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Abstract
Objective:Non-syndromic cleft of the lip and/or palate (NSCL/P) is one of themost common polygenic diseases. In this study, both
case–control and family-based association study were used to confirm whether the Single Nucleotide Polymorphisms (SNPs) were
associated with NSCL/P.

Methods: A total of 37 nuclear families and 189 controls were recruited, whose blood DNA was extracted and subjected to
genotyping of SNPs of 27 candidate genes by polymerase chain reaction-improved multiple ligase detection reaction technology
(PCR-iMLDR). Case–control statistical analysis was performed using the SPSS 19.0. Haplotype Relative Risk (HRR), transmission
disequilibrium test (TDT), and Family-Based Association Test (FBAT) were used to test for over-transmission of the target alleles in
case-parent trios. The gene–gene interactions on NSCL/P were analyzed by Unphased-3.1.4.

Results: In case–control statistical analysis, only C14orf49 chr14_95932477 had statistically significant on genotype model
(P= .03) and allele model (P= .03). Seven SNPs had statistically significant on TDT. None of 26 alleles has association with NSCL/P
on FBAT. Some SNPs had haplotype-haplotype interactions and genotype-genotype interactions.

Conclusion: C14orf49 chr14_95932477 was significantly different between cases and controls on genotype model and allele
model by case–control design. Seven SNPs were significantly different on HRR. Four SNPs were significantly different on TDT.

Abbreviations: FBAT = Family-Based Association Test, GWAS = genome-wide association studies, HRR = Haplotype Relative
Risk, HWE = Hardy–Weinberg equilibrium, NSCL/P = non-syndromic cleft of the lip and/or palate, PCR-iMLDR = polymerase chain
reaction-improved multiple ligase detection reaction technology, SNPs = Single Nucleotide Polymorphisms, TDT = transmission
disequilibrium test.
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1. Introduction

Non-syndromic cleft of the lip with or without palate (NSCL/P) is
one of the most common birth defects found among live births,
about 1.00 to 2.00 per 1000 births in all populations
worldwide.[1] In China, the prevalence is about 1.60 per 1000
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live births higher than the world’s average level.[2] NSCL/P can
not only cause facial deformity in patients, but also influence their
sucking, swallowing and development of language and hearing,
and even result in psychological problems. The anomaly may
place a heavy mental and financial burden on the patients and
their families to have a direct impact on their quality of life.[3]

Therefore, the prevention, treatment and prognosis of NSCL/P
now become an important public health issue in world.
Identification of etiology associated with NSCL/P may

facilitate efforts at prevention, treatment, and prognosis of the
disease. Therefore, the etiology of NSCL/P has been a focus area
of research for centuries. Most scientists believe it involves
multifactorial contributions including both genetic and environ-
mental factors.[4,5] Due to the complex pathogenesis of NSCL/P,
the etiology and mechanism of the disease have not been fully
understood.[6–8] Although numerous studies have identified a
number of genes as likely to play some roles in the etiology of
NSCL/P, it is difficult to achieve consistency across studies.
With the advent of the genomics era, genome-wide association

studies (GWAS) have provided insights into the genetic factors of
NSCL/P through the identification of several risk loci. Several
GWAS have identified and confirmed several significant locus
and genes contributing to the etiology of NSCL/P.[9–12] Birnbaum
et al confirmed the impact of IRF6 using the GWAS, which had
previously been identified in the previous studies.[11] However,
some studies had contradictory results about some genes,
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includingTGFb, FOXE1,TGFa,MTHFR, andBMP4.[13–17] For
example, some studies have shown that the MTHFR C677T
variant is associated with NSCL/P. However, other studies
have not found the association between MTHFR C677T and
NSCL/P.[17]

In our previous research, 12 reported candidate genes and 16
novel Single Nucleotide Polymorphisms (SNPs) were found may
make contributions to NSCL/P, by whole-exome sequencing
(WES) in 8 fetuses with NSCL/P in China.
Here, we recruited 37 nuclear families and 189 controls and

genotyped 27 candidate genes, based on our previous research,[4]

by polymerase chain reaction-improved multiple ligase detection
reaction technology (PCR-iMLDR), to verify the candidate genes.
2. Materials and methods

