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Abstract

Objectives: To evaluate the influence of MRI scanning parameters on texture analy-

sis features.

Methods: Publicly available data from the Reference Image Database to Evaluate

Therapy Response (RIDER) project sponsored by The Cancer Imaging Archive

included MRIs on a phantom comprised of 18 25‐mm doped, gel‐filled tubes, and 1

20‐mm tube containing 0.25 mM Gd‐DTPA (EuroSpinII Test Object5, Diagnostic

Sonar, Ltd, West Lothian, Scotland). MRIs performed on a 1.5 T GE HD, 1.5 T Sie-

mens Espree (VB13), or 3.0 T GE HD with TwinSpeed gradients with an eight‐channel
head coil included T1WIs with multiple flip angles (flip‐angle = 2,5,10,15,20,25,30),

TR/TE = 4.09–5.47/0.90–1.35 ms, NEX = 1 and DCE with 30° flip‐angle, TR/

TE=4.09–5.47/0.90–1.35, and NEX = 1,4. DICOM data were imported into an in‐
house developed texture analysis program which extracted 41‐texture features

including histogram, gray‐level co‐occurrence matrix (GLCM), and gray‐level run‐
length (GLRL). Two‐tailed t tests, corrected for multiple comparisons (Q values) were

calculated to compare changes in texture features with variations in MRI scanning

parameters (magnet strength, flip‐angle, number of excitations (NEX), scanner plat-

form).

Results: Significant differences were seen in histogram features (mean, median,

standard deviation, range) with variations in NEX (Q = 0.003–0.045) and scanner

platform (Q < 0.0001), GLCM features (entropy, contrast, energy, and homogeneity)

with NEX (Q = 0.001–0.018) and scanner platform (Q < 0.0001), GLRL features

(long‐run emphasis, high gray‐level run emphasis, high gray‐level emphasis) with

magnet strength (Q = 0.0003), NEX (Q = 0.003–0.022) and scanner platform

(Q < 0.0001).

Conclusion: Significant differences were seen in many texture features with varia-

tions in MRI acquisition emphasizing the need for standardized MRI technique.

Abbreviations: GLCM, gray-level co-occurrence matrix; GLGM, gray-level gradient matrix; GLN, gray-level nonuniformity; GLRL, gray-level run-length; NEX, number of excitations; RLN, run-

length nonuniformity; SRE, short-run emphasis; SRLGE, short-run low gray-level emphasis

Advances in Knowledge

This is the first study specifically investigating the influence of specific MRI parameters on texture analysis features underscoring the importance of using uniform and standardized MRI scan-

ning protocols when employing a texture analysis.
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1 | INTRODUCTION

Increasing radiology research efforts have been focused on the

investigation of potential genotype‐phenotype relationships of tumor

biology and behavior, often referred to as radiomics. Radiomics has

been employed in an effort to identify distinct behavioral subtypes

of tumors based on their imaging appearance, with the ultimate hope

of predicting tumor prognosis and treatment response. This field of

radiomics often uses quantitative post‐processing techniques, known

as a texture analysis, to identify unique pixel intensity patterns, or

textures, within a tumor lesion based on its imaging appearance (e.g.,

CT, MRI, ultrasound, etc.).

Texture analysis describes the patterns of pixel intensity varia-

tions within an image calculated by a series of mathematical algo-

rithms.1 Numerous texture analysis features have been described in

the literature and defined in the work of Haralick et al.1 The use

of a texture analysis applied to imaging studies including CT and

MRI have been previously performed for the evaluation of multiple

nonneoplastic disorders including the evaluation for mesial temporal

sclerosis on MRI,2 evaluation of intervertebral disc disease on

MRI,3 evaluation of hepatic fibrosis on both CT and MRI,4–8 evalua-

tion of subchondral bone on MRI.9 Prior oncologic studies have

also employed texture analyses to evaluate specific tumor features

including the assessment of HPV status of oropharyngeal squamous

cell carcinomas,8 prognosis of head and neck neoplasms,10–12 classi-

fication of gastric and colorectal tumors on CT,13–15 genomic map-

ping and predictive marker identification of gliomas on MRI,16–19

the identification of potentially prognostic predictors in lung can-

cer,20,21 evaluation of genitourinary neoplasms on both CT and

MRI,22–25 and for the radiomic classifications of breast carcinoma

subtypes.26–28

In an effort to study specific patterns of tumor biology correlat-

ing with different imaging appearances, multi‐institutional centers

have worked toward pooling resources to make publicly available

cancer imaging databases, such as The Cancer Imaging Archive

(TCIA) and The Cancer Genomic Atlas (TCGA), to help facilitate

research efforts in the arena of tumor genotype‐phenotype analy-

ses.16,26,28 Prior research studies have used a radiomics approach for

investigating prostate cancer radiotherapy responses,25 responsive-

ness of neoadjuvant chemotherapy in breast cancer,28 and prognos-

tic predictions of advanced nasopharyngeal carcinoma.12 However,

larger studies and systematic reviews on radiomics have noted

methodological variations as a source of difficulty precluding an

accurate and collective interpretation of data.11,29,30

Based on our knowledge of how changes in the CT scanning

parameters varies texture analysis features30, as well as preliminary

studies investigating the sensitivity of texture features to variations

in MRI technique,29,31–33 we could similarly deduce that changes in

MRI scanning parameters such as differences in magnet strength and

scanner platform could also influence texture analysis features. Thus,

the purpose of this study was to evaluate and quantify changes in

MRI sequence parameters may have on texture analysis features

using a simple, nonanatomic phantom model.

