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Abstract
Dilated cardiomyopathy (DCM) is a severe life-threatening disease worldwide, and 
the underlying mechanisms remain unclear. Circular RNAs (circRNAs) have been 
reported to play important roles in various cardiovascular diseases and can function 
as competitive endogenous RNAs (ceRNAs). However, their role in human DCM has 
not been fully elucidated. In the present study, heart samples from DCM patients 
and healthy controls were used to identify circRNAs by RNA sequencing. Real-
time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was 
conducted to validate differentially expressed circRNAs and mRNAs. A total of 9585 
circRNAs and 22050 mRNAs were detected in the two groups. Overall, 213 circRNAs 
and 617 mRNAs were significantly up-regulated in the DCM group compared with 
the control group. Similarly, 85 circRNAs and 1125 mRNAs were significantly down-
regulated. According to the ceRNA theory, circRNAs can indirectly interact with 
mRNAs by directly binding to microRNAs (miRNAs), and circRNAs and mRNAs 
should be concurrently either up-regulated or down-regulated. Based on this theory, 
we constructed two circRNA-miRNA-mRNA networks by using the RNA sequencing 
data and prediction by proprietary software. Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to 
probe the potential functions of differentially expressed circRNAs. In conclusion, this 
study revealed that the expression of cardiac circRNAs was altered in human DCM 
and explored the potential functions of circRNAs by constructing ceRNA networks. 
These findings provide a foundation for future studies of circRNAs in DCM.
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1  | INTRODUC TION

Dilated cardiomyopathy (DCM), characterized by ventricular dilation 
and systolic dysfunction, is a common disease that results in arrhyth-
mia, heart failure and sudden cardiac death. Many factors have been 
reported to be closely related to DCM, including coronary artery 
disease, endocrine and metabolic abnormalities, viral infections, au-
toimmunity and gene mutations.1 However, the exact mechanisms 
involved in the development of DCM have not yet been elucidated. 
At present, there is no effective treatment for DCM, and the mor-
tality rate is increasing year by year. Therefore, studies focused on 
finding novel therapeutic targets for DCM are urgently required.

With the rapid development of sequencing technologies, an in-
creasing number of non-coding RNAs (ncRNAs), such as microRNA 
(miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA), 
have been found. Although messenger RNAs (mRNAs) have been 
studied extensively, traditional protein-coding RNAs account for 
only a minority of all RNAs, and ncRNAs actually account for most of 
the transcriptome.2 In the past, ncRNAs were considered evolution-
ary junk, but increasing studies have indicated that these non-coding 
transcripts play important roles via epigenetic, post-transcriptional 
and translational mechanisms and have considerable impacts on 
biological processes.3-5 Therefore, ncRNAs have been assessed as 
potential diagnostic candidates and therapeutic targets for various 
diseases, including cardiovascular diseases.6,7

CircRNAs, unlike linear RNAs, which contain 5′ and 3′ ends, have 
covalently linked ends that form a closed continuous loop. Due to their 
circular structure, circRNAs are resistant to RNase R activity and are 
more stable than other RNAs.8 Currently, circRNAs can be categorized 
as exonic circRNAs (ecircRNAs), circular intronic RNAs (ciRNAs) and 
exon-intron circRNAs (EIciRNAs) based on the back-splicing mecha-
nism and the rearrangement of exons and/or introns in precursor mes-
senger RNA (pre-mRNA). In addition, circRNAs can also be classified 
into five types, ‘exonic’, ‘intronic’, ‘intergenic’, ‘antisense’ and ‘sense 
overlapping’ according to their location relationship with adjacent 
coding RNA.9-11 Emerging evidence has shown that the vast majority 
of circRNAs are derived from exons and are primarily localized in the 
cytoplasm, while only a small portion of circRNAs, particularly ciRNAs, 
reside in the cell nucleus.9,12 Based on their subcellular localization, cir-
cRNAs play important roles in regulating gene expression at the tran-
scriptional, post-transcriptional, translational and post-translational 
levels.13-15 Recent studies have revealed many functions of circRNAs, 
among which their function as competing endogenous RNAs (ceRNAs) 
has become a research hotspot. As ceRNAs, circRNAs contain shared 
miRNA response elements and can competitively bind to miRNAs, re-
sulting in a reduction of miRNAs and an up-regulation of the expres-
sion of miRNA target genes. As circRNAs can ‘absorb’ miRNAs like a 
sponge, they are often referred to as miRNA sponges.16 Studies have 
revealed that circRNAs are abundant in human tissues, including the 
heart, and most are tissue-specific.17,18 Interestingly, a number of cir-
cRNAs are generated from genes, such as TTN and RYR2, which are 
associated with cardiovascular diseases.19,20 In addition, circRNAs are 
differentially expressed between healthy and diseased human hearts 