2.1. Subjects

The participants of this study consisted of consenting, unrelated
patients with NSCL/P and their parents, from Xuzhou Maternity
andChildHealthCareHospital, located in Jiangsuprovince.Cases
comprised 37 nuclear families, including 37 patients and 66
parents. Controls were 189 healthy Han Chinese born in Jiangsu
province with no known history of CL/P in their family members,
recruited from staff and students of Xuzhou Medical University.
Blood sample of 3mLwas drawn in an ethylenediamine tetraacetic
acid collection vacuum tube from each participant. DNA was
subsequently extracted by GentraPuregene Blood Kit. Report of
DNA sample quality test (Table S1) and electrophoregram
(Figure S1, http://links.lww.com/MD/D54) were presented in
supplementary materials, http://links.lww.com/MD/D54.
2.2. Genotyping

Peripheral bloodwas collected and genomic DNAwas extracted by
a standard procedure. According to our preliminary study,[4] 27
candidate geneswere selected, includingABCA4,BMP4,C14orf49,
CENPJ, CRISPLD2, EIF2B3, EPHA3, FGFR2, HEATR8, IRF6,
KIF20B,KRTAP5-4,LACTB,MEF2A,MTHFR,MYH9,PARVA,
PAX7, PDGFC, PKP1, RECQL5, REG3A, SEC16A, SPRY2,
TEX11,TTN, and YOD1. Details of the alleles of the 27 candidate
genes were presented in Table S2. PCR-iMLDR was used for
amplification, connection, and genotyping. PCR primers (Table S3)
were designed by Primer premier 5 software on the basis of
Genbank. Procedure of PCR-iMLDR found in Supplementary
Material File, http://links.lww.com/MD/D54. The genes sequenced
by ABI 3730XL DNA sequencer and GeneMapper 4.1 software
(AppliedBiosystems, CA).
2.3. Ethics

This study was approved by the local institutional Ethics
Committee, and all individuals gave written informed consent
Table 1

The association between SNPs and NSCL/P by case–control design

gene SNP
Genotype

genotype control case

C14orf49 chr14_95932477 C/T 0 2
T/T 189 41

NSCL/P=non-syndromic cleft of the lip and/or palate, SNPs=Single Nucleotide Polymorphisms

2

for participation at the time of recruitment. Parents or legal
guardians provided written consents on behalf of minors.
2.4. Statistical methods

Hardy–Weinberg equilibrium (HWE) was used to assess the
genotype distribution of the 27 SNPs. Data in HWE suggest a good
homogeneity, which is necessary for Gene Association Analysis.
Case–control statistical analysis was performed using the SPSS 19.0
(SPSS, Inc.,Chicago,IL).HaplotypeRelativeRisk(HRR)wasusedto
identify excess transmission of the target alleles from parents to the
affectedoffspringusingonlycompletecase-parent trios inanalyses.A
transmission disequilibrium test (TDT) was used to identify excess
transmission of the target alleles from heterozygous parents to the
affected offspring using only complete case-parent trios in analyses.
TheFamily-BasedAssociationTest(FBAT),includingadditivemode,
dominant model and recessive model, was used to test for over-
transmissionofthetargetallelesincase-parenttriosbyFBATpackage
(www.biostat.harvard.edu/fbat/default.html). The gene–gene inter-
ationsonNSCL/PwereanalyzedbyUnphased-3.1.4.Weconsidered
P values �.05 to be statistically significant.
3. Results

3.1. General conditions of subjects

A total of 37 nuclear families and 189 controls were recruited.
The 37 nuclear families included 37 patients and 66 parents (35
mothers and 31 fathers). The 29 nuclear families were case-
parents trios (78.38%). The 6 nuclear families were case-mother
only (16.22%) and 2 nuclear families were case-father only
(5.41%). Controls were normal person. HWE was used to assess
all SNPs of 27 candidate genes, ABCA4, BMP4, C14orf49,
CENPJ, CRISPLD2, EIF2B3, EPHA3, FGFR2, HEATR8,
IRF6, KIF20B, KRTAP5-4, LACTB, MEF2A, MTHFR,
MYH9, PARVA, PAX7, PDGFC, PKP1, RECQL5, REG3A,
SEC16A, SPRY2,TEX11,TTN andYOD1 (Table S4). All SNPs,
except TEX11 chrX_69772000, were in HWE, suggesting good
homogeneity within the study subjects. In that case, TEX11
chrX_69772000 did not be analyzed by HRR, TDT, or FBAT.
3.2. Case–Control

