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There are many examples in clinical nutrition with individuals responding differently to a dietary intervention. Here, personalized
nutritional recommendations could be targeted, tailoring interventions to address plurality in response. For this, we reconsidered two
randomized controlled trials investigating whether two different supplementation doses of cholecalciferol resulted in an increased
serum 25(OH)D concentration. Three different statistical methods were applied in order to identify participants who would enjoy an
increased benefit from receiving a specific dose of cholecalciferol. We concluded that, for individuals with high baseline serum 25(OH)D
concentrations, only the high supplementation dose will lead to a substantial increase in the serum 25(OH)D concentration. The
presented statistical methods can be adequately used for more individualized approaches.
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INTRODUCTION
Dietary interventions may easily lead to differential responses. In
fact, a great heterogeneity in absorption, metabolism and
excretion of nutrients [1] and in response to different dietary
interventions has already been established and largely documen-
ted in the literature. To give just a few examples, heterogeneity in
weight loss [2], in postprandial glycaemia [3], or in stimulation
after caffeine intake [4] were observed. Specifically, the efficacy of
a dietary intervention may vary from participant to participant. In
fact, many characteristics of the individual participants may play a
decisive role in their response to a dietary intervention. Such
characteristics can be tentatively summarized in so called
“metabotypes” [5], defined as individual metabolic states reflect-
ing what has been encoded by the genome, and modified by diet,
environmental factors, and the gut microbiome, as quantifiable
readouts of the biochemical state, that can span from normal
physiology to diverse pathophysiologies.
The standard statistical analyses of randomized trials planned

for comparing different dietary interventions typically evaluate the
average effect, i.e., an average effect calculated for the study
population receiving a certain dietary intervention. In conse-
quence, by taking the average, a possible outcome of such
analyses may be that no differences are found between two
interventions. However, even if no differences on average could
be established, a great variability between participant responses
to interventions may still be present, but this often remains
unexplored (see reference [1 and 2] and [2], for instance). Are we
satisfied with the statement that there are no differences on
average between these interventions even though some indivi-
duals could benefit more than others? Conversely: can a dietary
recommendation be really given, which is deemed to be effective
on average, if it is clear that a subgroup of individuals will not
benefit from it at all? The answer to both questions is no. In fact,

the field of personalized nutrition has been put forward for
addressing this type of questions. Specifically, one of the aims of
personalized nutrition is to address plurality in intervention
responses using individualized information, to deliver nutritional
recommendations that are expected to be more suitable and
effective than generic recommendations [6]. Related to the
concept of personalized nutrition, the concept of precision
nutrition is likewise widely used in the literature, but to date
there is no universal consensus on the definitions of these terms.
In practice, we will use the abbreviation PN for both terms and
assume the definitions given by Ordovas et al. [7] throughout this
article. Two large studies conducted in a PN context are
noteworthy, namely the Food4Me [8] and the PREDICT 1 [3]
studies within the PREDICT program.
One further path of PN is represented by the so called outcome-

based approaches as described in Ferrario et al. [9]. Here, the initial
step consists of re-using existing data documenting heterogeneity
in response to interventions, while the aim is to achieve an
improvement in a pre-specified outcome by preferring one dietary
intervention over others, according to some specific individual
characteristics of individuals. Since individualized information is
involved in order to ultimately be able to provide differential
nutritional recommendations, these approaches could be used to
develop criteria for a potential personalized nutrition. In this
paper, we are going to show how outcome-based approaches can
provide insights regarding differential individual nutritional
benefits. We will use vitamin D supplementation as example.
Specifically, we revisited a completed randomized controlled

trial (RCT) covering vitamin D supplementation that explored the
safety and efficacy of supplementation with two different doses of
cholecalciferol [10]. Supplementation by the two doses was found
to be effective on average over time; however, this does not mean
that they were equally beneficial for all participants. In fact, the
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high variance in the serum vitamin D (25(OH)D) levels, especially
after the intervention with the higher dose, suggests that some
participants may benefit more and others less.
To scrutinize this assumption, i.e., in order to identify

participants who would benefit more from a specific supplemen-
tation with vitamin D, we employed three statistical methods: an
initial classical subgroup analysis, similar to that often used in
medical research [11], a method based on interaction terms with a
quantitative baseline covariates, previously applied to weight loss
studies (Ritz et al. [2] and Hjorth et al. [12]), and a more general
method allowing for nonlinearity in the covariates, originally
developed in the context of personalized medicine
(Matsouaka et al. [13]).