and peripheral blood, suggesting that they may play important roles in 
cardiac physiology and the initiation and development of cardiovascu-
lar diseases.21,22

Recently, studies have identified the microarray profile of ln-
cRNAs and miRNAs in human DCM and constructed a lncRNA-miR-
NA-mRNA network.23,24 As the changes in circRNA expression and 
the potential circRNA-miRNA-mRNA network remain unclear in 
human DCM, the present study evaluated circRNA expression in 
heart samples from DCM patients and healthy controls and con-
structed two ceRNA networks based on the ceRNA theory. The re-
sults provide a new understanding of the mechanisms involved in 
the development of DCM. Furthermore, the circRNA-miRNA-mRNA 
network indicated that circRNAs may become potential therapeutic 
targets for DCM.

2  | MATERIAL S AND METHODS

2.1 | Samples and RNA isolation

DCM heart samples were collected from the left ventricular wall of 
explanted hearts of patients diagnosed with DCM (clinical data are 
presented in Appendix S1). Control heart samples were collected 
from healthy donors (accident victims). Total RNA was isolated using 
TRIzol and purified with the RNeasy mini kit (Qiagen) according to 
the manufacturer's instructions. RNA quantity and quality were 
measured by a NanoDrop ND-1000 instrument (Thermo Fisher 
Scientific). RNA integrity was determined by gel electrophoresis 
(Appendix S2). The study protocol was approved by the Medical 
Ethics Committee of Zhongshan Hospital of Fudan University, and 
informed consent forms were signed by the subjects recruited in the 
study or by their immediate family members.

2.2 | RNA high-throughput sequencing

The removal of rRNAs from total RNA was performed using the 
NEBNext rRNA Depletion Kit (New England Biolabs, Inc) following 
the manufacturer's instructions. RNA libraries were constructed 
by using rRNA-depleted RNAs with the TruSeq Stranded Total 
RNA Library Prep Kit (Illumina) according to the manufacturer's 
instructions. Libraries were quality controlled and quantified using 
the BioAnalyzer 2100 system (Agilent Technologies). RNA libraries 
were denatured to single-stranded DNA molecules, captured 
on Illumina flow cells, amplified in situ as clusters and sequenced 
for 150 cycles on the HiSeq 4000 system (Illumina) following the 
manufacturer's instructions.

2.3 | CircRNA and mRNA sequencing analysis

Paired-end reads were obtained from the HiSeq 4000 system and 
were quality controlled by Q30. Next, 3′ adaptor trimming and 
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low-quality reads removal were performed using Cutadapt software 
(V1.9.3). The high-quality trimmed reads were used to analyse cir-
cRNAs and mRNAs. The high-quality clean reads of circRNAs were 
mapped to the reference genome using STAR software (v2.5.1b). 
CircRNAs were identified using DCC software (v0.4.4) and an-
notated from the circBase database.25 The high-quality reads of 
mRNAs were aligned to the human reference genome (UCSC hg 19) 
with hisat2 software (v2.0.4).

2.4 | Identification of differentially expressed 
circRNAs and mRNAs

Edger software (v3.16.5) was used to normalize the data and 
perform differentially expressed circRNA analysis. Cuffdiff 
software (v2.2.1, part of Cufflinks) was used to obtain the fragments 
per kilobase of exon per million (FPKM) for the expression profiles 
of mRNAs, and fold change and P value were calculated based 
on the FPKM values. CircRNAs and mRNAs that exhibited fold 
change ≥2 or ≤0.5 with P value < .05 were considered significantly 
differentially expressed.

