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Abstract: Periodontitis is an infection-induced inflammatory disease that affects the tooth supporting
tissues, i.e., bone and connective tissues. The initiation and progression of this disease depend on
dysbiotic ecological changes in the oral microbiome, thereby affecting the severity of disease through
multiple immune-inflammatory responses. Aggregatibacter actinomycetemcomitans is a facultative
anaerobic Gram-negative bacterium associated with such cellular and molecular mechanisms
associated with the pathogenesis of periodontitis. In the present review, we outline virulence
mechanisms that help the bacterium to escape the host response. These properties include invasiveness,
secretion of exotoxins, serum resistance, and release of outer membrane vesicles. Virulence properties
of A. actinomycetemcomitans that can contribute to treatment resistance in the infected individuals and
upon translocation to the circulation, also induce pathogenic mechanisms associated with several
systemic diseases.

Keywords: Aggregatibacter actinomycetemcomitans; invasiveness; leukotoxin; cytolethal distending
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1. Introduction

Aggregatibacter actinomycetemcomitans is an opportunistic pathogen associated with aggressive
forms of periodontitis that affect young individuals [1,2]. The bacterium colonizes the oral mucosa
early in life and is inherited by vertical transmission from close relatives [3]. Colonization of
A. actinomycetemcomitans on the mucosa is not associated with disease but is considered as a risk factor
for translocation of the organism to the gingival margin [4]. Bacteria that colonize this ecological niche
have the potential to initiate periodontal diseases if they are allowed to stay, proliferate, and express
virulence factors [5,6]. A. actinomycetemcomitans is a facultative anaerobic Gram-negative bacterium
with the capacity to produce a number of virulence factors, and it exhibits a large genetic diversity [2,7].
This bacterium is an early colonizer in the disease process, and resists oxygen and hydrogen peroxide,
but is later often replaced by more strict anaerobes in the deep periodontal pocket [1]. In addition
to colonizing the oral cavity, systemic translocation of this bacterium is frequently reported [8,9].
A. actinomycetemcomitans expresses adhesins that allow colonization of to the tooth surface and the
oral epithelium, as well as to mature supragingival plaque [2]. The bacterium is described as an
organism that utilizes the other inhabitants in the biofilm for its survival and utilizes metabolic products
from other inhabitants of the biofilm for survival and growth [1]. In addition, it is suggested that
A. actinomycetemcomitans can promote the overgrowth of other bacterial species, which can result in
local host dysbiosis and susceptibility to infection [1]. The association of A. actinomycetemcomitans to
systemic diseases includes endocarditis, cardiovascular diseases, diabetes, Alzheimer´s disease, and
rheumatoid arthritis [10–15]. The mechanisms behind these associations are not known, but several
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virulence properties of A. actinomycetemcomitans, such as tissue invasiveness, exotoxin production,
serum resistance, and outer membrane vesicle secretion are potential weapons [16–19]. In the sections
below, we will further address and discuss the tools behind the ability of this bacterium to evade and
suppress the host immune response. The aim of the present review is to identify and describe virulence
mechanisms of A. actinomycetemcomitans, which are associated with immune subversion, as well as
bacterial pathogenicity.

2. Invasive Properties

Invasion of periodontal tissues by different bacterial species has been reported in human
periodontitis for several decades [20–22]. The study by Saglie and co-workers [22] observed the
prevalence and gingival localization of A. actinomycetemcomitans in periodontal lesions of young patients.
Transmission electron microscopic examination showed microcolonies of small Gram-negative rods
in the connective tissue, as well as single bacterial cells between collagen fibers and in areas of cell
debris [20]. In addition to these intra-tissue bacterial cells, bacteria were also found within phagocytic
cells, which had invaded the gingival connective tissue. More recent studies have demonstrated
invasion of A. actinomycetemcomitans into epithelial cells in vitro [23–25]. Interestingly, some
A. actinomycetemcomitans genotypes have been suggested to have different tissue invasive-properties [23].
If this difference in invasive properties interferes with the ability of A. actinomycetemcomitans to cause
various periodontal or systemic diseases is not known.