2 | MATERIALS AND METHODS

This study employed the use of a phantom for all image acquisitions,

precluding the requirement for IRB approval.

2.A | Phantom development and MR imaging
techniques

The construction of the phantom, and scan data of serial MRI

scans of this phantom are publicly available as part of the Refer-

ence Image Database to Evaluate Therapy Response (RIDER) at

The Cancer Imaging Archive (TCIA).34 The original DICOM datasets

and scan data on the RIDER phantom are available for public use

in an effort to generate an initial consensus on how to harmonize

the data collection and analysis for quantitative imaging methods

applied to the measurement of drug and/or radiation treatment

response.35

The nonanatomic phantom used in the RIDER database was

comprised of 18 25‐mm doped gel‐filled tubes, and a single 20‐mm

tube containing 0.25 mM GdDTPA (EuroSpin II Test Object 5, Diag-

nostic Sonar, Ltd, West Lothian, Scotland),34 as shown in Fig 1.

All MRI examinations were performed at MD Anderson on either

a 1.5 T GE HD, a 1.5 T Siemens Espree (VB13), or a 3.0 T GE HD

with TwinSpeed gradients. An eight‐channel head coil was used for

all scans.

Acquired scans included a T1‐weighted image using multiple flip

angles, three‐dimensional Fast Spoiled Gradient Recalled Echo

Sequence with flip angles = 2,5,10,15,20,25,30, a TR/TE = 4.09–
6.469/0.90–1.35 ms, receiver bandwidth = ±31.25 kHz, 256 × 192

matrix, NEX = 1, slice thickness = 5 mm, and a 24 × 19 cm field of

view.

A DCE acquisition was also performed using a three‐dimensional Fast

Spoiled Gradient Recalled Echo Sequence with 30‐degree flip angle, a
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TR/TE = 4.09–5.47/0.90–1.35, receiver bandwidth = ±31.25 kHz, and

NEX = 1,4, slice thickness = 5 mm, 256 × 160 matrix, and a 24 × 19 cm

field of view.

2.B | DICOM segmentation and texture analysis

Original DICOM data sets were downloaded and then imported into

in‐house developed MATLAB (MathWorks, Natick, MA) texture anal-

ysis software to calculate texture analysis features. The texture anal-

ysis software was developed by the co‐author (BL) and the use of

this texture analysis program has been previously reported in the lit-

erature.7,8,30 Image segmentation of phantom was performed manu-

ally by an experienced radiologist (co‐author HK), using the same

geometric boundaries and a uniform contour volume for each data-

set in an effort to reduce potential variation related to the manual

segmentation process. The entirety of the phantom was contoured

including each of the doped gel-filled tubes, the gadolinium filled

tube, as well as the negative space between in the inserts. A correc-

tion for spatial inhomogeneity was not applied. Prior to the texture

analysis, the contoured images were preprocessed (or corrected)

which consisted of the following steps: (a) partial volume artifact

correction, and (b) global grayscale normalization. These steps are

described in the work by Li et al.7 In brief, to correct for partial vol-

ume artifact, an optimal thresholding algorithm was applied using an

iterative optimal thresholding algorithm.36 This method assumes all

image pixels are from two probability distributions (e.g., structure of

interest and the dark background) and attempts to find the gray‐level

threshold corresponding to the minimum probability between the

maxima of the two distributions, which results in minimal segmenta-

tion error. To find the optimal threshold, this algorithm was applied

iteratively (usually four to ten iterations were sufficient), updating

the threshold in each iteration from the weighted sum of the two

distributions. For global grayscale normalization, the images were

corrected by the mean and standard deviation to minimize the over-

all grayscale variation across images, similar to that described in the

work of Collewet et al.33 The correction was applied to the entire

image. The mean gray value of each corrected image was set to 250

and the standard deviation to 30.

