. tuberculosis, and M. ulcerans [24]. Previous
researches showed that different PE/PPE genes are expressed
when the bacilli encounter environmental changes such as
adaptation to stationary phase, deprivation of oxygen,
encountering macrophages [25,26]. Our result showed 121
genes of PE/PPE family had significant changes and most of
them (116) were up regulated in early stationary phase culture.
And these significantly changed genes played important roles
in the RPKM distribution differences between two samples in
Figure 2A. It’s also of interest to look into the ESX-1 and ESX-5
secretion systems, which belong to type-VII secretion systems
(T7SSs) in mycobacteria [27]. MMAR_3728, a PE_PGRS
protein encodes gene that was proved to be ESX-5 dependent,
was up-regulated in early stationary phase culture. This could

Figure 3.  Sequencing traces of select putative operons and RT-PCR results.  (A) Sequencing data of amplified regions.
Numbers on upper right corner indicate the highest coverage of selected regions. Red lines indicate gene boundaries, green lines
shows overlapped regions of two genes. Black arrows indicate direction of transcription. (B) Products of RT-PCR for 6 co-operonic
gene pairs (1% agarose gel). c=cDNA template. g=genomic DNA template. r=RNA template.
doi: 10.1371/journal.pone.0075828.g003
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correspond to the fact that genes encoding ESX-5 components
were also generally up-regulated. Considering that 116 out of
121 genes with significant changes belong to PE/PPE family
were up-regulated, our result strengthens the hypothesis that
ESX-5 is a specialized protein secretion system that is devoted
to the transport of PE/PPE family proteins [28]. We also found
reads mapped in the antisense orientation or at IGRs accounts
for 23.29% of total transcriptome in the exponential phase M.
marinum, similar to the 28% reported for M. tuberculosis [10]
and 27% reported for Helicobacter pylori [9]. While in the early
stationary phase culture, these reads represent 40.26% of the
total transcriptome, accounting for 1.7 fold (23.29%) of the
exponential phase. This is possibly due to a tighter regulation
of gene expression at a post-transcriptional level in early
stationary phase culture, which may have a significant role in
the response to stimulation of stress population heterogeneity
[29]. Interestingly, there is an unusual highly expressed gene
(MMAR_5556) whose RPKM is almost ten times higher than
the rest. By blast this gene against reference strain (H37Rv) of
Mycobacterium tuberculosis. It turns out to be homologue (86%
identical sites) with MTS2823, which is small RNA (sRNA) as
previously reported by Arnvig, et al [10]. They found that
MTS2823 was the most abundant sRNA during exponential
growth with a further more than six-fold increase during
stationary phase. The expression values of MMAR_5556 were
in the same fashion here. This indicates that MMAR_5556 may
be misannotated as a CDS, and it is more likely to be an sRNA
in Mycobacterium marinum. The expression profiles of log- and
early stationary phases have been verified by qRT-PCR.
However, not all changes in RNA-seq data could be confirmed
by qRT-PCR, and the changes from qRT-PCR experiment
were less significant compared with RNA-seq data in general.
Besides the different treatments of RNA samples (an additional
rRNA removal step for RNA-seq), the differences of gene
expression results between these two approaches could be
due to the variations between biological repeats, which is one
of the limitations of this study. We also compared our RNA-seq
results with former transcriptome study in Mtb by Arnvig, K.B.,
et al [10]. The correlation coefficients were found relatively low
between these data sets using Spearman Test, this could be
due to several reasons. First, the strategies for sample
preparations are different. Arnvig, K.B., et al used tobacco acid
pyrophosphatase to enrich for small transcripts before
sequencing and chose to manually pick out reads mapped to
rRNA. While in our study, rRNAs were physically removed
before sequencing. This could lead to a general difference on
the number of reads mapped to CDs, which varies the
expression profiles in turn. Second, the time point for sample
collection is different. Here we selected samples of log phase
and early stationary phase to analyze transcriptome profiles of
M. marinum, which could be distinguishable from the
“stationary phase” they selected. This may explain the lower
correlation coefficient for stationary culture. And again, the
single culture analysis used in our study could be responsible
for the bias as we discussed above.