A number of A. actinomycetemcomitans factors that likely contribute to host cell invasion have
been elucidated. These include the tad (tight adherence) gene locus, which mediates adhesion
and is required for virulence in a rat model for periodontal disease [26]. OmpA1 (also known as
Omp29) is associated with the entry of A. actinomycetemcomitans into gingival epithelial cells by
up-regulating F-actin rearrangement via the FAK signaling pathway [27], and Omp100 (also known
as ApiA) promotes adhesion of A. actinomycetemcomitans cells, and their invasion of human gingival
keratinocytes [28,29]. It has also been described that bacteria that express a cytolethal distending toxin,
such as A. actinomycetemcomitans, can cause disruption of the epithelial barrier and promote tissue
invasion [30]. A role of A. actinomycetemcomitans invasion in immune modulation is supported by
in vitro evidence of a subsequent induction of pro-inflammatory cytokine production, and/or apoptosis,
in epithelial cells and macrophage-like cells, respectively [31,32].

Severe extra-oral infections caused by A. actinomycetemcomitans include brain abscesses, meningitis,
septicemia, urinary tract infections, osteomyelitis, and endocarditis [18,33–35]. Whether the systemic
translocation through the epithelial barrier is due to an active invasive process, or a result of a passive
leakage into the blood stream is not known [36,37]. Bacterial invasion of the periodontal tissues has
been suggested as a relevant stage in the etiopathogenesis of periodontal disease, however, there is
insufficient evidence to support or exclude this mechanism as a key step in periodontal disease [38,39].
Despite the lack of conclusive studies, the invasive properties of A. actinomycetemcomitans have the
potential to help the bacterium to evade mechanical and chemical strategies immune responses, and
mechanical or chemical eradication strategies [40] (Figure 1). If these properties of the bacterium
contribute to systemic translocation and survival has not yet been studied. Evidently, major reasons
for bacteremia caused by oral bacteria such as A. actinomycetemcomitans are gingival inflammation and
mechanical manipulation [41].
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Figure 1. Invasion of A. actinomycetemcomitans into epithelial cells can protect the bacterial cells from 
mechanical removal, antibiotics, immune cell phagocytosis, and antibody binding. 

3. Production of Exotoxins 

A. actinomycetemcomitans is the only bacterium colonizing the oral cavity known to produce two 
exotoxins [42,43], leukotoxin (LtxA) that specifically induces killing of human leukocytes, and a 
cytolethal distending toxin (CDT), which is a genotoxin, causing growth arrest by affecting DNA in 
proliferating cells [16,44]. Both toxins are highly conserved and occur also in several other 
Gram-negative pathogens [45,46]. As a sign of the large genetic diversity of A. actinomycetemcomitans, 
there are strains, representing various genotypes, which produce highly different levels of these 
toxins [2,6,47]. All hitherto studied A. actinomycetemcomitans strains carry a complete ltxCABD gene 
locus, encoding for LtxA, activation and secretion [6]. Mutations, i.e., deletions and insertions in the 
ltx promoter region have been shown to influence leukotoxin production in A. actinomycetemcomitans 
[48–50]. The so called JP2 genotype, which harbors a 530-bp deletion in the ltx promoter region is 
well studied, and known to be strongly associated with disease risk in the individuals carrying it 
[5,6,51]. Its high LtxA production is considered to be an important factor for the enhanced 
pathogenicity of this genotype [52]. 

