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ABSTRACT

Chromosomes are not positioned randomly within
a nucleus, but instead, they adopt preferred spatial
conformations to facilitate necessary long-range
gene-gene interactions and regulations. Thus, ob-
taining the 3D shape of chromosomes of a genome
is critical for understanding how the genome folds,
functions and how its genes interact and are
regulated. Here, we describe a method to recon-
struct preferred 3D structures of individual
chromosomes of the human genome from
chromosomal contact data generated by the Hi-C
chromosome conformation capturing technique. A
novel parameterized objective function was
designed for modeling chromosome structures,
which was optimized by a gradient descent
method to generate chromosomal structural
models that could satisfy as many intra-chromo-
somal contacts as possible. We applied the ob-
jective  function and the corresponding
optimization method to two Hi-C chromosomal
data sets of both a healthy and a cancerous
human B-cell to construct 3D models of individual
chromosomes at resolutions of 1 MB and 200 KB,
respectively. The parameters used with the
method were calibrated according to an independ-
ent fluorescence in situ hybridization experimental
data. The structural models generated by our
method could satisfy a high percentage of
contacts (pairs of loci in interaction) and non-
contacts (pairs of loci not in interaction) and
were compatible with the known two-compart-
ment organization of human chromatin structures.
Furthermore, structural models generated at

different resolutions and from
permuted data sets were consistent.

randomly

INTRODUCTION

The 3D organization of a genome was found to play an
important role in gene—gene interaction, gene regulation
and genome methylation (1-4). For instance, it was shown
that genes at long sequential genomic distances could
functionally interact through physical spatial contacts
(5), often leading to long-range gene regulation and col-
laboration. Understanding 3D chromosomal structures is
essential for decoding and interpreting functions of a
genome as whole and its functional and regulatory
elements (e.g. genes and transcription factor binding
sites). However, owing to lack of experimental techniques
of directly determining the 3D shape of a genome consist-
ing of billions of nucleotides, little is known about the 3D
organization of a genome and its largest discrete compo-
nents—chromosomes.

Recently, = chromosome  conformation  capture
(3C)-based techniques have emerged as powerful tools
for capturing physical interactions (e.g. spatial contacts)
between pairs of chromosomal regions (e.g. loci) (6) on the
same or two different chromosomes. Particularly, an
advanced 3C technique—Hi-C—has been developed to
determine both intra- and inter-chromosomal contacts at
a genome scale rather uniformly and unbiasedly (7), which
provides crucial information necessary for studying and
reconstructing the 3D shape of a chromosome or
genome for the first time.

Therefore, some computational methods have been
developed to reconstruct the 3D shapes of chromosomes
and genomes from chromosomal contact data. In (8),
interaction (contact) frequencies between loci were con-
verted into Euclidian distances, which were then used as
distance constraints between loci being solved by a
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constrained optimization method to obtain the coordin-
ates for loci in the 3D space. Similarly in (9), the converted
distances between loci were used by a Markov chain
Monte Carlo (MCMC) sampling technique to reconstruct
structures that satisfy as many distance constraints
between loci as possible.

Despite being highly valuable, the pioneering methods
based on converted distances may still have some limita-
tions. First, the distances converted from chromosomal
interaction frequencies may not be accurate due to
various reasons, such as biases in techniques to capture
interaction frequencies and non-uniform relationships
between distances and interaction frequencies. Second,
some 3D models reconstructed by the distance-based
methods still do not exhibit some important known
features of chromatin organization.

To overcome these problems, here, we present a novel
method to reconstruct the 3D structure of a chromosome
directly from chromosomal contacts extracted from the
Hi-C data in (7) without converting chromosomal inter-
action frequencies into distances. The method aims to
build most likely (or preferred) 3D chromosome structures
that can satisfy the chromosomal contacts with higher
probability directly while obeying necessary physical con-
straints such as contact distance thresholds and
maximum/minimum distances between two chromosomal
regions.

MATERIALS AND METHODS

We used the Hi-C data of the normal B-cell GM06990 (7)
and the malignant B-cell of an acute lymphoblastic leuke-
mia patient (10). The data were pre-processed as follows
before they were used to build 3D models for the 23 pairs
of human chromosomes.