In total, 41 texture features, including 12 histogram features, five

gray‐level co‐occurrence matrix (GLCM) features, 11 gray‐level run‐
length (GLRL) features, four gray‐level gradient matrix (GLGM) fea-

tures, and nine Laws features, were calculated and averaged over

the contoured images of each dataset. Numerous texture analysis

equations have been defined and developed. Only a subset of 41

texture features were employed in this study based on our prior

work, and based on the popularity of reported texture features in

the radiomics literature.7,8,30

The use of our in‐house developed MATLAB program and the

specific details of the texture analysis features calculated by this pro-

gram have been previously published.7,8,30 A full description of the

mathematical equations is described in the work by Haralick et al.1

and Tang el al.37 GLCM features, in contrast to histogram features,

are highly spatially dependent. In this study, the GLCM texture fea-

tures were calculated using only directly adjacent pixels for simplic-

ity. Horizontal, 45°, vertical, and 135° directions were averaged

together to eliminate any directional dependence. The following

GLCM features proposed by Haralick et al.1 were tested:

Contrast ¼ ∑i;jji� jj2pði; jÞ (1)

Correlation ¼ ∑i;j

ði� μiÞ ðj� μjÞpði; jÞ
σiσj

(2)

Angular Second Moment (ASM) ¼ ∑i;jpði; jÞ2 (3)

Homogeneity ¼ ∑i;j
pði; jÞ

1þ ji� jj (4)

Entropy ¼ ∑i;jln pði; jÞð Þpði; jÞ (5)

where (i, j) represents the (i, j) value of the GLCM.

GLRL matrices were used as these texture features provide addi-

tional insights into spatial dependence18. The same directions consid-

ered for the calculation of the GLCM features, were averaged for the

GLRL matrix features. The features explored included equations utilizing

short‐run emphasis (SRE), long‐run emphasis (LRE), gray‐level nonuni-
formity (GLN), run‐length nonuniformity (RLN), run percentage (RP), low

gray‐level run emphasis (LGRE), high gray‐level run emphasis (HGRE),

short‐run low gray‐level emphasis (SRLGE), short‐run high gray‐level
emphasis (SRHGE), long‐run low gray‐level emphasis (LRLGE), and long‐
run high gray‐level emphasis (LRHGE), defined as follows:

F I G . 1 . A cross‐sectional T1 weighted DICOM image through the
nonanatomic phantom with a peripheral contour created within
our in‐house developed MatLab platform. The phantom was
composed of 18 dope‐filled gel tubes and a single tube filled with
0.25 mM of Gd‐DTPA.
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TAB L E 1 Texture parameters: 1.5T vs 3T.

1.5T (n = 80) 3T (n = 61)

P value Q valueMean SD Mean SD

Histogram

Mean 247.2 2.2 246.8 2.4 0.225 0.298

Median 244.7 4.8 243.4 5.7 0.170 0.239

STD 30.6 4.5 31.8 5.7 0.184 0.251

Range 8.3 2.8 7.9 2.4 0.465 0.554

Geometric mean 248.2 0.49 248.0 0.61 0.142 0.220

Harmonic mean 246.4 0.90 246.2 1.1 0.164 0.238

2nd STD 2.9 1.0 2.7 0.84 0.336 0.432

STD5 3.1 1.1 2.9 0.96 0.159 0.238

STD9 3.2 1.0 3.2 0.93 0.892 0.934

4th moment 3069652.7 2076989.3 4128044.7 2905848.7 0.018 0.045

IQR 39.6 4.3 39.1 3.8 0.503 0.580

Entropy 7.2 0.31 7.2 0.25 0.702 0.790

GLCM

Entropy 2.1 0.45 2.1 0.43 0.745 0.818

Contrast 16.9 6.5 18.9 6.6 0.075 0.143

Correlation 0.91 0.08 0.90 0.08 0.360 0.450

Energy 0.01 0.003 0.01 0.003 0.817 0.875

Homogeneity 0.60 0.05 0.59 0.04 0.940 0.940

GLRL

SRE 0.09 0.03 0.10 0.04 0.054 0.128

LRE 0.09 0.04 0.10 0.04 0.065 0.133

GLN 0.09 0.03 0.10 0.04 0.090 0.153

RLN 0.09 0.04 0.10 0.04 0.063 0.133

RP 162.1 42.3 149.4 41.2 0.076 0.143

LGRE 159.5 43.3 147.1 42.5 0.092 0.153

HGRE 157.9 42.6 146.4 41.7 0.113 0.182

SRLGE 159.8 43.4 147.2 42.5 0.087 0.153

SRHGE 3052.4 1691.4 1833.1 626.2 <0.0001 0.0003

LRLGE 3661.3 2077.6 2100.8 755.5 <0.0001 0.0003

LRHGE 2647.5 1455.7 1568.1 532.6 <0.0001 0.0003

Law's features

L1 162232.6 83374.1 252842.7 54759.9 <0.0001 0.0003

L2 18049.8 12630.7 30827.7 11995.7 <0.0001 0.0003

L3 6438.0 3814.3 10443.2 2874.5 <0.0001 0.0003

L4 33648.4 14046.5 49080.4 7890.0 <0.0001 0.0003

L5 6830.8 7083.6 13929.7 6922.4 <0.0001 0.0003

L6 5044.4 4893.9 9891.0 4395.4 <0.0001 0.0003

L7 3793.4 3264.1 7070.4 2912.7 <0.0001 0.0003

L8 10919.5 9724.9 20981.7 8112.5 <0.0001 0.0003

L9 15398.6 6675.3 22754.1 3790.9 <0.0001 0.0003

GLGM

MGR 20.7 10.2 29.1 13.0 <0.0001 0.0003

VGR 16410.5 8816.7 24038.9 11063.9 <0.0001 0.0003

Skewness 7.7 2.0 6.5 1.9 0.001 0.003

(Continues)
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SRE ¼ 1
nr

∑i;j
pði; jÞ
j2

(6)