In case–control statistical analysis, none of 26 SNPs of ABCA4,
BMP4, CENPJ, CRISPLD2, EIF2B3, EPHA3, FGFR2,
HEATR8, IRF6, KIF20B, KRTAP5-4, LACTB, MEF2A,
MTHFR, MYH9, PARVA, PAX7, PDGFC, PKP1, RECQL5,
REG3A, SEC16A, SPRY2, TEX11, TTN, and YOD1 were
significantly different between cases and controls on genotype
model or allele model (Table S5). C14orf49 chr14_95932477
was significantly different between cases and controls on
genotype model and allele model by case–control design
(Table 1). The prevalence of the potential risk allele C in
.

Allele

x2 P allele control case x2 P

– .03 C 0 2 – .03
T 378 84
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chr14_95932477 among NSCL/P cases was 2.38%, whereas
none of the controls had the C allele. It was indicated that
C14orf49 might be a susceptibility gene of NSCL/P.
3.3. HRR and TDT

Haplotype Relative Risk (HRR) and transmission disequilib-
rium test (TDT) were used to identify excess transmission of
the target alleles from parents to the affected offspring using
only complete case-parent trios in analyses. Seven SNPs
including EIF2B3 chr1_207224322, IRF6 chr1_209964080,
ABCA4 chr1_94461717, FGFR2 chr10_123310871, CENPJ
chr13_25487103, LACTB chr15_63414085 and CRISPLD2
chr16_84906098, were significantly different on HRR
(Table 2). Four SNPs including IRF6 chr1_209964080,
CENPJ chr13_25487103, LACTB chr15_63414085, and
CRISPLD2 chr16_84906098, were significantly different on
TDT (Table 2).
3.4. FBAT

Additive mode, dominant model and recessive model were used
to test for over-transmission of the target alleles in case-parent
trios on the FBAT.None of 26 alleles were associated withNSCL/
P on FBAT (Table 3).
3.5. Gene–gene interations

The gene–gene interations on NSCL/P were analyzed by
Unphased-3.1.4. The interactions comprised haplotype-haplo-
type interations (Table S6, http://links.lww.com/MD/D54) and
Table 2

Results of HRR and TDT.

SNPs Alelles
HRR

Transmited Untransmitted x

chr1_11856378 G 42 9 0.
A 45 6

chr1_207224322 G 66 0 –

T 2 1
chr1_209964080 C 59 3 9.3

T 24 10
chr1_55136529 C 28 6 2.4

T 54 3
chr1_94461717 C 66 0 –

A 1 2
chr10_123310871 G 2 3 –

A 66 0
chr11_1642959 C 66 0 –

T 5 1
chr13_25487103 C 23 14 16.

T 50 2
chr13_80911525 G 41 9 2.3

A 47 4
chr14_54417522 G 27 7 2.9

A 57 4
chr15_63414085 G 65 1 –

A 2 5
chr16_84906098 G 57 2 20

C 23 15
chr22_36684354 C 49 8 0.3

T 35 8

HRR=Haplotype Relative Risk, TDT= transmission disequilibrium test.

3

genotype-genotype interactions (Tanble S7). The significant
results of haplotype-haplotype interactions and genotype-
genotype interactions were presented in Table 4.

4. Discussion

In our previous research, 12 reported candidate genes and 16
novel SNPs have been found to be associated with NSCL/P, by
whole-exome sequencing (WES) in 8 fetuses with NSCL/P in
China.[4] In the present study, we recruited 37 nuclear families
and 189 controls and genotyped 27 candidate genes by PCR-
iMLDR to verify the candidate genes, using both case–control
and family-based association study methods. All analyzed SNPs
were in HWE, suggesting good homogeneity within the study
subjects.
C14orf49 chr14_95932477 was significantly different be-

tween cases and controls on genotype model or allele model by
case–control design. However, on case-parents trios design,
HRR, TDT, and FBAT analyses provided no evidence of
significant associations of NSCL/P with C14orf49
chr14_95932477. C14orf49, also known as spectrin repeat
containing nuclear envelope family member 3, SYNE3, might be
associated with epithelial-to-mesenchymal transition, in vitro,
and in silico analyses.[18] Recently, C14orf49 was reported in
small-cell lung cancer and epithelial-type cancers studies.[18,19]