Data normalization

Because there are several sources of biases in Hi-C experi-
ments, such as cutting frequencies of restriction enzymes,
GC content and sequence uniqueness (11), data normal-
ization is necessary. We used a simple data normalization
protocol (7,8,12) to pre-process the Hi-C data. Given an
initial n x n interaction frequency (IF) matrix C represent-
ing contact numbers between n units (e.g. regions of equal
size) of a chromosome that were generated from a raw Hi-
C data set, an element Fj; denoting IF between regions i
and j of a chromosome in a normalized matrix F is
calculated according to the formula below.

n—1 n
Fo=C: k=1 Z/:kﬂ Cu
j— % n n
jet Cire % D _jy Cij

The first term, C; in the initial IF matrix, is the
observed number of Hi-C reads linking regions i and ;.
The inverse of the second term in the formula is the
expected IF between two regions i and j, which is used
to normalize Cj. The expected IF is the product of the
number of interactions (contacts) of each region divided
by the total number of interactions (contacts).
The normalized IF (Fj;) is obtained by dividing the
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observed IF (Cj) by the expected IF. This normalized IF
could be interpreted as the likelihood ratio (odds) of
regions i and j in contact, which is the number of
observed reads divided by the number of expected reads
between the two regions. Thus, the normalized IF repre-
sents how likely regions 7 and j are in contact with respect
to the expected chance. Contacts with low likelihood ratio
have a low normalized IF and contacts with high likeli-
hood ratio have a high normalized IF.

Removal of contacts with low contact likelihood ratio

The normalized contact matrices of individual chromo-
somes calculated from the data in (7) at the resolution
of 1MB (i.e. unit size is 1 M base pairs) are 95-100%
full of non-zero values, which means if chromosomes are
divided into regions of 1 MB, almost all the regions in a
chromosome have at least one contact with the other
regions. However, because the range between the
minimum and maximum interaction frequencies is large,
contacts with low interaction frequencies could be noisy or
less likely transient interactions due to the ‘dynamic’
property of chromosome structures, and thus could be
practically removed before constructing preferred 3D
structures. In fact, our method always tries to satisfy
contacts with high probabilities (likelihood ratio) first,
so considering contacts with low probabilities or not
does not influence structural models significantly. We
determined an IF cutoff value to remove potential noisy
or unlikely contacts based on a known feature of chromo-
some organization that larger chromosomes lie near the
nuclear periphery and small chromosomes (chromosomes
16, 17, 19, 20, 21 and 22) co-localize in the center of the
nucleus (7). According to this feature, there should be no
or few inter-chromosomal contacts between chromosomes
lying near the nucleus periphery and those lying in the
center of nucleus. However, in the raw Hi-C data in (7),
>95% inter-chromosomal region pairs are in contact
before filtering out noise (see Supplementary Table S1
for the percentage of region pairs in contact for all
chromosome pairs), suggesting chromosomes are
entangled together, which conflicts with the fact that
each chromosome largely occupies its own spatial territory
(7). Thus, we tested different IF cutoff thresholds and
chose a value that seemed to satisfy the feature the best.
The selected IF cutoff value on normalized interaction
frequencies is 0.66. The percentage of region pairs in
contact between all chromosome pairs and within each
chromosome after applying the threshold to remove
noise is shown in Supplementary Table S2. Interestingly,
this matrix shows that chromosome 18, which is a small
chromosome and is supposed to lie near the periphery, has
the higher percentage of contacts with chromosome 21
than chromosomes 16 and 17. Using this cutoff threshold,
we obtained intra-chromosomal contacts for each
chromosome. The percentages of intra-chromosomal
contacts of all the chromosomes are listed on the
diagonal of the matrix in Supplementary Table S2. We
observed that the percentages of intra-chromosomal
contacts of larger chromosomes (chromosomes 1-7) are
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relatively low, suggesting that larger chromosomes spread
wider than smaller chromosomes do.

Representation and construction of chromosome structures

To represent and build the 3D structure of a chromosome,
we divide its sequence into sub-regions of equal size. The
size of the region (e.g. 1 Mb) determines the granularity of
the structure. Larger the size, lower is the resolution. The
position of a region is represented by its midpoint with
three coordinates. The chromosome is then modeled as a
continuous piece-wise linear curve in the 3D space con-
necting the midpoints of all the regions together. Because
there were no sequence reads mapped to the centromeres
of chromosomes in the Hi-C data sets, the centromere
regions were not included into the model.