LRE ¼ 1
nr

∑i;jpði; jÞj2 (7)

GLN ¼ 1
nr

∑i ∑jpði; jÞ
� �2

(8)

RLN ¼ 1
nr

∑j ∑ipði; jÞ
� �2

(9)

RP ¼ nr
np

(10)

LGRE ¼ 1
nr

∑i;j

pði; jÞ
i2

(11)

HGRE ¼ 1
nr

∑i;jpði; jÞi2 (12)

SRLGE ¼ 1
nr

∑i;j

pði; jÞ
i2j2

(13)

SRHGE ¼ 1
nr

∑i;j

pði; jÞi2
j2

(14)

LRLGE ¼ 1
nr

∑i;j
pði; jÞj2

i2
(15)

LRHGE ¼ ∑i;jpði; jÞi2j2 (16)

where p(i, j) represents the (i, j) value of the GLRL matrix, nr is the

total number of runs, and np is the total number of pixels.

GLGM features were also investigated to provide the histogram

of the absolute gradient values in the interrogated region of interest.

As a preprocessing step, the gradient of each pixel within the ROI

was computed using a 3 × 3 neighborhood. The GLGM features

mathematically summarize the gradient values of the pixels in the

ROI and include mean, variance, skewness, and kurtosis.

2.C | Statistical analysis

Serial MRI scans on the phantom were performed with variations in

specific MRI scanning parameters. Multiple scan sequences are available

in the RIDER dataset where a specific MRI scanning parameter is varied

i.e., flip angle, while the remaining scanning parameters are held con-

stant. We collated such scans where individual scanning parameters

were sequentially varied in order to make the following assessments:

1. Assessment of Magnet Strength: T1-weighted images performed

on a 1.5 T GE Signa Excite compared to a T1-weighted image

performed on a 3 T GE Signa Excite with flip angle, TR/TE, num-

ber of excitations (NEX), echo train length, slice thickness, and

matrix held constant

2. Assessment of Flip Angle: T1-weighted images performed on a

1.5 T Siemens Espree with flip angle varying from 2, 5, 10, 15,

20, 25, and 30 degrees with the TRTE, NEX, echo train length,

slice thickness, and matrix held constant.

3. Assessment of NEX: DCE images performed on a 1.5 T Siemens

Espree with NEX either 1, or 4. The flip angle, TR/TE, slice thick-

ness, and matrix were held constant

4. Assessment of Scanner Platform: DCE images were performed

on a 1.5 T GE Signal Excite compared to a 1.5 T Siemens Espree

with the flip angle, TR/TE, NEX, echo train length, slice thickness

and matrix held constant.

For each of the four comparisons, a student's t test for assessing

independent samples was used to evaluate variations in the 41 texture

features based and was reported as a P value. To adjust for multiple

comparisons, a false discovery rate (FDR) correction was performed

and the FDR correction of the P values (termed Q values) were calcu-

lated in addition to raw P values using Benjamini and Hochberg

method described in the literature.38 Statistical computations were

performed using SAS 9.1.3 software (SAS Institute, Cary, NC).

3 | RESULTS

Changes in texture analysis features based on variations in MR scan-

ning parameters are shown in Tables 1–4, and Table S1.

3.A | Assessment of magnetic strength

Variations in magnetic strength (1.5 T vs 3 T) resulting in changes in

texture features are displayed in Table 1. No statistically significant

differences were noticed in the histogram, or GLCM texture features.

TABLE 1 (Continued)

1.5T (n = 80) 3T (n = 61)

P value Q valueMean SD Mean SD

Kurtosis 67.6 34.4 50.2 29.0 0.002 0.005

Mean skewness 0.64 0.59 0.72 0.59 0.468 0.554

Mean kurtosis 3.0 0.5 3.2 0.6 0.063 0.133

Mean laws 270470.4 141778.4 423628.7 100109.0 <0.0001 0.0003

Mean texture analysis features on a 1.5 T vs a 3.0 T scanner. n: number of contoured slices; STD: standard deviation; STD5: 5‐neighborhood standard

deviation; STD9: 9‐neighborhood standard deviation; IQR: indicates interquartile range; GLCM: gray‐level co‐occurrence matrix; GLRL: gray‐level run
length; SRLGE: short‐run low gray‐level emphasis; SRHGE: short‐run high gray‐level emphasis; GLGM: gray‐level gradient matrix; SRE: short‐run empha-

sis; LRE: long‐run emphasis; GLN: gray‐level nonuniformity; RLN: run‐length nonuniformity; RP: run percentage; LGRE: low gray‐level run emphasis;

HGRE: high gray‐level run emphasis; SRLGE: short‐run low gray‐level emphasis; SRHGE: short‐run high gray‐level emphasis; LRLGE: long‐run low gray‐
level emphasis; LRHGE: long‐run high gray‐level emphasis; MGR: mean gradients; VGR: variance of gradients.