METHODS
Reconsidering data from a randomized controlled trial (RCT)
We reconsidered the study by Steenhoff et al. [10], a RCT carried
out in 2012 in Gaborone, Botswana. The goal of this study was to
investigate whether two different supplementation doses of
cholecalciferol (4000 IU/day vs. 7000 IU/day) would safely result
in an increased serum 25(OH)D concentration. Serum 25(OH)D
concentrations were measured at baseline, after 6 and after
12 weeks of intervention. Specifically, this RCT was designed as
pilot, double blind study, with randomized parallel assignment to
two possible interventions (i.e., as between-groups design) and in
conjunction with repeated measurements at three time points
(also known as within-subject design). Moreover, the study
examined other parameters linked to the intervention (like HIV-
specific anti-retroviral therapy since the recruited patients had
HIV), but these are not the focus of this work.

Statistical analysis
Preliminary analysis: subgroup analysis and linear mixed models.
Baseline characteristics of the participants and serum 25(OH)D
concentrations were summarized using means ± standard devia-
tions. 60 children and adults living in Botswana were included,
aged between 5.0 and 50.9 years (with average age of 19.5 ± 11.8,
50% male) [10]. 30 participants orally consumed 4000 IU/day of
cholecalciferol for twelve weeks as standard intervention, and 30
participants took 7000 IU/day, as experimental intervention
(thereof 29 completed the trial).
To investigate the heterogeneity in the response of the

participants to the intervention, a subgroup analysis was carried
out, estimating intervention effects within subgroups [11]. Specifi-
cally, the subgroups of participants were determined according to
their baseline serum 25(OH)D concentrations: a post-hoc cut-off for
serum 25(OH)D 30 ng/ml was used, resulting in two subgroups. In
fact, the value of 30 ng/ml was chosen as the minimum serum
25(OH)D concentration for serum sufficiency, as documented in
Maretzke et al. [14]. Subsequently, two separate regression models
for the two subgroups were fitted to assess intervention effects for
participants starting or not with serum 25(OH)D sufficiency.
Significance level was set at 0.05/2= 0.025, using a Bonferroni
correction that reflected the number of subgroups.
To investigate the intervention effect and change over time in

serum 25(OH)D concentration, a linear mixed effect model for serum
25(OH)D concentration was fitted depending on dose, time, and
baseline 25(OH)D concentration as a covariate. Moreover, the
models also included relevant covariate adjustments: age, sex as
fixed effects and participant-specific random intercept effects. Most
importantly, models included also body weight as an additional
covariate; in fact, serum 25(OH)D concentration is known to vary
conditionally to total body fat mass and to be poor in obese
individuals, as discussed by [15].

Parametric prediction models for estimation of individualized
intervention effects. To further investigate intervention outcome

by the two doses, predictions of the change in serum 25(OH)D
concentration after intervention (i.e., of the difference between
the serum 25(OH)D concentration at week 12 and at week 0) were
generated conditional to dose, time, baseline separated for low
and high supplementation dose.
Furthermore, to investigate the intervention outcome by the

two doses and among different levels of baseline variables, i.e., to
assess a possible modulation of the supplementation effect by
baseline characteristics, we considered linear mixed models with
baseline covariate-intervention interaction terms.
Specifically, a linear mixed model for the serum 25(OH)D

concentration was fitted considering (i) participant-specific ran-
dom effects (ii) baseline serum 25(OH)D concentration (iii)
interaction term between baseline serum 25(OH)D concentration
and a categorial variable combining the two time points (after 6
and after 12 weeks intervention) and the two supplementation
doses iv) sex, age, and body weight as adjusting covariates.
Using mathematical notation, we started by general multiple

linear regression models for the serum 25(OH)D concentration in
the two intervention groups, k= 1 or =2, (k= 1 standard
intervention, k= 2 experimental intervention, as defined in
Preliminary analysis: subgroup analysis and linear mixed models)

Yk ¼ Xkβk þ εk ¼ mk xð Þ þ εk; k ¼ 1 _ 2 (1)

Then, the focus was on the difference

m2ðx; β̂2Þ �m1ðx; β̂1Þ (2)

where m1ðX; β̂1Þ and m2ðX; β̂2Þwere the two multiple linear
regressions within each intervention group, k= 1v2, respectively,
with parameter estimates β̂1 and β̂2.
Specifically, the difference between the estimated parameters

representing the model intercepts by the two supplementation
doses (at week 12) were considered. Moreover, the difference
between the estimated coefficients representing the model slopes
by the two supplementations (again at week 12) were considered.
The sum of these differences quantified the average net gain in
the 25(OH)D concentration for preferring one dose over the other.
Finally, confidence intervals were constructed for the predicted
values via the delta-method.
A further, analogous linear mixed model was fitted conditionally

to both baseline 25(OH)D concentration and age (here, consider-
ing one more slope term), generalizing the method previously
described in [12] and [2].