LtxA induces several pathogenic mechanisms in human leukocytes that can all be linked to the 
progression of periodontal disease [16]. A substantial humoral immune response against LtxA is 
initiated in all the infected individuals [53,54]. LtxA kills immune cells and protects the bacterium 
from phagocytic killing [55]. Neutrophils exposed to LtxA activate degranulation, concomitant with 
an extracellular release of proteolytic enzymes and metalloproteases, such as elastase and 
metallproteases [56,57]. LtxA can also affect human macrophages by activating the inflammasome 
complex, which results in the activation and secretion of pro-inflammatory enzymes (i.e., IL-1β and 
IL-18) [58]. In this context, an interesting observation was recently made that A. 
actinomycetemcomitans expresses an outer membrane lipoprotein, which binds host cytokines, 
including IL-1β [59]. The IL-1β binding protein was designated bacterial interleukin receptor I 
(BilRI) and has the ability to internalize IL-1β into the viable bacterial biofilm [60]. Taken together, 
the abilities of LtxA to cause a proteolytic environment that can degrade immunoproteins, 
internalize inflammatory proteins, and kill immune cells may all contribute to the survival of A. 
actinomycetemcomitans in the infected host. 

The CDT is expressed by a majority of A. actinomycetemcomitans genotypes, even though some 
of them lack a complete gene operon for expression of an active holo-toxin [45]. In vitro and in vivo 
studies have shown that CDT affects cellular physiology involved in inflammation, immune 
response modulation, and causes tissue damage [61,62]. The holo-toxin consists of three subunits 
(CdtA, B, and C) and is transported to the nucleus of the mammalian target cells [63]. Cells exposed 
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3. Production of Exotoxins

A. actinomycetemcomitans is the only bacterium colonizing the oral cavity known to produce
two exotoxins [42,43], leukotoxin (LtxA) that specifically induces killing of human leukocytes, and
a cytolethal distending toxin (CDT), which is a genotoxin, causing growth arrest by affecting DNA
in proliferating cells [16,44]. Both toxins are highly conserved and occur also in several other
Gram-negative pathogens [45,46]. As a sign of the large genetic diversity of A. actinomycetemcomitans,
there are strains, representing various genotypes, which produce highly different levels of these
toxins [2,6,47]. All hitherto studied A. actinomycetemcomitans strains carry a complete ltxCABD
gene locus, encoding for LtxA, activation and secretion [6]. Mutations, i.e., deletions and
insertions in the ltx promoter region have been shown to influence leukotoxin production in
A. actinomycetemcomitans [48–50]. The so called JP2 genotype, which harbors a 530-bp deletion
in the ltx promoter region is well studied, and known to be strongly associated with disease risk in the
individuals carrying it [5,6,51]. Its high LtxA production is considered to be an important factor for the
enhanced pathogenicity of this genotype [52].

LtxA induces several pathogenic mechanisms in human leukocytes that can all be linked to the
progression of periodontal disease [16]. A substantial humoral immune response against LtxA is
initiated in all the infected individuals [53,54]. LtxA kills immune cells and protects the bacterium
from phagocytic killing [55]. Neutrophils exposed to LtxA activate degranulation, concomitant
with an extracellular release of proteolytic enzymes and metalloproteases, such as elastase and
metallproteases [56,57]. LtxA can also affect human macrophages by activating the inflammasome
complex, which results in the activation and secretion of pro-inflammatory enzymes (i.e., IL-1β and
IL-18) [58]. In this context, an interesting observation was recently made that A. actinomycetemcomitans
expresses an outer membrane lipoprotein, which binds host cytokines, including IL-1β [59]. The IL-1β
binding protein was designated bacterial interleukin receptor I (BilRI) and has the ability to internalize
IL-1β into the viable bacterial biofilm [60]. Taken together, the abilities of LtxA to cause a proteolytic
environment that can degrade immunoproteins, internalize inflammatory proteins, and kill immune
cells may all contribute to the survival of A. actinomycetemcomitans in the infected host.

The CDT is expressed by a majority of A. actinomycetemcomitans genotypes, even though some
of them lack a complete gene operon for expression of an active holo-toxin [45]. In vitro and in vivo
studies have shown that CDT affects cellular physiology involved in inflammation, immune response
modulation, and causes tissue damage [61,62]. The holo-toxin consists of three subunits (CdtA, B, and
C) and is transported to the nucleus of the mammalian target cells [63]. Cells exposed for CDT induce
a growth arrest followed by apoptotic cell death [44,63]. In cultures of periodontal fibroblasts, CDT
induces expression of cytokines and the osteoclast activating protein, receptor activator of nuclear
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factor kappa-B ligand (RANKL) [64,65]. The role of CDT in the pathogenesis of periodontitis is not
entirely clear, and the literature contains studies that demonstrate an association, as well as those
reporting no correlation [42,66,67].