Bold indicates statistically significant as determined with the two‐tailed t test and false detection analyses (Q < 0.05).
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TAB L E 2 Texture parameters: mean by flip angle.

2 (n = 36) 5 (n = 36) 10 (n = 36) 15 (n = 36) 20 (n = 36) 25 (n = 36) 30 (n = 44) P‐value Q‐value

Histogram

Mean 248.0 246.6 246.4 247.3 247.1 247.3 247.5 0.106 0.227

Median 247.2 243.8 241.4 245.6 247.4 246.5 244.8 <0.0001 0.002

STD 27.0 29.5 30.3 28.5 29.2 28.2 27.7 0.081 0.220

Range 10.2 9.3 9.5 9.7 10.2 10.1 10.0 0.693 0.958

Geometric mean 248.6 248.3 248.2 248.4 248.3 248.4 248.5 0.104 0.227

Harmonic mean 247.2 246.7 246.6 246.9 246.8 247.0 247.1 0.102 0.227

2nd STD 3.4 3.1 3.2 3.3 3.5 3.4 3.4 0.697 0.958

STD5 4.3 4.0 4.1 4.1 4.3 4.3 4.2 0.826 0.958

STD9 5.1 4.9 5.1 5.0 5.3 5.2 5.2 0.946 0.992

4th moment 2166675.3 2993396.8 3359004.4 2519117.0 3053199.6 2557749.2 2269343.1 0.298 0.559

IQR 39.0 41.3 41.5 40.2 40.2 39.9 39.4 0.362 0.603

Entropy 7.5 7.4 7.3 7.4 7.0 7.0 7.1 <0.0001 0.002

GLCM

Entropy 2.7 2.3 2.1 2.4 2.3 2.4 2.4 0.021 0.118

Contrast 18.0 14.3 12.7 16.4 17.5 17.5 18.3 0.001 0.011

Correlation 0.92 0.94 0.95 0.93 0.92 0.92 0.92 0.019 0.118

Energy 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.087 0.220

Homogeneity 0.53 0.56 0.57 0.55 0.54 0.54 0.54 0.036 0.135

GLRL

SRE 0.09 0.11 0.13 0.11 0.11 0.11 0.11 0.756 0.958

LRE 0.09 0.11 0.13 0.11 0.11 0.11 0.11 0.813 0.958

GLN 0.09 0.11 0.13 0.11 0.11 0.11 0.10 0.861 0.969

RLN 0.09 0.11 0.13 0.11 0.11 0.11 0.11 0.801 0.958

RP 174.7 149.3 134.2 164.2 172.6 172.8 180.9 0.988 0.992

LGRE 174.7 149.0 133.5 163.9 172.1 171.7 179.6 0.986 0.992

HGRE 178.1 153.7 137.9 167.8 176.3 175.6 184.2 0.989 0.992

SRLGE 173.5 147.8 132.6 162.7 171.1 171.2 179.2 0.992 0.992

SRHGE 2917.7 2167.3 1952.6 2589.0 2569.0 2592.7 2549.7 0.830 0.958

LRLGE 3424.4 2631.8 2429.1 3029.8 3003.8 3049.7 2988.9 0.806 0.958

LRHGE 2910.0 2195.3 2006.0 2568.6 2571.9 2606.3 2569.7 0.656 0.958

Law's features

L1 192705.6 192761.2 192439.2 193311.5 195378.8 194563.7 193770.3 0.733 0.958

L2 16489.5 16373.4 16323.5 16576.5 17381.4 17285.1 16808.4 0.001 0.011

L3 6162.2 6141.1 6255.8 6155.8 6387.6 6363.1 6304.5 0.073 0.219

L4 38082.9 37979.5 37990.6 38104.2 38882.5 38666.9 38384.9 0.424 0.681

L5 4816.5 4812.1 4769.3 4869.8 5128.8 5112.0 4929.7 0.034 0.135

L6 4024.3 4032.9 3989.2 4066.0 4269.3 4269.7 4111.7 0.027 0.135

L7 3002.0 3000.4 3081.4 3010.1 3136.7 3145.4 3091.9 0.035 0.135

L8 9396.0 9481.2 9217.9 9434.4 10117.2 10063.3 9574.5 0.010 0.090

L9 18404.7 18234.2 18211.3 18321.4 18878.1 18750.6 18650.3 0.199 0.407

GLGM

MGR 14.5 13.4 13.5 14.1 13.1 13.4 12.7 0.329 0.569

VGR 11028.3 10337.9 10427.8 10781.4 9984.6 10181.8 9640.4 0.213 0.417

Skewness 8.5 8.8 8.7 8.7 9.1 9.0 9.3 0.088 0.220

Kurtosis 78.1 83.2 82.1 81.4 89.2 88.6 94.6 0.045 0.151

(Continues)
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A few of the GLRL texture features including the short‐run high gray‐
level emphasis (SRHGE), long‐run low gray‐level emphasis (LRLGE), and

long‐run high gray‐level emphasis (LRHGE) demonstrated statistically

significant differences (Q = 0.0003), however, the remaining GLRL fea-

tures did not demonstrate a significant difference. All Law's features

demonstrated statistically significant differences (Q = 0.0003), and all

of the GLGM features, with the exception of mean skewness and mean

kurtosis (Q = 0.554, and 0.133, respectively), demonstrated statistically

significant differences (Q = 0.0003–0.005).