Operon structure is important in prokaryotic genomes
because it determines whether adjacent genes are transcribed
together and this further implies whether genes in an operon

are co-regulated. Thus, it’s of importance for operon prediction.
RNA-seq technology has great advantages in operon
prediction over hybridization-based microarray in aspects of
supplying information of transcribed intergenic regions.
Additionally, it also provides a far more precise measurement
of levels of transcripts, as reviewed in 11,14. Price, M.N., et al.
have established an operon prediction method for prokaryotes
based on comparative genomic measures and distance
between adjacent genes. The accuracy of their method turns
out 85% and 83% for E. coli and B. subtilis separately [30].
Later, Passalacqua, K.D., et al. have successfully predicted
operons in Bacillus anthracis using their own sequencing data
file and 10 co-operonic gene pairs were validated by RT-PCR
[8]. In the field of archaeal transcriptome study, Wurtzel, O, et
al. defined more than 1000 operons in Sulfolobus solfataricus
P2 using whole transcriptome sequencing approach [31]. TB
Database offers the “Operon Brower” function to estimate
whether two genes are transcribed together in M. tuberculosis
H37Rv as well as syntenic gene order in related species based
on expression correlation information collected from 1260
microarray assays (http://genome.tbdb.org/annotation/genome/
tbdb/OperonBrowser.html). However, the information of
transcribed IGRs is not available there and M. marinum is not
included in the “Operon Brower” category mentioned above. So
we applied a modified method based on transciptome analysis
to identify the operons of M. marinum. Three hundred and sixty
operons were predicted in common from both samples and 13
out of randomly selected 17 operons from log phase culture
were confirmed by qRT-PCR. The accuracy is 76.5%, similar to
the results in E. coli and B. subtilis mentioned above [30]. As
for the 4 predicted operons that could not be validated here, it
could be due to the limited sensitivity of current PCR system
and certain genes may only be expressed under specific
conditions. There are some known operons reported in
Mycobacterium tuberculosis. As reviewed by Roback, et al,
there are 26 verified operons, of which 22 have homologues in
M. marinum [32]. We checked these 22 operons in our
prediction results and found 18 (82%) of them could be
confirmed (including partly matched because these reported
operons could be incomplete according to the paper). The
known mycobacterial operons missing in our results could
either be due to their low expression in our sample or the
differences of operon structures between Mtb and M. marinum.
Besides, we also compared our prediction results from log
phase sample with 761 predicted operons at MicrobesOnline
(http://www.microbesonline.org/), and found 472 operons in
common.

RNA-seq technology is also a powerful tool to search small
RNA (sRNA) in bacteria. Till recent, Pellin, D, et al. predicted
1948 candidate sRNAs throughout Mtb genome using a
bioinformatic pipeline based on the combination of RNA-seq
data and comparative genomics [16]. In this study, we also
searched for potential sRNA candidates by analyzing the
transcripts mapped to IGRs. As a result, 74 and 38 intergenic
transcripts were found out in log phase culture and early
stationary phase culture separately (Table S9). All these
transcripts were blasted against known sRNAs reported in
[33,34], and no significant matches were found (E<10-5). This is
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probably attributed to the reason that we manually enriched
cDNA with size mainly between 100 and 550bp before
sequencing, so those transcripts with small size (<100nt) could
not be detected in our results. Besides, we also blasted these
intergenic transcripts in Rfam database (http://
rfam.sanger.ac.uk) and found 11 hits, most of which belonged
to rRNA (Table S10). But three hits from log phase intergenic
transcripts belong to Cis-regulatory RNA (RF00059_TPP,
RF01497_ALIL, and RF01066_6C), which implies a potential
regulating function of intergenic transcripts.