In a 3D model of a chromosome, two regions are
considered in contact if the Euclidean distance between
their midpoints is less than a distance threshold d,., and
pairs of these regions are called contacts. Otherwise, the
two regions are not considered in contact, and pairs of
these regions are called non-contacts. Our goal is then to
place the regions of a chromosome in the 3D space to
satisfy contacts and non-contacts observed in the
region—region contact map generated from Hi-C data
sets of the chromosome as much as possible, which is a
constrained spatial optimization problem (see Figure 1 for
an illustration of the optimization problem).

The goal of optimization is to make the distances
between region pairs in contact less than d, (contact
distance threshold) and the distances between non-
contact regions at least d.. We define an objective
function (Fn) of the distances of all pairs of regions to
achieve the goal as follows.

Fn = Z

contacts

()i —j # 1

>

non — contacts

(ig)li—j] #1

. Z (W . IF e tanh(da,zml'\. — df,) s tanh(dﬁ. — d,zm.n))
| 2

r . tanh (d,z, - dzmm)
Wy * tdnh(d[ — du) * N+ W) % T owllF

totallF totallF

(W3 tanh (B0~ ) s tanh(d - df)) )

o totallF™* ] totallF

Here dj; is the distance between midpoints of i’ and ;"
regions; totallF is the total IF of the chromosome; and
Nj = toft;}IF is the normalized IF between regions i and j
divided by total number of IF. Here d,,;, and d,,,,, are the
minimum and maximum distances between two regions,
respectively, da,,,. 1s the maximum distance between two
adjacent regions and IF,,,, is the maximum IF among all
pairs. Wy, W,, W5 and W, are chromosome-dependent ad-
justable parameters for maximizing the number of
satisfied contacts and non-contacts. tanh is the hyperbolic
tangent function. The coordinates of points in the initial
structure of a chromosome were randomly initialized in
the range (—0.5 to 0.5). We then maximized the objective
function by using steepest gradient ascent with the back-
tracking line search algorithm (13) to adjust the (X, y, z)
coordinates of chromosomal regions. (A video that
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Figure 1. The flowchart of constructing a chromosome model from
chromosomal contact data. Given an initial random structure of a
chromosome and the chromosomal contacts observed in the Hi-C
data, a computational optimization method is used to tweak the struc-
ture to maximize the observed contacts in the structure while reducing
false contacts according to an objective function.

demonstrates how the optimization process works is
available at http://www.youtube.
com/watch?v=C03R7A9kYcg).

The first term in formula (2) enforces the distance
constraints on contacts and also their minimum
distance, i.e. the objective function increases as the
distance between contacted regions gets smaller than d,
or larger than d,,;,. The second term enforces the con-
straints on non-contacts and their maximum distance,
i.e. the objective function increases as the distance
between non-contacted regions gets larger than d. or
becomes smaller than d,,,. The last term exerts forces
on the distance of two adjacent points to make them less
than da,,,, and greater than d,,;,,. We use tanh function to
smooth the difference between a distance and a distance
threshold. One benefit of using ranh function is that its
derivative can easily be calculated, which is desirable for
the gradient ascent-based optimization. N in the first
term weights the influence of a contact proportionally ac-
cording to its normalized IF, i.e. a contact with higher IF
contributes more to the value of the objective function.
Parameters W, W,,W5 and W, are weights assigned to
the components in the three terms.

Parameter estimation

To evaluate generated models, we defined a contact score
as the percentage of satisfied contacts over all contacts and
a non-contact score as the percentage of satisfied non-
contacts over all non-contacts in the Hi-C data sets. We
expect that in good models, both scores are high. It might
happen that one score is high while the other is low. But if
the two scores are balanced, both could be high.
Parameters W,,W,,W3 and W, in formula (2) are
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adjusted to balance and maximize both scores. Different
chromosomes may have different values for W,,W,, W;
and W,. To determine these values for chromosomes, we
tried different values around the average IF of the
chromosome. Generally, increasing W), W3, W,y will
increase non-contact score while decreasing contact score
and increasing W, will increase contact score while
decreasing non-contact score. Supplementary Table S3
lists the values of these four parameters used for all
chromosomes at 1 MB resolution.