3.B | Assessment of flip angle

Variations in flip angles produced variations in texture analysis fea-

tures, as shown in Table 2 and Table S1. Only two histogram fea-

tures, median and entropy, demonstrated statistically significant

differences with changes in flip angle (Q = 0.002, each). Similarly,

only the GLCM feature, contrast, demonstrated a statistically signifi-

cant difference related to changes in the flip angle (Q = 0.011). No

statistically significant difference in the GLRL features, Law's fea-

tures, or GLGM features with variations in flip angle.

3.C | Assessment of NEX

Changes in NEX (1 vs 4) produced variations in texture analysis fea-

tures as shown in Table 3. All histogram texture features, with the

exception of neighborhood standard deviation (STD9) (Q = 0.146) and

entropy (Q = 0.502), demonstrated statistically significant differences

(Q = 0.003–0.045). All GLCM texture features demonstrated statistically

significant differences with changes in NEX (Q = 0.001–0.018). All GLRL
texture features, with the exception of run percentage (RP) (Q = 0.055)

and high gray‐level run emphasis (HGRE) (Q = 0.056), demonstrated sta-

tistically significant differences with changes in NEX (Q = 0.002–0.045).
None of the Law's features demonstrated statistically significant differ-

ences. All of the GLGM texture features demonstrated statistically sig-

nificant differences with changes in NEX (Q = 0.001–0.008).

3.D | Assessment of scanner platform

Differences in scanner platform (GE vs Siemens) produced differences in

the texture analysis features as shown in Table 4. All histogram features,

except for entropy (P = 0.554), demonstrated statistically significant dif-

ferences (Q = 0.0001). All GLCM and GLRL texture features demon-

strated statistically significant differences with different scanner

platforms (Q = 0.0001). Only the Laws feature, L9, demonstrated a sta-

tistically significant difference (Q = 0.014). All GLGM texture features

demonstrated statistically significant differences (Q = 0.0001), with the

exception of mean gradients (MGR) (Q = 0.236), variance of gradients

(VGR) (Q = 0.554), and mean Laws features (Q = 0.823).

4 | DISCUSSION

The results of this study demonstrate statistically significant differ-

ences in multiple texture analysis features (histogram, GLCM, GLRL,

and GLGM) related to changes in several, specific MRI scan parame-

ters such as magnet strength, flip angle, NEX, and scanner platform.

While multiple prior research studies have investigated the use

of a texture analysis applied to MR images2–7,9,10,12,15–19,39 the

underlying influence of MRI scan parameters on texture analysis fea-

tures are not entirely understood. Furthermore, despite the increas-

ing use of texture analysis in the field of radiology, a fundamental

understanding of the histopathologic and biologic correlation

between tissue and texture analysis features remains in its infancy.

In this study, we demonstrated statistically significant differences

in the Law's features and several GLGM features with differences in

magnet strength, while histogram, GLCM, and GLRL features were

invariant of these changes in magnet strength. Differences in flip

angle significantly influenced GLCM texture features and changes in

NEX significantly influenced histogram, many GLRL, and GLGM tex-

ture features. The most substantial changes in texture analysis fea-

tures were encountered with differences in MRI scanner platform

(GE vs Siemens). Differences in the MRI scanner platform generated

statistically significant differences in all categories of texture analysis

features, except for the Laws features. Histogram features by in

large measure the image signal‐to‐noise ratio (SNR), which is mostly

a low frequency signal. In contradistinction, Laws features measure

distinct features within an image such as edges and lines, which are

predominately high frequency signals. Changes in both NEX and flip

angle would only affect the SNR, but not the spatial resolution. We

postulate that different scanner platforms (i.e., GE vs Siemens and

TABLE 2 (Continued)

2 (n = 36) 5 (n = 36) 10 (n = 36) 15 (n = 36) 20 (n = 36) 25 (n = 36) 30 (n = 44) P‐value Q‐value

Mean skewness 0.46 0.80 0.92 0.62 0.60 0.58 0.54 0.020 0.118

Mean kurtosis 2.8 3.1 3.4 3.0 3.2 3.1 3.1 0.047 0.151

Mean laws 300502.0 300676.9 300393.7 301260.7 307050.4 305634.3 303027.0 0.320 0.569

Mean texture analysis features variation with changes in flip angle. n: number of contoured slices; STD: standard deviation; STD5: 5‐neighborhood stan-

dard deviation; STD9: 9‐neighborhood standard deviation; IQR: indicates interquartile range; GLCM: gray‐level co‐occurrence matrix; GLRL: gray‐level
run length; SRLGE: short‐run low gray‐level emphasis; SRHGE: short‐run high gray‐level emphasis; GLGM: gray‐level gradient matrix; SRE: short‐run
emphasis; LRE: long‐run emphasis; GLN: gray‐level nonuniformity; RLN: run‐length nonuniformity; RP: run percentage; LGRE: low gray‐level run empha-

sis; HGRE: high gray‐level run emphasis; SRLGE: short‐run low gray‐level emphasis; SRHGE: short‐run high gray‐level emphasis; LRLGE: long‐run low

gray‐level emphasis; LRHGE: long‐run high gray‐level emphasis; MGR: mean gradients; VGR: variance of gradients.