Furthermore, C14orf49 was identified as a novel candidate gene
of NSCL/P using whole-exome sequencing and Sanger sequenc-
ing in 2015.[4] Therefore, the causation of NSCL/P may involve
the abnormality of epithelial-to-mesenchymal transition regulat-
ed by C14orf49. In this study, we found a positive association of
C14orf49 variant in the case–control analysis, which was not
TDT
2 P Transmited Untransmitted x2 P

7 .4 27 9 0.76 .38
30 6

.043 3 0 – 1
2 1

2 <.01 27 3 4.81 .03
20 10

1 .12 19 6 0.64 .42
23 3

<.01 3 0 – .4
1 2

<.01 2 3 – .17
5 0

.08 6 0 – 1
5 1

94 <.01 13 11 8.55 <.01
22 2

2 .13 26 9 2.36 .12
31 4

4 .09 22 7 1.01 .31
25 4

<.01 7 0 – .02
2 5

.4 <.01 29 2 13.7 <.01
16 15

8 .54 26 8 0 1
26 8

http://links.lww.com/MD/D54
http://www.md-journal.com


Table 3

Results of FBAT.

Gene SNPs Allele
Additive model Dominant model Recessive model

fam# Z P fam# Z P fam# Z P

MTHFR chr1_11856378 A 20.00 �0.19 .85 15.00 1.26 .21 14.00 �1.61 .11
G 20.00 0.19 .85 14.00 1.61 .11 15.00 �1.26 .21

IRF6 chr1_209964080 C 19.00 �0.82 .41 7.00 1.04 .30 – – –

T 19.00 0.82 .41 17.00 1.64 .10 7.00 �1.04 .30
HEATR8 chr1_55136529 T 21.00 �0.82 .41 7.00 �0.20 .84 17.00 �0.87 .39

C 21.00 0.82 .41 17.00 0.87 .39 7.00 0.20 .84
FGFR2 chr10_123310871 A 5.00 �0.45 .65 – – – 5.00 �0.45 .65

G 5.00 0.45 .65 5.00 0.45 .65 – – –

KRTAP5-4 chr11_1642959 C 6.00 �1.63 .10 – – – 6.00 �1.63 .10
T 6.00 1.63 .10 6.00 1.63 .10 – – –

CENPJ chr13_25487103 C 18.00 �0.45 .65 16.00 �0.25 .80 – – –

T 18.00 0.45 .65 – – – 16.00 0.25 .80
SPRY2 chr13_80911525 A 23.00 0.52 .60 15.00 1.13 .26 18.00 �0.25 .80

G 23.00 �0.52 .60 18.00 0.25 .80 15.00 �1.13 .26
BMP4 chr14_54417522 A 18.00 0.00 1.00 7.00 0.85 .39 17.00 �0.51 .61

G 18.00 0.00 1.00 17.00 0.51 .61 7.00 �0.85 .39
LACTB chr15_63414085 G 7.00 1.13 .26 – – – 7.00 1.13 .26

A 7.00 �1.13 .26 7.00 �1.13 .26 – – –

CRISPLD2 chr16_84906098 G 22.00 1.35 .18 8.00 0.58 .56 19.00 1.31 .19
C 22.00 �1.35 .18 19.00 �1.31 .19 8.00 �0.58 .56

MYH9 chr22_36684354 C 23.00 �1.46 .14 13.00 �0.75 .46 17.00 �1.41 .16
T 23.00 1.46 .14 17.00 1.41 .16 13.00 0.75 .46

FBAT= Family-Based Association Test.
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confirmed in the trios. This may be an indication of low power.
Because of the number of “C” or “C/T” in control group is zero,
the power of Fisher exact x2 test cannot be calculated. In this case,
the difference results between case–control analysis and FBAT
may be due to the small sample size, which indicate that we
should increase the sample size in our future research.
Seven SNPs including ABCA4 chr1_94461717, IRF6

chr1_209964080, EIF2B3 chr1_207224322, FGFR2
chr10_123310871, CENPJ chr13_25487103, LACTB
chr15_63414085, and CRISPLD2 chr16_84906098 were sig-
nificantly different between cases and controls on HRR. There
were no significant difference of 4 SNPs including IRF6
chr1_209964080, CENPJ chr13_25487103, LACTB
chr15_63414085, and CRISPLD2 chr16_84906098 on TDT
between cases and controls. The membrane-associated protein
encoded by ABCA4 is a member of the superfamily of ATP-
binding cassette transporters. Mutations in ABCA4 have been
found in patients diagnosed with NSCL/P.[20–23]