Together LtxA and CDT can act as strong weapons against the immune response raised against
A. actinomycetemcomitans. They can cause an imbalance in the host response by activating inflammation,
killing immune cells, affecting antigen presenting cells, and inhibiting lymphocyte proliferation
(Figure 2). The impact of these exotoxins in the pathogenesis of periodontal disease is apparent,
whereas their role in systemic diseases is not known. However, LtxA-exposed neutrophils do release
net-like structures and express patterns of citrullinated proteins that are similar to those observed in
synovial fluid from inflamed joints [12,68]. Moreover, antibiotic treatment of a periodontitis patient,
infected with the highly leukotoxic JP2 genotype of A. actinomycetemcomitans, and suffering from
rheumatoid arthritis, was also cured of the joint pain after the treatment [69]. These observations indicate
that A. actinomycetemcomitans is an interesting organism in the etiopathogenesis of rheumatoid arthritis.
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Figure 2. Expression of exotoxins can result in resistance of A. actinomycetemcomitans to phagocytosis
and neutrophil degranulation. The cytolethal distending toxin (CDT) can cause inhibited proliferation
of stimulated lymphocytes, and LtxA induces an inflammatory cell death in the antigen presenting
cells, macrophages, and monocytes.

4. Serum Resistance

Serum resistance represents an important virulence factor of bacteria that enter into the bloodstream
and cause infection, allowing the bacterial cells to evade the innate immune defense mechanisms
present in serum, including the complement system and antimicrobial peptides [70–72]. The recognition
of bacterial products mediating serum resistance, therefore, represents an approach to the vaccine and
drug development [73,74]. Resistance to complement-mediated killing by human serum appears to
be important for A. actinomycetemcomitans virulence, and is a common characteristic among strains
of this species, although they typically do not form capsules [28,75]. The outer membrane protein,
Omp100 (ApiA), was earlier demonstrated to be important for serum resistance in some serotype b
and d strains and to physically interact with and trap the alternative complement pathway negative
regulator, Factor H, in vitro [28,76] (Figure 3).

Evidently, Omps produced by A. actinomycetemcomitans strains are immuno-reactive in the human
host [77]. As the presence of antibodies towards bacterial antigens such as Omps is a known trigger
of classical complement activation [78], serum resistance of A. actinomycetemcomitans strains would
be expected to also include mechanisms interacting with this activation. We recently presented
evidence that the major outer membrane protein, OmpA1, is critical for serum survival in the
A. actinomycetemcomitans serotype a model strain, D7SS [17]. Outer membrane integrity may be one
mechanism behind OmpA-mediated serum resistance in Gram-negative bacteria [79]. Interestingly,
serum resistant ompA1 mutants were fortuitously obtained, which expressed increased levels of the
paralogue, OmpA2. Thus, OmpA2 can apparently operate as a functional homologue to OmpA1 in
A. actinomycetemcomitans, and both proteins seemingly act, at least partly by binding and trapping of
C4-binding protein [17] (Figure 3), which is an inhibitor of classical and mannose-binding lectin (MBL)
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complement activation [80]. Further to these activation pathways, alternative complement activation
is needed to fully eliminate serum-sensitive ompA mutant A. actinomycetemcomitans derivatives [17].
It is plausible that serum resistance in this species, similar to in Acinetobacter baumanii [81], is highly
complex and relies on a large number of gene products, including host factors. For example,
whether cleavage of the complement molecule C3 by elastase [82], which release is triggered by
leukotoxin [57], may contribute to A. actinomycetemcomitans serum resistance is not known. Moreover,
albeit A. actinomycetemcomitans strains are ubiquitously serum resistant, strains not expressing their
immunodominant, serotype-specific polysaccharide (S-PA) antigen are occasionally isolated [83]. As
speculated previously [83], the lack of S-PA expression may represent a mechanism to evade from
antibody-based host responses, which could be advantageous in blood circulation. However, an
inconsistency with this notion is that the absence of S-PA expression in A. actinomycetemcomitans
appears to be scarce.
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5. Outer Membrane Vesicles