2.5 | Experimental validation of 
circRNAs and mRNAs

Quantitative real-time PCR (qRT-PCR) was used to validate circRNA 
and mRNA expression. Three up-regulated and three down-
regulated circRNAs and mRNAs were selected for validation. For the 
validation of circRNAs, we performed a divergent PCR protocol by 
using divergent PCR primers. The divergent primers were designed 
to span the circRNA backsplice junction sequence, so that they can 
only amplify the circRNAs, and not the linear RNAs with the same 
sequence. All the primers used are presented in Appendix S3. Total 
RNA was reverse transcribed into complementary DNA (cDNA) 
using the PrimeScript RT Reagent Kit (Perfect Real Time; TaKaRa) 
following the manufacturer's instructions. The cDNA was subjected 
to qRT-PCR analysis on an Applied Biosystems 7500 Fast Real-Time 
PCR system. The relative expression was calculated using the 2−ΔΔCT 
method.

2.6 | Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analyses were performed of target mRNAs of dif-
ferentially expressed circRNA. GO analysis included terms in the 
biological process, molecular function and cellular component cat-
egories. The enriched GO terms and KEGG pathways between the 
two groups are presented as differentially expressed. A P value of 
<.05 was considered to indicate significant enrichment.

2.7 | Construction of ceRNA networks

CircRNA-miRNA interactions were predicted using miRNA 
target gene prediction software. The identification of miRNA-
binding sites and target mRNA prediction were performed using 
proprietary software based on miRanda and TargetScan. The 
circRNA-miRNA-mRNA network was constructed based on the 
ggalluvial package in R.

2.8 | Statistical analysis

The data are expressed as the mean ± SEM and analysed with 
SPSS 21.0 (SPSS Inc). Student's t test was used to determine the 
statistical significance. P values < .05 were considered statistically 
significant.

3  | RESULTS

3.1 | Distribution profiles of circRNAs

RNA sequencing detected a total of 9585 circRNAs in the 
control and DCM groups. The circRNAs were classified into five 
categories based on the locations in their host genes and included 
7241 (75.55%) exonic, 878 (9.16%) intronic, 9 (0.09%) intergenic, 
35 (0.37%) antisense and 1422 (14.84%) sense overlapping, 
(Figure 1A). A total of 6144 (64.1%) circRNAs had already been 
identified in previous studies and were included in the circBase 
database, while 3441 (35.9%) circRNAs were reported for the first 
time in the present study (Figure 1B). The majority of the circRNAs 
in the two groups ranged in length from 80 to 2500 bp (Figure 1C). 
The 9585 circRNAs were distributed across all chromosomes 
(Figure 1D).

3.2 | Identification of differentially 
expressed circRNAs

To assess the differentially expressed circRNAs, the criteria were 
set as a fold change of ≥2 or ≤0.5 and a P value of <.05. Compared 
with circRNAs in the control group, 298 dysregulated circRNAs were 
identified in patients with DCM, of which 231 were up-regulated and 
85 were down-regulated (Figure 2A). A Manhattan plot presented 
the circRNAs with fold change ≥2 or ≤0.5 between two groups. We 
found that differentially expressed circRNAs (with a P value of <.05) 
were scattered throughout all chromosomes (Figure 2B). In addition, 
a scatter plot and a volcano plot were generated to identify differ-
entially expressed circRNAs between the control and DCM groups 
(Figure 2C,D). A heat map of differentially expressed circRNAs is 
presented in Figure 2E.
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3.3 | Validation of circRNA expression

To verify the expression levels of differentially expressed circRNAs, 
three up-regulated and three down-regulated circRNAs were 
selected from the top 10 up-regulated circRNAs and top 10 
down-regulated circRNAs, respectively (Figure 3A). Details on 
the top 10 up-regulated circRNAs and top 10 down-regulated 
circRNAs are presented in Appendix S4. Chr7:8257935−8275635− 
(Figure 3B), chr4:187627717−187630999− (Figure 3C) and 
chr1:219352489−219385095+ (Figure 3D) were the three 
up-regulated circRNAs. Chr5:158204421−158267118− 
(Figure 3E), chr1:247200894−247202839− (Figure 3F) and 
chr13:35615070−35672542+ (Figure 3G) were the three down-
regulated circRNAs. The qRT-PCR results were consistent with the 
sequencing data.