Bold indicates statistically significant as determined with the two‐tailed t‐test and false detection analyses (Q < 0.05).
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TAB L E 3 Texture parameters: number of excitations 1 vs 4.

1 (n = 36) 4 (n = 44)

P‐value Q‐valueMean SD Mean SD

Histogram

Mean 249.6 2.3 247.5 2.8 0.001 0.003

Median 249.5 6.0 244.8 6.8 0.002 0.005

STD 24.3 4.2 27.7 4.9 0.002 0.005

Range 11.4 2.3 10.0 2.7 0.013 0.022

Geometric mean 248.8 0.38 248.5 0.45 0.002 0.005

Harmonic mean 247.6 0.69 247.1 0.83 0.003 0.006

2nd STD 3.9 0.78 3.4 0.93 0.013 0.022

STD5 4.8 1.0 4.2 1.1 0.028 0.045

STD9 5.7 1.3 5.2 1.4 0.107 0.146

4th moment 1257285.5 1220668.6 2269343.1 1656035.4 0.003 0.006

IQR 35.1 5.0 39.4 6.2 0.001 0.003

Entropy 7.2 0.48 7.1 0.29 0.413 0.502

GLCM

Entropy 3.0 0.61 2.4 0.69 0.0001 0.001

Contrast 23.1 7.7 18.3 8.5 0.010 0.018

Correlation 0.89 0.04 0.92 0.05 0.005 0.009

Energy 0.005 0.002 0.008 0.004 <0.0001 0.001

Homogeneity 0.49 0.06 0.54 0.07 0.002 0.005

GLRL

SRE 0.07 0.04 0.11 0.05 0.001 0.003

LRE 0.07 0.04 0.11 0.05 0.0004 0.002

GLN 0.07 0.04 0.10 0.05 0.001 0.003

RLN 0.07 0.04 0.11 0.05 0.001 0.003

RP 211.7 63.2 180.9 66.2 0.038 0.055

LGRE 212.3 63.5 179.6 66.9 0.029 0.045

HGRE 214.4 62.7 184.2 65.3 0.040 0.056

SRLGE 212.1 64.1 179.2 67.8 0.030 0.045

SRHGE 3842.0 1316.4 2549.7 1735.8 0.0004 0.002

LRLGE 4431.0 1453.1 2988.9 1914.6 0.0004 0.002

LRHGE 3845.2 1318.9 2569.7 1738.3 0.001 0.003

Law's features

L1 194138.1 8172.2 193770.3 8258.3 0.843 0.843

L2 17098.3 1319.8 16808.4 1211.3 0.310 0.388

L3 6323.2 406.3 6304.5 380.0 0.832 0.843

L4 38727.6 2029.3 38384.9 2147.6 0.469 0.555

L5 5002.1 517.8 4929.7 427.0 0.495 0.571

L6 4142.0 409.5 4111.7 308.3 0.707 0.758

L7 3072.6 210.6 3091.9 170.2 0.651 0.715

L8 9678.2 1135.5 9574.5 872.1 0.645 0.715

L9 18972.1 1287.3 18650.3 1373.0 0.287 0.369

GLGM

MGR 16.2 1.9 12.7 4.0 <0.0001 0.001

VGR 12135.7 1227.1 9640.4 2842.2 <0.0001 0.001

Skewness 7.9 0.5 9.3 1.6 <0.0001 0.001

(Continues)
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3 T vs 1.5 T) employ dramatically different image processing algo-

rithms and this is the primary reason there is a statistical significance

observed in Laws features. On the contrary, histogram features are

less sensitive to changes in spatial resolution and are more sensitive

to changes in SNR (e.g., NEX, flip angle, etc.)

Changes in NEX and flip angle may only affect image contrast and

would not affect spatial resolution. We postulate that different scan-

ner vendors, i.e., GE and Siemens, employ dramatically different image

processing algorithms and this is the primary reason there is a statisti-

cal significance observed in Laws features. On the contrary, histogram

features are less sensitive to changes in spatial resolution and are

more sensitive to changes in contrast (e.g., NEX, flip angle, etc.).