The parameters d.,dyin,dpnax,damqe in formula (2) are
estimated from the fluorescent in situ hybridization
(FISH) chromosomal distance data in (14). The FISH
data contain spatial distances between some regions of
the human chromosomes at various genomic distances.
We used the spatial distance of regions at genomic
distance of ~1 MB to estimate d., dux,dmin and da,,,..
The minimum and maximum distances measured for
pairs of regions ~1MB away from ecach other were
used to approximate d,;, and da,.. We set
d,,,at0.2(um — micrometer) and da2,, atl.8(um) for all
chromosomes.

Theoretically, d,,,. (i.e. the maximum distance between
any two intra-chromosomal regions) could be equal to the
diameter of the nucleus. However, because a chromosome
folds into its own territory, d,,,, should be well below the
diameter of the nucleus. Because the maximum distance
measured in the FISH data is ~3.5(um), we set d,q to
4.5(um) for all chromosomes allowing some room of vari-
ation. During the modeling process, the value of d,,,. was
important only for large chromosomes (chromosomes 1—
7), where the percentage of intra-chromosomal contacts
was relatively low, while the models constructed for
other smaller chromosomes with the larger percentage of
contacts were not sensitive to d,;,, values >4.5(um).

We estimate d,. based on the average distance of pairs of
regions measured in the FISH data. At resolution of
1 MB, the percentage of intra-chromosomal contacts in
chromosome 11 is ~77%, which means that most of
region pairs are in contact. Thus, we tried to make the
average distance of all pairs in our generated models for
chromosome 11 approximately equal to the approximate
average distance of all pairs of regions measured in the
FISH data. We found that setting d, a little larger than the
approximate average distance could satisfy this require-
ment. Therefore, we set ¢ to 7.0(um) for chromosome
11 and all other chromosomes. We also observed that
our method is not sensitive to the fluctuation of d.
value. For instance, changing the range of ¢ within 1 U
of the current value did not affect generated structures
substantially. Figure 2 illustrates the structures of
chromosome 11 constructed at three difference contact
thresholds.

RESULTS

We validated chromosomal structural models using both
various scoring functions and known physical features of
human chromosomes such as the two-compartment
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Figure 2. The models for chromosome 11 constructed at different
contact threshold dg of 6pm (A), 7um (B) and 8um (C). The blue
part is the beginning of the chromosome and the red part is the end
of the chromosome.

feature (7). The evaluation protocol and results are
described later in the text.

Selection of a representative model from an ensemble of
models and the consistency checking of ensembles

For each chromosome, we generated an ensemble of 300
models. We used a clustering approach widely used in
protein model selection (15) to select a representative
model for each ensemble. We modified the protein struc-
ture comparison program TM-Score (16) to calculate the
structural similarity between every pair of chromosomal
models. Because the standard TM-Score was originally
designed to score protein structures with distance thresh-
olds used for calculating the percentage of aligned
residue—residue pairs that are too large to distinguish the
difference between chromosomal models, we lowered its
four thresholds from 4.0, 2.0, 1.0 and 0.5 to 2.0, 1.5, 1.0
and 0.5, respectively, to compute the average percentage
of pairs of regions whose distance is below these thresh-
olds after two chromosomal models are superimposed.
This average percentage called the global distance test—
high accuracy (GDT-HA) score according to the nomen-
clature of protein structure comparison (14) measures
what percentage of regions of two chromosome models
are superimposable, i.e. whose spatial positions are
similar to each other. We defined the distance between
two chromosomal models as the inverse of the GDT-HA
score between them. Using the K-medoids algorithm (17),
we identified the centroid model of the ensemble as its
representative model.

To gauge how similar models constructed in ensembles
for each chromosome are, we calculated average GDT-
HA score of all pairs of models in an ensemble to see
how different the structures are. This score is considered
as the pairwise similarity of models within an ensemble.
The blue bars in Figure 3 report the average similarity
scores of the models for all 23 chromosomes, respectively.
The average GDT-HA scores of all the chromosomes
except chromosomes 13 and 18 are >0.7, suggesting that
the models in an ensemble are similar despite different
initializations and optimization trajectories.