3.4 | Target miRNAs of differentially 
expressed circRNAs

Next, we predicted the target miRNAs of differentially expressed 
circRNAs (top 10 up-regulated and top 10 down-regulated cir-
cRNAs). All the predicted miRNAs are presented in Appendix S5. 
We selected 13 miRNAs (hsa-miR-144-5p, hsa-miR-338-3p, hsa-
miR-6715b-5p, hsa-miR-3130-3p, hsa-miR-5006-5p, hsa-miR-8073, 
hsa-miR-5690, hsa-miR-4688, hsa-miR-6760-3p, hsa-miR-6851-5p, 
hsa-miR-4753-3p, hsa-miR-144-3p and hsa-miR-363-3p), that were 

predicted to be targeted by at least two of the top 10 up-regulated 
circRNAs (Figure 4A) and 6 miRNAs (hsa-miR-770-5p, hsa-miR-4751, 
hsa-miR-1470, hsa-miR-515-5p, hsa-miR-3925-3p and hsa-miR-
21-5p) that were predicted to be targeted by at least two of the top 
10 down-regulated circRNAs (Figure 4B). The 19 miRNAs were used 
for the subsequent prediction of target mRNAs and construction of 
ceRNA networks.

3.5 | Identification of differentially expressed 
mRNAs and validation of mRNA expression

RNA sequencing detected a total of 22050 mRNAs in the control 
and DCM groups. According to the criteria of a P value of <.05 
and a fold change of ≥2 or ≤0.5, 1742 mRNAs were differentially 
expressed in the DCM group compared with the control group, 
of which 617 were up-regulated and 1125 were down-regulated 
(Figure 5A). A scatter plot was generated to identify differen-
tially expressed circRNAs between the control and DCM groups 
(Figure 5B). Next, we predicted the target mRNAs of the selected 
miRNAs shown in Figure 4A,B and compared the predictions with 
our mRNA sequencing data. Fifty-four target mRNAs of the 13 
selected miRNAs were up-regulated, and 66 target mRNAs of the 
6 selected miRNAs were down-regulated (Figure 5C). We selected 
three mRNAs from the 54 up-regulated mRNAs and three mRNAs 
from the 66 down-regulated mRNAs to verify their expression 
levels. NPR3 (Figure 5D), CFL2 (Figure 5E) and MLIP (Figure 5F) 

F I G U R E  1   Distribution profiles 
of circRNAs. A, Class distribution of 
circRNAs, including 75.55% exonic, 
9.16% intronic, 0.09% intergentic, 0.37% 
antisense and 14.84% sense overlapping 
circRNAs. B, Novel circRNAs and known 
circRNAs identified in the present study. 
C, Length distribution of circRNAs, which 
were mainly ranged from 80 to 2500 bp 
in length. D, Chromosomal distribution of 
circRNAs. Bp, base pair; Chr, chromosome; 
ChrM, mitochondrial genome
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F I G U R E  2   Identification of differentially expressed circRNAs. A, A total of 9585 circRNAs were detected by RNA sequencing. Among 
these, 298 circRNAs were differentially expressed between the control and DCM groups, including 213 up-regulated and 85 down-regulated 
circRNAs. B, A Manhattan plot of circRNAs with fold change ≥2 or ≤0.5 throughout all chromosomes. Red dots represent differentially 
expressed circRNAs. C, A scatter plot of the total circRNAs. D, A volcano plot of the total circRNAs. Red squares represent differentially 
expressed circRNAs. E, A heat map of dysregulated circRNAs. The criteria were a P value of <.05 and a fold change of ≥2 or ≤0.5. Ctrl, 
control; DCM, dilated cardiomyopathy
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F I G U R E  3   Validation of circRNA expression. A, Top 10 up-regulated and top 10 down-regulated circRNAs between the control and 
DCM groups. B-G, Quantitative real-time PCR was used to validate three up-regulated and three down-regulated circRNAs between the 
control (n = 3) and DCM (n = 3) groups. Three up-regulated circRNAs: Chr7:8257935−8275635− (B), chr4:187627717−187630999− (C) and 
chr1:219352489−219385095+ (D). Three down−regulated circRNAs: Chr5:158204421−158267118− (E), chr1:247200894−247202839− 
(F) and chr13:35615070−35672542+ (G). The experiments were repeated for three times. *P < .05, **P < .01; Ctrl, control; DCM, dilated 
cardiomyopathy
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were the three up-regulated mRNAs. EGR1 (Figure 5G), FGF5 
(Figure 5H) and CYR61 (Figure 5I) were the three down-regulated 
mRNAs. The qRT-PCR results were consistent with the sequenc-
ing data.