In summary, we apply RNA-seq technology to explore the
transcriptome of M. marinum. And through our research, gene
expression profiles of two time points were described, with
operons being predicted on genome-wide scale meantime.
These results may provide insights into the molecular
pathogenesis of M. marinum, which may shed light on the
research of pathogenic Mtb.

Materials and Methods

Ethics Statement: N/A

Bacterial strains, media, and growth conditions
M. marinum strain M (ATCC BAA-535) was used for this

study. M. marinum strains were grown in Middlebrook 7H9
broth (Difco) supplemented with 10% oleic acid-albumin-
dextrose-catalase (OADC), 0.5% glycerol, and 0.05% Tween
80 at 32°C. Cultures were grown to log phase (OD600=0.8)
and early stationary phase (12 hours after OD600 stabilized at
4.0).

RNA isolation and removal of rRNA
Bacteria were lysed using 0.1 mm silica beads and RNA was

extracted with Trizol. The RNA quality was assessed using a
Nanodrop 2000 (Thermo, Fisher) and Agilent 2100 bioanalyzer.
Then RNA samples were treated with DNAse and purified
using RNeasy MinElute Cleanup Kit (Qiagen) before rRNA
removal step. To remove rRNA, Ribo-Zero rRNA Removal Kit
(Cat. No. RZPB10106, epicenter) was applied according to
manufacturers’ instructions.

RNA-seq
Construction of cDNA libraries was carried out following

manufacturers’ instructions of RNA transcriptome discovery Kit
(K02421-TS, Gnomegen). cDNA with range between 100bp
and 550 was obtained by gel extraction followed by
amplification using TruSeq PE Cluster Kit (illumina). Amplified
cDNA fragments were sequenced using illumina sequencing
technology (Illumina high-seq 2000). The sequencing data
were submitted to the National Center for Biotechnology
Information Sequence Read Archive under Accession No.
SRP026200.

Analysis of gene expression level
After adaptor trimming and quality trimming, the clean reads

were mapped to the M. marinum transcriptome using Bowtie2
[35]. Then, we used samtools and BamIndexStats.jar to

calculate the gene expression level, here RPKM value from
SAM file. Gene expression difference between log and early
stationary phase were obtained by MARS (MA-plot-based
method with Random Sampling model), a package from
DEGseq [36]. We simply defined genes with at least 2-fold
change between two samples and FDR (false discovery rate)
less than 0.001 as differential expressed genes.

Quantitative real-time PCR
For quantitative real-time PCR (qRT-PCR) validation

experiments, 24 genes were selected (including 10 each from
up- and down-regulated genes and 4 unchanged genes
according to RNA-seq data). Quantitative real-time PCR was
carried out by using a TaKaRa SYBR Premix Ex Taq GC kit in
a 7500 real-time PCR system (Life Technologies).

Function category of M. marinum CDSs
In order to get the functional category of each M. marinum

CDS, we started by identifying potential pairs of homologues
between M. marinum and the well-annotated M. tuberculosis
H37Rv CDSs. Using BLASTP search, a pair of homologues
was defined by protein sequence similarity over 50%. The
functional category for each pair of homologue was then
referenced from Tuberculist (http://tuberculist.epfl.ch/).

Transcripts assembly
First, all clean reads were mapped to the genome sequence

using Bowtie2 [35]. Then, we did the de-novo transcriptome
assembly with Velvet and Oases [37]. All de novo transcripts
were then aligned to the reference genome by blat to get their
genome location [38] and compared with known transcriptome
annotation using cuffcompare [39]. Thus, all de novo
transcripts were classified according to their positional relation
with known transcripts, labeled by the evidence code provided
by cuffcompare. The transcripts referred to those intergenic
transcripts (class code: u).

rRNA content calculation
We aligned all clean reads against the rRNA sequence using

BLAST [40] with e-value cutoff 1e-10.

Operon prediction and validate by RT-PCR
Operons were predicted using the following set of rules(1).