Closely comparing structural models in an ensemble, we
observed that most difference between models in an
ensemble comes from some parts in models that are the
mirror of each other. Figure 4 shows two models of
chromosome 1 that have some parts mirroring each
other, which cannot be distinguished by distance/contact
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Figure 3. The similarity scores measured as average GDT-HA scores. Y-axis denotes the similarity scores and X-axis the indices of chromosomes.
‘Blue bars’ represent the average GDT-HA scores of models within the same model ensemble constructed from the whole normalized data sets of the
normal B-cell for each chromosome, ‘red bars’ the average GDT-HA scores between models constructed from sampled data sets with those
constructed from the whole data sets and ‘green bars’ the average GDT-HA scores between models of the leukemia B-cell and those of the

normal B-cell.

Figure 4. (A) A structural model of chromosome 1; (B) a mirror struc-
ture of structure (A); and (C) The superimposition of the strucutre in
(A) and its mirror (B).

information alone. This is reasonable from the geometric
point of view, as they both satisfy the geometric con-
straints imposed.

Validation of models by various scoring measures

We evaluated the representative models of all the chromo-
somes by the percentage of contacts/non-contacts satisfied
at first. The results show that the representative models of
all the chromosomes satisfied at least 87% of contacts and
83% of non-contacts. Columns 2 and 3 of Table 1 show
the scores for all chromosomes.

We also observed that the contacts that were not
satisfied by the models were mostly those with lowest
interaction frequencies. Therefore, we investigated how
serious the violations for unsatisfied contacts and non-
contacts are. We calculated the average IF and the
average spatial distance of contact pairs that were not
satisfied (Table 1). Their average IF was small and the
average squared spatial distance was close to d.> (7um),
which indicates that the least likely contacts were not
satisfied and the distance violations were often not
serious. Similarly, we measured the average squared
spatial distance of unsatisfied non-contacts, which is

smaller than, but close to d.%, suggesting that the violation
of unsatisfied non-contact pairs was not serious either.
Table 1 reports the average squared distance of unsatisfied
contacts, average IF of unsatisfied contacts, the average
squared distance of unsatisfied non-contacts and average
IF of all contact pairs of all the chromosomes (for com-
parison purpose). Furthermore, we calculated the percent-
age of total IF that is satisfied, which is the sum of IFs of
satisfied contacts divided by the total IF (the last column
in Table 1). The percentage of satisfied IF for all the
chromosomes was always >95%, indicating the inter-
action frequencies in the Hi-C data were well preserved
in the models.

Validation of chromosomal models by the two-
compartment feature

It is known that the human chromosomes are partitioned
into two separated compartments (euchromatin and het-
erochromatin), where there are more intra-compartment
contacts than inter-compartment ones (7). To test whether
this feature exists in our chromosomal models, we first
performed the principal component analysis on the
chromosome contact maps to identify chromosomal
regions partitioned into two compartments, and then
highlighted the regions assigned to two compartments in
the models using two different colors (euchromatin in red
and heterochromatin in green). We found that the regions
in the same compartment were also spatially clustered
together in the models, and the two compartments
largely occupied separate spaces, although they might
not be completely separable. Figure 5 illustrates the two
compartments assigned according to contact maps in the
models of chromosomes 1 and 11. Regions in the same
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Table 1. The summary of the evaluation of 23 chromosome models
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Chromosome Contact Non-contact Average Average IF Average squared Average Percentage of

score score squared distance (unsatisfied distance IF satisfied IF

(%) (%) (unsatisfied contact pairs) (unsatisfied (%)

contact pairs) non-contact
(um?) pairs) (um’)

1 87 84 10.46 0.78 5.07 2.63 96.3
2 87 83 10.73 0.78 5.13 2.52 96.2
3 87 83 9.56 0.82 5.30 2.47 95.7
4 90 87 9.99 0.82 4.55 2.89 97.2
5 88 86 10.16 0.81 4.75 2.84 96.6
6 89 84 10.21 0.83 4.87 2.77 96.6
7 85 84 10.98 0.84 4.96 291 95.8
8 90 86 10.46 0.83 4.74 2.98 97.2
9 89 89 9.68 0.85 4.87 3.49 97.3
10 88 87 10.32 0.84 4.89 2.94 96.6
11 87 88 9.66 0.85 5.02 2.74 96.2
12 87 89 10.73 0.85 491 2.95 96.4
13 90 91 9.28 1.01 4.45 3.69 97.4
14 91 93 9.41 0.91 3.13 3.59 97.7
15 92 92 8.8 0.87 3.94 3.57 98.2
16 91 93 9.02 1.01 4.11 3.95 97.7
17 91 94 9.24 0.91 4.66 3.56 97.7
18 91 98 9.18 1.15 2.80 3.95 97.4
19 95 98 8.55 0.92 4.45 5.38 99.2
20 95 92 8.49 0.92 3.77 4.14 98.9
21 95 97 9.01 0.93 2.66 7.04 99.3
22 98 95 8.47 0.91 2.97 6.01 99.7
23 88 89 10.7 0.86 4.99 3.04 96.7