Outer Membrane Vesicles (OMVs) of Gram-negative bacteria are spherical membrane-enclosed
nanostructures that are released from the outer membrane. They can operate as a fundamental
mechanism for discharging proteins and additional bacterial components into the surrounding
environment and to target host cells [84,85]. Evidence from in vitro experiments shows that
A. actinomycetemcomitans OMVs can deliver an abundance of biologically active virulence factors to
host cells, and which can modulate the immune response (Figure 4).

One such example is CDT, which is delivered into HeLa cells and human gingival fibroblasts
via OMVs [86]. OMVs are also involved in the export of LtxA, peptidoglycan-associated lipoprotein
(Pal), and the chaperonin GroEL to host cells [87–90]. Proteomics and Western blot analysis of
A. actinomycetemcomitans OMVs has identified additional proteins that can contribute to evasion of the
immune defense, including the IL1β-binding lipoprotein, BilRI, the outer membrane proteins Omp100,
OmpA1, and OmpA2, and a Factor H-binding protein homologue [17,91,92]. A functional role in the
interaction with complement by vesicles is supported by observations that A. actinomycetemcomitans
OMVs in an OmpA1-dependent manner can bind to the classical and MBL complement inhibitor,
C4-binding protein [17]. It has also been demonstrated that A. actinomycetemcomitans OMVs can carry
small molecules, including lipopolysaccharide (LPS), which can interact with complement [93]. LPS
may also play a role in the observed binding of A. actinomycetemcomitans OMVs to IL-8 [94]. Evidence
that A. actinomycetemcomitans OMVs carry NOD1- and NOD2-active peptidoglycan, which can be
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internalized into non-phagocytic human cells including gingival fibroblasts [19], reveals a role of the
vesicles as a trigger of innate immunity. Moreover, OMV-dependent release of microRNA-size small
RNAs (msRNAs), may potentially represent a mechanism to transfer a novel class of bacterial signaling
molecules into host cells [95]. It is not completely understood how A. actinomycetemcomitans OMVs may
physically interact with and/or enter into human host cells to enhance bacterial evasion of the immune
defense. The OMVs appear to enter into human cells via clathrin-mediated endocytosis [19,96], but can
also fuse with host membranes in a process dependent on cholesterol [86]. Toxins exported via OMVs
can function as adhesins in receptor-mediated endocytosis of the vesicles [97], albeit neither CDT nor
leukotoxin are required per se for the OMV uptake into host cells [86,87]. Concomitantly, although
LtxA has an apparent localization on the A. actinomycetemcomitans OMV surface, its receptor LFA-1 is
not required for delivering the toxin into host cells [98].J. Clin. Med. 2019, 8, x 6 of 12 
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in close contact with the infecting bacteria.

6. Conclusions

We have summarized current knowledge regarding major attributes and strategies of
A. actinomycetemcomitans, allowing this organism to evade the host response. Without doubt,
the numerous virulence properties of A. actinomycetemcomitans can be linked to the pathogenesis
of periodontal disease [99]. Utilization of these properties for systemic translocation of
A. actinomycetemcomitans and its subsequent survival in this new environment has been excellently
summarized and illustrated [1,100]. It is today hypothesized that the virulence characteristics of
A. actinomycetemcomitans allow this organism to induce an immune subversion that tip the balance
from homeostasis over to disease in oral and/or extra-oral sites [101]. Hence, in order to prohibit
the negative systemic consequences that are associated with periodontitis, successful treatment in an
early phase of the disease is fundamental. Development of specific diagnostic tools for assessment of
periodontal pathogens and inflammatory components in the saliva of young individuals might make it
possible to prevent the disease before its onset.
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