3.6 | GO and KEGG pathway analyses of miRNA 
target mRNAs

To understand the potential functions of the top 10 up-regulated 
and top 10 down-regulated circRNAs, GO and KEGG pathway 
analyses were performed based on the 54 up-regulated mRNAs 
and 66 down-regulated mRNAs, respectively (details on the 
mRNAs are presented in Appendix S6). The up-regulated mRNAs 
were found to be mostly enriched in the following terms: 
cellular macromolecule metabolic process and cellular protein 
modification in the ‘biological process’ analysis (Figure 6A); 
protein-containing complex in the ‘cellular component’ analysis 
(Figure 6B); and protein binding in the ‘molecular function’ 
analysis (Figure 6C). The down-regulated mRNAs were found to be 
mostly enriched in the following terms: regulation of multicellular 
organismal process and regulation of signal transduction in the 
‘biological process’ analysis (Figure 7A); cytoplasm, nucleus and 
organelle in the ‘cellular component’ analysis (Figure 7B); and 
protein binding in the ‘molecular function’ analysis (Figure 7C). 
KEGG pathway analysis revealed that the up-regulated mRNAs 
were mainly associated with Ras signalling pathway, regulation of 
actin cytoskeleton and cAMP signalling pathway (Figure 6D), and 
the down-regulated mRNAs were mainly associated with MAPK 
signalling pathway, phospholipase D signalling pathway and Rap1 
signalling pathway (Figure 7D).

3.7 | Prediction of ceRNA networks

According to the ceRNA theory, circRNAs and mRNAs that share 
the same miRNA-binding sites can function as ceRNAs and should 
be both either up-regulated or down-regulated, so we constructed 
two ceRNA networks using dysregulated circRNAs and mRNAs. 
One network included the top 10 down-regulated circRNAs, 6 
predicted miRNAs of the top 10 down-regulated circRNAs and 66 
down-regulated mRNAs (Figure 8A). The other network comprised 
the top 10 up-regulated circRNAs, 13 predicted miRNAs of the 
top ten up-regulated circRNAs and 54 up-regulated mRNAs 
(Figure 8B). The ceRNA networks are complicated, and circRNAs 
can indirectly interact with mRNAs by directly binding to miRNAs. 
As shown in Figure 8A, a down-regulated circRNA was less effective 
at absorbing target miRNAs, resulting in the down-regulation of 
miRNA-targeted mRNAs. As shown in Figure 8B, an up-regulated 
circRNA could more effectively absorb target miRNAs, resulting 
in the up-regulation of miRNA-targeted mRNAs. Therefore, when 
circRNAs and mRNAs act as ceRNAs, both are up-regulated or 
down-regulated.