Semi-parametric prediction models for estimation of individualized
intervention effects. Linear models, as the ones described in Semi-
parametric prediction models for estimation of individualized
intervention effects, are on one hand “simplifying”, but at the
expense of imposing the assumption of a “linear shape”. To
overcome this strong assumption, nonparametric approaches can
be adopted, in order to achieve flexibility in the estimation.
Following a two-step procedure as in Matsouaka et al. [13], we

added a non-parametric step to the fitted parametric regression
line described in Parametric prediction models for estimation of
individualized intervention effects. This results in a semi-parametric,
robust approach accounting for possible model misspecification
by the parametric step.
Specifically, the non-parametric step consisted of an estimation

of the parameters obtained by the parametric fit with the help of
different local averaging techniques. This localization is achieved
via a weighting function or general kernel k(t0, t1), which assigns a
weight to t1 based on its distance from t0, depending on the
bandwidth hn, giving the width of the neighborhood.
We adopted and compared kernel weights and local regression

approaches (here with bandwidth as smoothing parameter hn set
to 0.6 or to 0.8). In this way, the net gain in the 25(OH)D
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concentration for preferring one dose over the other was
estimated semi-parametrically. This means that each regression
function in [2] were estimated by

mk xð Þ ¼
Xn

i¼1

Wi xð ÞY

for k = 1v2, with following weights Wi

Wi x; X1; ¼ ; Xnð Þ ¼
k x�Xi

hn

� �

Pn
i¼1 k

x�Xi
hn

� �

where k() may be the Nadaraya-Watson Kernel [13].

RESULTS
Comparing intervention effects and heterogeneity in
response
The individuals were 50% male, aged 19.5 ± 11.8 years and
weighing 58.3 ± 13.9 kg. The intervention by the two doses of
cholecalciferol resulted in a change in the serum 25(OH)D
concentration. Specifically, the serum 25(OH)D concentrations (in
ng/ml) were 36.5 ± 9.3 before and 54.8 ± 13.0 after the standard
intervention. For the experimental intervention, serum 25(OH)D
values were 34.5 ± 9.5 before and 56.5 ± 22.4 after the twelve
weeks. With the fitted linear mixed effect model for serum 25(OH)D
concentration as described in Preliminary analysis: subgroup analysis
and linear mixed models, no significant difference between the two
supplementation doses could be shown (estimated difference
equal to 5.29 ng/ml [95% CI: −2.09, −12.67]; p= 0.175), i.e., no
difference in average could be found on induced change in the
level of serum 25(OH)D after supplementation by 4000 IU/day or
7000 IU/day, having included baseline, sex, age, and body weight as
covariates. Moreover, we were able to observe an inversely
significantly effect of body weight on serum 25(OH)D concentra-
tion. Specifically, we obtained an estimated effect equal to−0.45 ng
of 25(OH)D/ml per kg body weight ([95% CI: −0.73, −0.17]; p=
0.002). In addition, a great variability between participants’ response

was observed. Specifically, the difference between the maximum
and minimum serum 25(OH)D value was equal to 100 ng/ml at the
end of the experimental and equal to 54 ng/ml at the end of the
standard invention, respectively, and the standard deviations equal
to 22.4 and 13.0, respectively, which gives an indication of
heterogeneity in response to the intervention between the
participants (compare also the second line in Table 1, Supplemen-
tary Materials).

Stratifying individuals by subgroup analysis
For the participant group with baseline serum concentrations smaller
than 30 ng/ml, the estimated difference between the two interven-
tions was equal to−2.23 ([97.5% CI:−22.11, 17.75]; p= 0.829), i.e., no
statistically significantly difference between the two interventions
could be shown. Thus, no resulting difference was observed
between the two interventions overall for all participants as well as
within this subgroup. On the other hand, i.e., for the group with
baseline serum concentrations greater than 30 ng/ml, the estimated
difference between the two interventions was equal to 8.46 ([97.5%
CI: −0.49, 17.41]; p= 0.043) respectively. Hence, no significant
differences were observed between the two interventions (after
Bonferroni correction). However, the heterogeneity in response
remained unexplained and may be further investigated.