Columns 2-8 list the percentage of satisfied contacts, the percentage of satisfied non-contacts, the average squared distance of unsatisfied contact
pairs, the average IF of unsatisfied contact pairs, the average squared distance of unsatisfied non-contact pairs, the average IF of each chromosome
and the percentage of satisfied interaction frequencies for 23 chromosome models. The squared contact distance threshold is 7. The results show that
the average IF of unsatisfied contacts (column 5) is much smaller than the average IF in a chromosome (column 7).

Figure 5. Two compartments in chromosome | (A) and chromosome
11 (B) were identified by the principal component analysis on contact
maps and colored in different colors in the 3D models.

compartments tend to be close together, although they
may have larger genomic distances (i.e. number of base
pairs separating them). This confirms that genomic
regions or genes far away on the genome sequence may
spatially interact in the 3D space (5). Supplementary
Figure S2 visualizes the two compartments of all chromo-
somal models at 1 MB resolution.

Figure 6 shows average spatial distances and IFs of
pairs of regions at different genomic distances within the
same compartment and across/between compartments.
For chromosome 1, interaction frequencies in the hetero-
chromatin compartment are only slightly higher than

those in the euchromatin compartment, resulting in
shorter spatial distance in heterochromatin in the struc-
ture for only some region pairs. For chromosome 11,
interaction frequencies in the heterochromatin compart-
ment are substantially higher than those in the euchroma-
tin compartment for regions <10 MB genomic distance,
resulting in a much shorter spatial distance between
those regions in the structure.

Method robustness testing

To assess how well the reconstruction method can recover
the missing contacts not present in the input Hi-C data, we
randomly sampled 70% contacts while withholding the
other 30% contacts as non-contacts to make a new data
set for each chromosome. We shall call these data sets as
‘sampled datasets’ to distinguish them from the whole
data sets containing all observed contacts. We constructed
3D models for chromosomes using the sampled data sets
and counted how many (or percentage of) contacts among
30% withheld contacts were satisfied, which estimates the
percentage of unseen contacts that could be recovered in
the constructed model. The percentage of contacts that are
recovered is in the range of 53-86%, suggesting that our
reconstruction protocol can predict unseen contacts rea-
sonably well. We also calculated the average GDT-HA
score (i.e. similarity score) between the models of each
chromosome constructed from the sampled data set with
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Figure 6. Average of spatial distances and IFs of region pairs within and across (between) compartments in chromosomes 1 and 11. Red: region
pairs in heterochromatin compartment; green: region pairs in euchromatin compartment; and blue: region pairs across/between two compartments.
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Figure 7. The percentage of recovered contacts in all chromosomes.

that of the models generated from the whole data set.
The average GDT-HA scores were relatively high (see
red bars in Figure 3) and close to the similarity scores of
the models in the same ensemble constructed from the
whole data set for each chromosome, indicating our
method is robust against the missing contacts. The per-
centages of recovered contacts are shown in Figure 7. It is
interesting that higher percentages of contacts in the larger
chromosomes tended to be recovered than in the smaller
chromosomes.

We further checked the recovered contacts in details
and observed that recovered contacts were the ones with
higher IF and the ones that were not recovered had lower

— Missing Contacts
---- Recovered Contacts

—— Missing Contacts
---- Recovered Contacts

10 20 30 40 50 60

T
. ,@m@wmom @

Interaction Frequency
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| 1 1
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0
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Figure 8. The superimposition of the plots of IFs of all missing
contacts and the plots of IFs of recovered contacts for chromosome
1 (left) and chromosome 11 (right). Y-axis denotes interaction
frequencies and X-axis the indices of contacts. The green tails visualized
the contacts that were not recovered and had lower IFs.