Interferon regulatory factor 6, IRF6, encodes a member of the
interferon regulatory transcription factor (IRF) family. Muta-
tions in this gene are associated with NSCL/P[24,25] and oral-
epithelium development.[26]IRF6 rs642961 G >A is a dosage
allele in cleft lip but not cleft palate.[27] However, the results of
some studies are different.[28,29] No statistical difference of
rs2235371 polymorphisms was found between the patients and
the control group on Brazilian population.[30] However, our
study revealed IRF6 rs2235371 was a susceptible loci of the
NSCL/P. The conflicting results may be due to racial difference
and the clinical classification of NSCL/P.
Eukaryotic translation initiation factor 2B subunit gamma,

EIF2B3 protein is one of the subunits of initiation factor eIF2B,
which catalyzes the exchange of eukaryotic initiation factor 2-
bound GDP for GTP. Mutations in EIF2B3 gene have been
shown to be associated with leukodystrophy with vanishing
4

white matter.[31–33] Researches on association between EIF2B3
and Parkinson disease were different.[34,35] It was also been
found to function as target for the rapid molecular diagnosis of
CACH/VWM syndrome.[33,36] However, no studies have
reported the association between EIF2B3 and NSCL/P except
our studies.[4]

The protein encoded by fibroblast growth factor receptor 2,
FGFR2, is a member of the fibroblast growth factor receptor
family, where amino acid sequence is highly conserved between
members and throughout evolution.[37] FGF pathway plays an
essential role in craniofacial development. Most FGF ligands and
FGF R1 and R2 are expressed during the initial phase of facial
development.[38] Mutations in FGFR2 are associated with
Crouzon syndrome, Pfeiffer syndrome, Craniosynostosis, Apert
syndrome, Jackson–Weiss syndrome, Beare–Stevenson cutis
gyrata syndrome, Saethre–Chotzen syndrome, and syndromic
craniosynostosis. Furthermore, impaired FGF signaling contrib-
utes NSCL/P,[39,40] but not are conformed in a large Irish study
population.[41]

Centromere protein J, CENPJ, encodes a protein that belongs
to the centromere protein family. Mutations in this gene were
associated with primary autosomal recessive microcephaly, a
disorder characterized by severely reduced brain size and mental
retardation.[42–44] The association between CENPJ and NSCL/P
has not been reported now.
Lactamase beta, LACTB, encodes a mitochondrially-localized

protein that localized in mitochondria as part of the mitochon-
drial ribosomal complex.[45,46] Mouse LACTB could be
expressed as a GST fusion protein in Escherichia coli.[47] A
mutation in the S26 subunit of the mitochondrial ribosome in a
strain of rat exhibits late-onset obesity, which indicates that
LACTB is validated as an obesity gene.[48] LACTB was reported
marginally to be associated with penicillin allergy.[49] However,
the association between LACTB and NSCL/P is not clear now.



Table 4

Significant results of gene–gene interations.

Gene1 Gene2 Haplotype/Genotype Count Frequency AddVal 95% Lo 95% Hi x2 P

chr14_54417522 chr14_95932477 A–T 57 0.75 0.00 0.00 0.00 2.45E+03 <.01
chr14_54417522 chr3_89391019 A–T 57 0.75 0.00 0.00 0.00 2.45E+03 <.01
chr14_54417522 chr4_157891963 A–C 57 0.75 0.00 0.00 0.00 2.45E+03 <.01
chr1_11856378 chr1_201286752 AG–AA 23 0.52 0.50 �0.30 1.30 5.35E+03 <.01

GG–AA 11 0.25 0.37 �0.63 1.37 1.73E+03 <.01
chr1_11856378 chr13_25487103 AA–TT 1 0.03 0.64 �1.00 2.29 1.19E+07 <.01