Estimating the net gain in serum concentration for one
intervention over the other (parametrically)
Predictions of the difference between the serum 25(OH)D level at
week 12 and at week 0 were generated with respect to the
baseline, separated for low and high supplementation doses and
visualized at once (Fig. 1, left-hand side).
By the parametric model (as described in Parametric prediction

models for estimation of individualized intervention effects) a
higher effectiveness of supplementation of 7000 IU/day
than of 4000 IU/day was predicted for higher baseline serum
25(OH)D concentrations. For instance, for a baseline value equal
40.5 ng/ml the estimated net gain was equal to 8.60 with a 95%
confidence interval equal to [0.02, 17.17] (i.e., not containing the
zero). This could mean that an individual having a baseline

Fig. 1 Parametric fits. The dashed, decreasing line visualizes prediction of serum change to baseline after supplementation of 4000 IU/day;
the solid, increasing line the prediction of serum change to baseline after supplementation of 7000 IU/day, with marginal confidence bands,
respectively. Right-hand side: Fitted regression line with 95% confidence band by the parametric model with interaction term for the serum
25(OH)D concentration conditional to the baseline. White background for confidence band not crossing the zero.
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concentration of 40.5 ng/ml needs to receive the higher
supplementation of 7000 IU/day to considerably increase the
serum 25(OH)D concentration.
The fitted regression line with 95% confidence band for the

serum 25(OH)D concentration is visualized with respect to the
baseline (Fig. 1, right-hand side): the fitted regression line with
confidence band on the white background corresponds to baseline
values higher than 40.5 ng/ml. Here, the net gain in serum 25(OH)D
concentration by supplementation of 7000 IU/day over supple-
mentation of 4000 IU/day is significantly different from zero and
becomes positive. Further details of the estimated parameters and
confidence intervals can be found in the Supplementary Materials
(Table 2). Furthermore, using the fitted model considering both
baseline concentration and age as predictors, higher effectiveness
of supplementation of 7000 IU/day than of 4000 IU/day was
predicted for higher baseline serum 25(OH)D levels, and this
irrespective of individuals’ age. This would mean that knowing the
age of a participant would not support the decision of
supplementation by the higher dose over the smaller dose.
However, since the considered RCT had a restricted number of
participants who were relatively young (average age of 19.5), and
considering children and adults concomitantly, representativeness
of human’s age is lacking and therefore any statement about age as
predictor at this point lacks generality.

Estimating the net gain in serum concentration for one
intervention over the other (semi-parametrically)
By adding a non-parametric step (as described in Semi-parametric
prediction models for estimation of individualized intervention
effects), prediction in serum 25(OH)D concentration is no longer
linear; predicted serum concentration is visualized at week 12
conditional to the differences calculated by the parametric step,
separated for low and high supplementation doses; both
predictions are visualized simultaneously: the dashed line
visualizes semi-parametric prediction of serum 25(OH)D concen-
tration after supplementation of 4000 IU/day; the solid line the
semi-parametric prediction of serum 25(OH)D concentration after
supplementation of 7000 IU/day respectively (Fig. 2, left-hand
side). Moreover, semi-parametric estimation of the net gain in the

25(OH)D concentration for preferring one dose over the other is
visualized concomitantly with the linear regression line (with 95%
confidence band) by the parametric model (Fig. 2, right-hand
side). Qualitatively, it could be said that both estimates, i.e., by
imposing the linear form or renouncing to this assumption, give
comparable results. Considering the description of outcome-
based approaches (Ferrario et al. [9]), the semi-parametric model
could be addressed as well as outcome-based approaches, useful
in personalized nutrition context.

Replicability of the findings in a further randomized
controlled trial (RCT) as external, independent dataset
In order to check for replicability of the findings, we consider a
further, independent dataset: we reconsidered the study by [16],
carried out in 2013 in Finland.