4  | DISCUSSION

DCM, characterized by systolic dysfunction and ventricular dilation, 
is a major cause of heart failure and cardiac transplantation world-
wide. Due to the severe outcome of DCM, it is imperative to find 
related effective diagnostic biomarkers and therapeutic targets. Up 
to data, DCM has been considered a genetic disease, and more than 
30 genes have been reported to be related to DCM. However, re-
cent studies found that gene mutations alone might not fully explain 

F I G U R E  4   UpSet plots for target miRNAs of the circRNAs. Like Venn diagrams, UpSet plots are used to visualize set overlaps. 
The column at the bottom left shows the total number of target miRNAs of each circRNA. The black dot at the bottom right and the 
corresponding column above represent the number of target miRNAs that are not overlapped by other sets. The red dots with line and the 
corresponding column above represent the number of overlapping target miRNAs of sets. A, Target miRNAs and overlapping target miRNAs 
of the top 10 up-regulated circRNAs. B, Target miRNAs and overlapping target miRNAs of the top 10 down-regulated circRNAs. Up-top1 
to up-top10, sets of target miRNAs of top 10 up-regulated circRNAs; Down-top1 to down-top10, sets of target miRNAs of top 10 down-
regulated circRNAs
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the genesis and development of DCM.26 Over the past few years, 
many researchers have made great efforts to explore the molecular 
mechanisms of DCM, and ncRNAs have been found to play impor-
tant roles in the development of DCM.23,27 Although circRNAs are 

extensively studied in animal disease models, their functions in hu-
mans remain to be elucidated.

In the present study, we performed an analysis of dysregulated 
cardiac circRNAs and mRNAs between patients with DCM and 

F I G U R E  5   Identification of differentially expressed mRNAs and validation of mRNA expression. A, A total of 22050 mRNAs were 
detected by RNA sequencing. Among these, 1742 mRNAs were differentially expressed between the control and DCM groups, including 617 
up-regulated and 1125 down-regulated mRNAs. B, A scatter plot of the total mRNAs. C, Overlapping number of up-regulated mRNAs and 
target mRNAs of the top 10 up-regulated circRNAs. Overlapping number of down-regulated mRNAs and target mRNAs of the top 10 down-
regulated circRNAs. D-I, Quantitative real-time PCR was used to validate three up-regulated and three down-regulated mRNAs between the 
control (n = 3) and DCM (n = 3) groups. Three up-regulated mRNAs: NPR3 (D), CFL2 (E) and MLIP (F). Three down-regulated mRNAs: EGR1 
(G), FGF5 (H) and CYR61 (I). The experiments were repeated for three times. *P < .05, **P < .01; Ctrl, control; DCM, dilated cardiomyopathy
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healthy controls and constructed two circRNA-miRNA-mRNA net-
works. A total of 9585 circRNAs were identified in the DCM and 
control groups, of which 231 circRNAs were up-regulated and 85 cir-
cRNAs were down-regulated. In addition, we obtained 22050 mRNAs 
in the two groups, of which 617 were significantly up-regulated and 
1125 were significantly down-regulated. The top 10 up-regulated 
and top 10 down-regulated circRNAs were selected for predictions 
of their interacting miRNAs and circRNA-targeted mRNAs. In the 
circRNA-miRNA-mRNA network, circRNAs and mRNAs acts as ceR-
NAs, and according to the ceRNA theory, the circRNAs and mRNAs 

should be both either up-regulated or down-regulated and share 
the same miRNA-binding sites. We compared the mRNA sequenc-
ing results and the predicted results and identified 54 up-regulated 
circRNA-targeted mRNAs and 66 down-regulated circRNA-targeted 
mRNAs.

To evaluate the potential functions of the dysregulated circRNAs 
in the ceRNA networks, GO and KEGG signalling pathway analyses 
were performed using the circRNA-targeted mRNAs. We found that 
the down-regulated mRNAs were mainly enriched in actin cytoskel-
eton organization, actin filament-based process and cardiovascular 