IF. This suggests that stronger interactions were more
likely recovered. We sorted all IFs of the 30% withheld
contacts and all IFs of truly recovered contacts in des-
cending order for chromosomes 1 and 11, which are
plotted and superimposed in Figure 8. Supplementary
Figure S1 shows the plots for all chromosomes. It is
shown that the missing contacts (green) with high IFs
overlapped well with the recovered contacts (red).
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Figure 9. The scores of chromosomal structures at 200 KB resolution for chromosomes 1-23.

Comparison of models constructed at 200 KB with
those at 1 MB

In addition to 1 MB base pair resolution, we tested our
method at the higher resolution—200KB base pairs.
At resolution of 200KB, our method can construct
chromosome models when the percentages of contacts
are in range (19% to 65%). We used the IF cutoff value
of 2.0 to remove potentially noisy contacts after normal-
ization. The distance thresholds used in formula (2) at
200 KB resolution were derived using the same approach
as previously at 1MB resolution. However, because
the percentage of contacts at 200 KB resolution is not
as high as the percentage of contacts at 1 MB resolution,
d. should be set at a value lower than the average distance
measured at 1 MB. Furthermore, the value of d. should
make structures at 200 KB resolutions consistent with
structures at 1 MB resolution. We tried different values
and found that setting ¢ at 4.5 um satisfied this require-
ment. Because of the limitation of distance measurements
for pairs of loci at ~200KB apart, d,,;, and da,,, are
subjectively set at some values lower than the correspond-
ing values at 1 MB resolution. Specifically, @2, is set to
0.02 um, da2, to 1.0 um and &>, to 20 um that is
the same as that at 1 MB resolution. Given this setting,
we adjusted W,,W,,W3 and W, to get higher contact
and non-contact scores, with more emphasis on con-
tact scores, as the percentage of contacts at this
resolution is low. Supplementary Table S4 reports the
values of these four parameters for all chromosomes.
Figure 9 shows contact and non-contact scores for all
chromosomes.

We also evaluated the models with the two-compart-
ment feature as we did for the models at 1 MB. We
observed that the two compartments of all chromosomal
models are separable. Figure 10 illustrates the two
separated compartments of the models for chromosomes
1 and 11. Supplementary Figure S4 illustrates the two
compartments of the models at 200 KB for all 23 pairs
of chromosomes.

Finally, we compared the models of the same chromo-
some constructed at two different resolutions (1 MB and
200 KB). The comparison showed that models for the
same chromosome at the two resolutions are consistent.
Given a model at resolution of 200 KB, there is always a
model in the corresponding ensemble at resolution of

Figure 10. Two compartments in the models of chromosomes 1 (A)
and 11 (B) at resolution of 200 KB. Red denotes the euchromatin com-
partment and green the heterochromatin compartment.

Figure 11. The models of chromosome 1 at resolution of 200 K (A)
and at resolution of 1 MB (B).

1 MB sharing the same shape, demonstrating that our
method is robust against the change of resolutions.
Figures 11 and 12 illustrate the similarity of models of
chromosomes 1 and 11 at the two resolutions.
Supplementary Figure S3 compares the models at
200 KB and 1 MB side by side for all chromosomes. We
found that by adjusting parameters W1,W2 W3 and d,,
our method could always generate models at higher reso-
lution (e.g. 200 KB) when the percentage of contacts is
usually low, which are consistent with models at lower
resolutions (e.g. 1 MB). This is interesting because we
could use models at low resolutions to guide the
construction of models at higher resolutions.
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Figure 12. The model of chromosome 11 at resolution of 1 MB (A) and
at resolution of 200 KB (B).

. Chromosome 1 Chromosome 11

Figure 13. The illustration of two compartments in the models of
chromosomes | and 11 of the leukemia B-cell.

Comparison of models constructed from the Hi-C data of
the normal B-cell and the leukemia B-cell

We also tested our method on the Hi-C data of the leu-
kemia B-cell obtained from (10). Because of the lack of
FISH measurements for the leukemia B-cell, we had to use
the same distance thresholds as those of the normal B-cell
data, assuming that distance thresholds for the leukemia
B-cell should not be different from those of the normal
B-cell and that our method could tolerate some deviations
in these distance thresholds. We used the same method
used on the normal B-cell data to determine the IF
cutoff value to remove potentially noisy contacts in the
leukemia B-cell data. In the leukemia B-cell data, small
chromosomes still have more interactions with each other
than large chromosomes, but there are some unusual
dense contacts between large chromosomes or between
a small chromosome and a large chromosome, which
might be due to chromosomal translocations (10). Thus,
we used the IF cutoff value of 0.5, which is smaller than
that for the normal B-cell, but appears to reflect inter-
actions between chromosomes in the leukemia B-cell
data well.