Study design
This study aimed to investigate effects of vitamin D supplementa-
tion, by a three-armed trial over 20 weeks. The three intervention
groups were: placebo, supplementation of 1600 IU/day vitamin D
(which corresponds to 40 µg/day, as given in [16]), and supple-
mentation of 3.200 IU/day (in [16]: 80 µg/day). The design of this
study was therefore a purely between-groups design. The focus of
this study was on the effect of vitamin D3 supplementation on
glucose metabolism. For this, 71 pre-diabetic individuals were
recruited, above the age of 60, both male and female, exhibiting
evidence of disturbed glucose homeostasis but no type 2 diabetes,
and with a body mass index between 25 and 35. An additional
inclusion criterion was a baseline serum 25(OH)D concentration of
below 30.4 ng/ml (in [16] as 75 nmol/L), measured from venous
blood samples.
Unlike in the article [16] where the vitamin D dosage are given

in µg/day, we convert them here in IU/day so that they are
presented consistently throughout this article (one µg/day
corresponds to 40 IU/day). Moreover, unlike in the article [16]
where the concentrations are given in nmol/L, we convert them
here in ng/ml so that they are presented consistently throughout
this article, too (conversion of the nmol/L concentrations in to
ng/ml concentrations dividing by 2.5).

Fig. 2 Semi-parametric fits. Left-hand side: Semi-parametric fit conditional to the differences estimated parametrically: dashed line for
standard intervention (4000 IU/day); solid line for experimental intervention (7000 IU/day). Right-hand side: Fitted regression line with 95%
confidence band by a parametric model (as in Fig. 1) as well as fit by the semiparametric model.
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Modified design and statistical analysis
In the present study, we focused on the sub-group of 49
participants of the above-described cohort that received one of
the two doses of vitamin D, i.e., we did not consider the 22
participants of the placebo group. Thereby, 25 participants who
took orally 1600 IU/day of Vitamin D for five months are
considered as receiving the standard intervention, and 24
participants who took 3200 IU/day as receiving the experimental
intervention. Moreover, we included only individuals for whom
serum 25(OH)D concentrations were available from both the start
and the end of the trial.
Also in this dataset, baseline characteristics of the participants

and serum 25(OH)D concentrations were summarized using
means ± standard deviations. Since only participants with baseline
serum 25(OH)D concentration of below 30.4 ng/ml were admitted
according to the inclusion criterion, a corresponding subgroup
analysis as described in Preliminary analysis: subgroup analysis and
linear mixed models with a post-hoc cut-off for serum 25(OH)D
30 ng/ml cannot be performed. To investigate the intervention
effect and change in serum 25(OH)D concentration, a linear mixed
effect model for serum 25(OH)D concentration was fitted
depending on dose and baseline as covariate. Moreover, the
models also included relevant covariate adjustments: age, sex and
BMI (BMI since body weight was not available in this dataset).
To further assess outcome modulation by the two doses and

among different levels of baseline variables, we considered
prediction models as described in Parametric prediction models
for estimation of individualized intervention effects, calculating the
net gain in the 25(OH)D concentration for preferring one dose
over the other and testing for significant difference.

RESULTS
The individuals were 86% male, aged 66.3 ± 4.9 years and with BMI
29.1 ± 2.9. The intervention by the two doses of vitamin D resulted
in a change in the serum 25(OH)D concentration. Specifically, the
serum 25(OH)D concentrations 23.6 ± 3.04 before and 34.28 ±
6.24 ng/ml after the standard intervention. For the experimental
intervention, serum 25(OH)D values were 23.12 ± 4.12 before and
41.08 ± 9.26 after the 20 weeks. As in [16], we saw a difference in
males and females with regard to serum 25(OH)D concentration.
According to the parametric model (as described in Parametric

prediction models for estimation of individualized intervention
effects), higher efficacy of supplementation by 3200 IU/day than
by 1600 IU/day was predicted for higher baseline serum 25(OH)D
concentrations. For instance, for a baseline value equal 20 ng/ml
the estimated net gain was equal to 5.44 with a 95% confidence
interval equal to [0.036, 10.836] (i.e., not containing the zero).
This could mean that an individual having a baseline concentra-
tion of 20 ng/ml needs to receive the higher supplementation of
3200 IU/day to considerably increase the serum 25(OH)D concen-
tration to the end of supplementation. Further details of the
estimated parameters and confidence intervals can be found in
the Supplementary Materials (Table 3).