F I G U R E  6   GO and KEGG pathway analyses of 54 up-regulated target mRNAs. Chord plots indicate enrichment analysis of these mRNAs. 
A, Biological process of GO analysis. B, Cellular component of GO analysis. C, Molecular function of GO analysis. D, KEGG pathway analysis. 
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes
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system development in the ‘biological process’ analysis, which 
means that these processes were down-regulated and the cardiac 
systolic function would probably be inhibited. The up-regulated and 
down-regulated mRNAs were both mainly enriched in protein bind-
ing in ‘molecular function’ analysis. KEGG pathway analysis revealed 
that down-regulated mRNAs were also involved in the oestrogen 
signalling pathway, PI3K signalling pathway and inositol phosphate 

metabolism. It has been reported that oestrogen can attenuate left 
ventricular and cardiomyocyte hypertrophy in an oestrogen recep-
tor-dependent pathway that increases calcineurin degradation.28 In 
addition, the activation of the oestrogen signalling pathway could 
attenuate chronic volume overload-induced structural and func-
tional remodelling in male rat hearts.29 Inositol phosphate metab-
olism has been reported to be associated various physiological and 

F I G U R E  7   GO and KEGG pathway analyses of 66 down-regulated target mRNAs. Chord plots indicate enrichment analysis of these 
mRNAs. A, Biological process of GO analysis. B, Cellular component of GO analysis. C, Molecular function of GO analysis. D, KEGG pathway 
analysis. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes
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pathophysiological processes. In the cardiomyocytes, the metab-
olite of inositol phosphate could induce the release of Ca2+ in the 
cytoplasm and increase the concentration of Ca2+, which provides 
energy for the contraction of cardiomyocytes. Inositol phosphate 
metabolism also has effects on actin remodelling and changes in the 
cytoskeleton.30 PI3K signalling pathway is an important part of in-
tracellular signal transduction. Recent studies have placed PI3K sig-
nalling pathway at the centre of the regulation of key homeostatic 
processes in the cardiovascular system, which are directly or indi-
rectly linked to modulation of Ca2+ fluxes and are associated with 
the development of various cardiovascular diseases, including heart 
failure.31 The results of GO and KEGG signalling pathway analyses 
indicated that the circRNAs in the ceRNA networks were mainly as-
sociated with cardiac systolic and diastolic function, a lack of which 
would lead to DCM.

Recent studies have revealed that circRNAs play important 
roles in cardiac development and are involved in the pathophys-
iological processes of cardiovascular diseases.32 A study reported 
that circRNAs derived from the TTN gene were differentially ex-
pressed in neonatal and adult rat hearts, indicating a critical role 
for circRNAs in heart growth.33 Similarly, circRNAs were found to 
be differentially expressed during the differentiation of cardiac 
progenitors into cardiomyocytes, suggesting that circRNAs may 
participate in the cardiac cell specification.34 In addition to their 
functions in cardiac development, circRNAs also play critical roles 
in cardiac dysfunction. For instance, heart-related circRNA (HRCR) 
was reported to act as an endogenous miRNA-223 sponge to in-
hibit the activity of miR-233 and thus inhibit cardiac hypertrophy 
and heart failure.35 CircRNA CDR1as was reported to increase 
cardiac infarct size by regulating the expression of miR-7 target 
genes.36 CircRNAs were also found to be associated with cardiac 

fibrosis, atherosclerosis, arrhythmia and so on.21 In addition, com-
pared with the functions of miRNAs and lncRNAs, the functions 
of circRNAs in cardiac development and cardiovascular diseases 
are still less understood. The ceRNA networks constructed in the 
present study, together with the GO and KEGG analyses, indicated 
that circRNAs could play critical roles in various biological pro-
cesses. These results broadened our understanding of the mecha-
nism of cardiovascular diseases.

In conclusion, our study evaluated cardiac circRNA expression 
in DCM by RNA sequencing and identified the potential functions 
of dysregulated circRNAs using bioinformatics. More importantly, 
we constructed two circRNA-miRNA-mRNA networks based on 
the ceRNA theory. In the networks, one circRNA can indirectly 
affect multiple mRNAs by binding to multiple miRNAs, indicating 
that circRNAs might be involved in a complex mechanism in the de-
velopment of DCM. These findings provide novel insight into the 
pathogenesis of DCM and a theoretical basis for future studies of 
circRNAs in DCM.
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