AG–CT 12 0.35 0.32 �0.76 1.41 5.16E+05 <.01
AG–TT 6 0.18 0.37 �0.78 1.52 2.48E+06 <.01
GG–CC 1 0.03 �0.51 �4.58 3.56 5.89E+06 <.01

chr1_11856378 chr14_54417522 AA–AA 4 0.09 0.00 0.00 0.00 5.24 .02
AG–AG 13 0.30 4.29 �29.07 37.65 17.38 <.01
GG–AG 2 0.05 3.83 �29.55 37.20 6.39 .01

chr1_11856378 chr17_73627656 GG–CC 11 0.25 0.37 �0.63 1.37 2.16E+03 <.01
chr1_11856378 chr22_36684354 AA–CC 2 0.05 0.00 0.00 0.00 1.77E+07 <.01

AA–TT 2 0.05 �0.60 �3.27 2.08 2.73E+07 <.01
AG–CT 8 0.19 0.53 �0.70 1.76 6.46E+05 <.01

chr1_207224322 chr1_209964080 GG–CT 13 0.30 0.57 �0.13 1.26 4.48E+04 <.01
chr1_207224322 chr1_94461717 GT–CA 1 0.02 10.13 10.13 10.13 4.87E+16 <.01
chr1_207224322 chr11_12539997 GT–GC 1 0.02 �3.47 �34.94 28.00 2.09E+05 <.01
chr1_209964080 chr9_139358155 CT–CC 15 0.34 0.55 �0.10 1.20 3.49E+05 <.01

TT–CC 3 0.07 0.17 �1.09 1.43 3.32E+04 <.01
chr11_12539997 chr13_25487103 GG–CC 5 0.14 0.00 0.00 0.00 4.03E+04 <.01

GG–CT 20 0.56 0.05 �1.20 1.29 1.62E+07 <.01
chr13_25487103 chr9_139358155 CC–CC 5 0.14 0.00 0.00 0.00 4.03E+04 <.01

CT–CC 20 0.56 0.05 �1.20 1.29 1.62E+07 <.01
chr13_80911525 chr9_139358155 AG–CT 26 0.62 0.47 �0.19 1.12 7.97E+05 <.01
chr14_54417522 chr22_36684354 AA–CT 13 0.31 0.62 �0.41 1.65 7.37E+05 <.01

AA–TT 3 0.07 0.18 �1.28 1.64 1.11E+05 <.01
GG–CC 3 0.07 0.34 �1.17 1.84 7.01E+06 <.01

chr15_63414085 chr16_84906098 GG–GC 16 0.40 0.04 �0.50 0.58 386.30 <.01
GA–CC 1 0.03 0.26 �1.23 1.76 4.49E+04 <.01

chr16_84906098 chr17_73627656 CC–CC 6 0.14 �0.61 �1.81 0.59 3.11E+03 <.01
chr16_84906098 chr9_139358155 GG–CC 19 0.43 0.00 0.00 0.00 121.70 <.01
chr22_36684354 chr9_139358155 CC–CC 18 0.41 0.00 0.00 0.00 545.50 <.01

TT–CT 8 0.18 0.35 �0.52 1.23 1.01E+05 <.01

Ge et al. Medicine (2019) 98:26 www.md-journal.com
The cysteine-rich secretory protein LCCL domain containing
2, CRISPLD2, was firstly reported as a novel NSCL/P candidate
gene in 2007 by Cancasian and Hispanic NSCL/P multiplex
families and simplex parent-child trios.[50] More epidemiological
investigations have studied the association between CRISPLD2
polymorphisms and NSCL/P in northern Chinese, Irish,
Northwestern Chinese, Xinjiang Uyghur, and Brazilian popula-
tion.[41,51–54] Knocking down CRISPLD2 gene caused zebrafish
craniofacial abnormalities.[55] CRISPLD2 was required for
neural crest cell migration and cell viability during zebrafish
craniofacial development.[56] However, some scholars believed
that there was no evidence for a role of CRISPLD2 in NSCL/P
among Italian population.[57] It need more evidences, cellular
level, and protein level, to verify the associations between
candidate genes and SNCL/P by vivo or vitro experiments, in our
future research.
5. Conclusions

In summary, C14orf49 chr14_95932477 was significantly
different between cases and controls on genotype model and
allele model by case–control design. Seven SNPs including
chr1_207224322, chr1_209964080, chr1_94461717, chr10_
123310871, chr13_25487103, chr15_63414085, and chr16_
5

84906098, were significantly different on NSCL/P on HRR. Four
SNPs including chr1_209964080, chr13_25487103, chr15_
63414085, and chr16_84906098, were significantly different on
TDT. None of 26 alleles was associated with NSCL/P on FBAT.
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