Genes in an operon had the same orientation(2). Coverage of
two genes was both ≥5(3). Compare the average coverage of
two genes and the coverage of their IGR, the ratio should be
≤1.5(4). When two genes had no IGR, at the same time, they
were in the same orientation and both coverages were ≥5, we
directly calculated the ratio of their coverage, if it was ≤1.5,
these two genes were considered in an operon.

RT-PCR was performed using a Takara PrimeScript RT
reagent Kit with gDNA eraser. For each pair, primers were
designed to amplify across the intergenic region if a contiguous
transcript existed or to amplify the overlapped region (Table
S11). Reactions were visualized on 1% agarose gels stained
with ethidium bromide.
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Supporting Information

File S1.  Figure S1, Coverage versus depth. (A) All 5452 genes
were detected within two million uniquely mapped reads in log
phase sample and coverage reaches a plateau afterwards
despite the increasing sequencing depth. (B) One million
uniquely mapped reads were able to cover all genes across
whole genome in the case of stationary phase culture. Figure
S2, Reproducibility of gene expression profiles by RNA-seq. A
second exponential phase culture was prepared in the same
procedure to evaluate the reproducibility using Spearman test.
Each dot on the map stands for a single gene. The X-axis and
the Y-axis correlates the expression of a single gene in two
different samples. Spearman correlation coefficient = 0.867.
Figure S3, Quality scores across all bases. The numbers on
the x-axis indicate the position of 100 bp-long read. Values on
the y-axis indicate the base quality scores. Figure S4,
Comparison of correlation coefficient with RNA-seq data in
Mtb. RNA-seq data in this study was compared with known Mtb
transcriptome data using Spearman test [10]. The X-axis and
the Y-axis correlates the expression of a single gene in
different samples. Spearman correlation coefficient = 0.495 and
0.326 for log phase and early stationary phase separately.
Figure S5, Correlation coefficient of each functional category
comparing with RNA-seq data in Mtb. Correlation coefficient of
each functional category was analyzed when RNA-seq data
used in this study was compared with previously reported RNA-
seq data in Mtb using Spearman Test [10]. 0 Virulence,
detoxification, adaptation; 1 Lipid metabolism; 2 Information
pathways; 3 Cell wall and cell processes; 5 Insertion seqs and
phage; 6 PE/PPE; 7 Intermediary metabolism and respiration;
8 Unknown; 9 Regulatory proteins; 10 Conserved
hypotheticals; X No homologue with H37Rv. Figure S6, RT-
PCR method overview. Primers 1 and 2 were designed to
amplify products across intergenic regions in the case of a
contiguous mRNA transcript. Figure S7, RT-PCR results of 11
putative operons. Products of RT-PCR for 11 co-operonic gene
pairs (1% agarose gel). c=cDNA template. g=genomic DNA
template. r=RNA template.
(DOCX)

Table S1.  Number of reads mapped to rRNA.
(XLSX)

Table S2.  Expression profiles of log phase and early
stationary phase culture.

(XLSX)

Table S3.  Differently expressed genes between log phase
and early stationary phase culture. (A) Genes expressed
only in log phase. (B) Genes expressed only in early stationary
phase.
(XLSX)

Table S4.  Median RPKM of each category.
(XLSX)

Table S5.  qRT-PCR results.
(XLSX)

Table S6.  Genes of each functional category.
(XLSX)

Table S7.  Expression of genes related to ESX-1 and
ESX-5. (A) Key components of ESX-1. (B) Proteins secreted
via ESX-1. (C) Key components of ESX-5. (D) Proteins
secreted via ESX-5.
(XLSX)

Table S8.  Operon prediction results. (A) Operons predicted
from log phase culture. (B) Operons predicted from early
stationary phase culture. (C) Overlapped operons from both
cultures.
(XLSX)

Table S9.  Summary of assembly transcripts.
(XLSX)

Table S10.  Blast results against Rfam database.
(XLSX)

Table S11.  Primers used for operon validation.
(XLSX)
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