After generating models, we evaluated them using the
two-compartment feature. Figure 13 shows the two
compartments in different colors of the models of
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Figure 14. The models of chromosome 1 in the leukemia B-cell and the
normal B-cell. The global topology of the two models is similar; even
the models were constructed from two Hi-C data sets of two different
B-cells collected by two research groups independently.

Leukemia B-Cell
Normal B-Cell

Figure 15. The models of chromosome 11 in the leukaemia B-cell and
the normal B-cell. The global topology of the two models is similar;
even the models were constructed from two Hi-C data sets of two
different B-cells collected by two research groups independently.

chromosomes 1 and 11. Supplementary Figure S5 visual-
izes the two compartments of all chromosomal models in
the leukemia B-cell. We observed that in the leukemia
B-cell, the regions in the same compartment were also
spatially clustered together and the two compartments
occupied mostly separate spaces, although they might
not be completely separable.

Next, we compared the models of the normal B-cell with
those of the leukemia B-cell. Figures 14 and 15 show the
models of chromosomes 1 and 11 in the leukemia B-cell
and the normal B-cell, respectively, side by side. We
observed that the global topologies of the models of all
chromosomes of the two cells had substantial similarity,
even though there might be significant difference at
specific loci.

To compare the models of the two cells quantitatively,
we calculated the average GDT-HA score between the
models of the leukemia B-cell with the models of the
normal B-cell for each chromosome. The scores range
from 0.51 to 0.68 (see green bars in Figure 3). On one
hand, these scores are lower than the corresponding
average GDT-HA score of the models of the same
chromosome of the same normal B-cell (see the blue
bars in Figure 3), indicating there is some difference in
the conformations of the chromosomes in the healthy
and malignant B-cells; on the other hand, the scores are
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Figure 16. The contact scores and non-contact scores of the chromosomal models of the leukemia B-cell.

high enough, suggesting some similarity and conservation
of chromosomal conformations in the two related human
cells. Figure 16 reports contact and non-contact scores of
the models for all chromosomes of the leukemia B-cell.

From the comparison of the chromosomal models of
the leukemia B-cell and the normal B-cell, we also found
that many local chromosomal regions that were densely
packaged in the models of the normal B-cell were less
densely packaged in the corresponding models of the leu-
kemia B-cell, which might be associated with the genome-
wide hypomethylation in the cancer cell (18,19).
Furthermore, for both the normal and leukemia B-cells,
there were many densely packaged regions in large
chromosomes, but just a few in small chromosomes,
which is consistent with the fact that regions in small
chromosomes have more interactions with each other
than in large chromosomes.

DISCUSSION

We presented an optimization method to construct
preferred 3D structural models for human chromosomes
by directly satisfying the chromosomal contacts obtained
from the Hi-C data sets, which is different from other
distance-based  chromosome  model  construction
methods. The gradient descent optimization process was
guided by a novel parameterized objective function. The
experiments demonstrate that the models constructed by
the method satisfy chromosomal contacts well. The
chromosomal models were further validated by the two-
compartment feature of human chromosomes. The experi-
ments also showed that the method could recover unseen
contacts with higher IF and was also robust against some
parameter values and the incompleteness of contact
information.

Moreover, our method can be used to effectively
generate structures at different resolutions as long as
there is the sufficient number of contacts. The models con-
structed at resolution of 200 KB and at resolution of 1 MB
were consistent, suggesting the effectiveness of the
method. Furthermore, we compared the models con-
structed from both the healthy and cancerous B-cells,
which illustrated both the possible variation and conser-
vation in the conformations of chromosomes in the two
cells. We believe, as one of the first predicted 3D structures

of human chromosomes, our models are valuable for
studying human chromosome organization and its effect
on cell development, cell differentiation and gene regula-
tion. In the future, we hope to generate some FISH meas-
urements of chromosomal distances to further validate the
chromosomal models constructed by our method and cali-
brate the parameters in the objective function. We also
plan to construct the 3D model of the whole human
genome by progressively docking chromosomal models
together.
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