DISCUSSION AND CONCLUSIONS
Through re-evaluation of publicly available data, we have shown
how outcome-based approaches [9] may be used to retrieve
additional insights useful in a PN context.
In fact, we found that baseline serum 25(OH)D concentrations

could predict serum 25(OH)D concentrations after intervention.
Specifically, for individuals starting with higher baseline concen-
trations, the intervention by the higher dose could be required in
order to reach a further increment. This finding was consistently
observed in both analysed datasets. In fact, in the first dataset we
observed that an individual having a baseline concentration
of 40.5 ng/ml needs to receive the higher supplementation of

7000 IU/day to considerably increase the serum 25(OH)D
concentration. In the second dataset we observed that an
individual having a baseline concentration of 20 ng/ml needs to
receive the higher supplementation of 3200 IU/day to consider-
ably increase the serum 25(OH)D concentration. These findings
are also consistent with a general S-shaped intake-response curve
for a nutrient (compare for instance Heaney [10], Fig. 1).
Concomitantly, these results are obtained under the assumption
that a higher serum 25(OH)D concentration is always beneficial,
i.e., a higher value is more advantageous than a lower value. In this
form, these findings may help to understand the mechanism and
the efficacy of a supplementation. In practice, compliance with the
Recommended Dietary Allowances will also play a role in deciding
whether supplementation is necessary at all.
Moreover, we have observed an inverse association between

serum 25(OH)D concentration and body weight. While the
presented statistical analyses confirm the inverse association
between serum 25(OH)D concentration levels and anthropometric
measures of body size (such as body weight), which is already
documented in the literature [15], the mixed age population limits
generalizability of these results and further studies would be
necessary. In the further dataset we have observed a gender
effect, but again of limited generalizability due to the unbalanced
design by gender of the second dataset and the very small female
population.
Also, body weight could be used as a predictor for the net gain

of choosing one intervention over the other and further studies
could add insights if a volumetric dilution or sequestration were to
blunt the effect of higher doses.
The data under analysis were not collected to answer the

present research question; this resulting secondary analysis ended
with a relatively low sample size in the first subgroup of
individuals with baseline serum concentrations below 30 ng/ml,
whereby findings may be sensitive to few individuals and lack
generalizability. Further studies are needed, possibly with larger
sample sizes.
The study participants underwent “classical”, standardized

interventions. The manuscript does not deal with a personalized
intervention, rather it deals with estimation of individualized
responses to classical interventions in order to develop criteria for
a potential, future personalized intervention. The final aim will be
to effectively tailor supplementation strategies by incorporating
individual level predictor information. But prior to adopting any
concentration threshold in practice, it is crucial to evaluate its
value in improving the desired outcomes.
Concerning the statistical methods, while a subgroup analysis

shows some shortcomings focusing on mean outcomes and using
pre-defined cutting values, the new parametric and semipara-
metric models do not show these shortcomings, estimating truly
individualized intervention effects. Showing the results by a
subgroup analysis and by the prediction models allows to better
appreciate the added value of using the newer and more targeted
approaches.
It would be meaningful to include a greater number of

predictors, beyond baseline concentration, age or body weight.
However, as the number of predictors increases, the data becomes
sparser. One well known related issue is the so-called curse of
dimensionality. As a result, it will take a much larger number of
individuals to draw conclusions [7]. Moreover, an increased
number of predictors, also with respect to the sample size, could
result in overfitting in the prediction modeling. For this scenario,
shrinkage strategies could be adopted in the semi-parametric
model, in order to reduce the problem of overfitting [17].
Conversely, we want to underline that a covariate known as

highly significant in regression modeling and therefore well-
known in the literature to be related with the outcome of interest,
may not result in large improvements in prediction and therefore
may not be a good predictor candidate [7].
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The presented parametric and semi-parametric prediction models
as generalized regression models are methods of supervised
machine learning. As is well known in the machine learning
literature, it would be important to gauge the predictive capability
in a test dataset, i.e., through evaluation of the “learned model” by
individuals who were not part of the training dataset used for fitting
the original model. This can be done by employing and implement-
ing so-called cross-validation techniques. This remains in this case
open and could be further explored. Closely related to the predictive
capability of the presented models, their generalization performance
should be again evaluated, using a validation dataset [17].
In principle, similar results can be derived for other micronu-

trients and for other outcomes of interest. In fact, the proposed
approaches can be directly applied to data from further clinical
trials, also without the need of planning new trials. Moreover,
these approaches can also be applied data comparing more than
two dietary interventions. Finally, these approaches can be
applied to RCTs under a crossover design.
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