Multiple prior studies have highlighted the potential promise and

importance of using a texture analysis as a quantitative, post‐proces-
sing technique to evaluate subtle changes in pixel intensity which

may not be evident to the human eye.7,8,14 These subtle patterns of

pixel variation could potentially serve as a biomarker for lesion char-

acterization, early disease detection, and prediction of lesional

behavior.6,8,20 A recent prior study demonstrated a dependency of

texture analysis features on variations in CT scanning parameters.30

The results of this study, build off those from the prior study exam-

ining how texture analysis features are influenced by MRI, in addi-

tion to CT acquisition parameters. This work highlights the

importance of using standardized and rigorously controlled scanning

protocol when conducting research utilizing a texture analysis. This

current study expands upon prior studies published in the literature

which previously investigated a limited set of MRI acquisition param-

eters and their influence on texture features.31,32 The study per-

formed by Mayerofer et al.31 investigated changes in TR/TE,

sampling bandwidth, and number of acquisitions and the influence of

these parameters on texture analysis features. Mayerofer et al.,

noted that changes in these features had a substantial impact on the

sensitivity of the texture analysis features,31 however, this study

examined a limited set of MRI scanning parameters which did not

include a study of NEX, flip angle, magnet strength, and scanner

platform (GE vs Siemens). This current study seeks to bridge the gap

in knowledge investigating the influence these additional MRI scan-

ning parameters have on certain texture analysis features.

The results of this study underscore the importance of under-

standing how texture analysis features are influenced by imaging

acquisition parameters. The ability to distinguish changes in texture

analysis features related to tissue biology and pathology vs effects

related to technical differences in MRI scanning protocol is of para-

mount importance for designing future research investigations which

will use a texture analysis.

There are several limitations to the current study. The first is that

this was a study using a nonanatomic phantom with basic architecture

variations in internal structure. The use of this phantom and associated

scanner data was advantageous as an initial pilot investigation into the

dependency texture features on MRI scanning parameters as the raw

scanning data are publicly available for research efforts. The phantom

used in this study has a well‐defined, well‐characterized, and simple

internal geometric structure. We recognize that the simplicity of this

phantom is a far reach from a phantom with anatomically relevant

internal structure, but we feel that the simplicity of this nonanatomic

phantom initially helps us to understand the results of this study and

the effects the changes in MRI scanning parameters has on the texture

features. Future research efforts will need to be conducted using a

phantom with more anatomically relevant internal structure and with

more complex internal components, perhaps with an internal composi-

tion mimicking that of fat, muscle, and bone. Additionally, a robustness

analysis on real test‐retest data should be also performed, similar to

the work of van Timmeren et al. for CT.40 A second limitation of this

study is that only a discrete subset of MRI scanning parameters was

investigated. This study was limited based on the information available

in the RIDER dataset. We would have liked to investigate the influence

additional scanning parameters such as slice thicknesses, matrix size,

and differences in TR/TE have on these texture analysis features, how-

ever, this information was not available in the RIDER dataset. Future

investigations on this topic will also be to examine a broader set of

MRI scan parameters and evaluate the influence these parameters

have on texture analysis features. Thirdly, this study investigated a lim-

ited set of 41 defined texture analysis features. There are hundreds of

defined texture analysis features described in the literature. We

sought to investigate a subset of 41 texture features which we have

investigated in our previous works, and which we feel are most

TABLE 3 (Continued)

1 (n = 36) 4 (n = 44)

P‐value Q‐valueMean SD Mean SD

Kurtosis 67.2 9.0 94.6 32.2 <0.0001 0.001

Mean skewness 0.03 0.64 0.54 0.75 0.002 0.005

Mean kurtosis 2.7 0.63 3.1 0.58 0.004 0.008

Mean laws 303992.7 14617.7 303027.0 14279.6 0.767 0.803

Mean texture analysis features with variations in number of excitations (NEX). n: number of contoured slices; STD: standard deviation; STD5: 5‐neigh-
borhood standard deviation; STD9: 9‐neighborhood standard deviation; IQR: indicates interquartile range; GLCM: gray‐level co‐occurrence matrix; GLRL:

gray‐level run length; SRLGE: short‐run low gray‐level emphasis; SRHGE: short‐run high gray‐level emphasis; GLGM: gray‐level gradient matrix; SRE:

short‐run emphasis; LRE: long‐run emphasis; GLN: gray‐level nonuniformity; RLN: run‐length nonuniformity; RP: run percentage; LGRE: low gray‐level
run emphasis; HGRE: high gray‐level run emphasis; SRLGE: short‐run low gray‐level emphasis; SRHGE: short‐run high gray‐level emphasis; LRLGE: long‐
run low gray‐level emphasis; LRHGE: long‐run high gray‐level emphasis; MGR: mean gradients; VGR: variance of gradients.

Bold indicates statistically significant as determined with the two‐tailed t‐test and false detection analyses (Q < 0.05).
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TAB L E 4 Texture parameters: GE vs Siemens.

GE (n = 83) Siemens (n = 36)

P‐value Q‐valueMean SD Mean SD

Histogram

Mean 245.9 1.8 249.6 2.3 <0.0001 0.0001

Median 242.0 4.5 249.5 6.0 <0.0001 0.0001

STD 32.5 5.2 24.3 4.2 <0.0001 0.0001

Range 9.2 1.4 11.4 2.3 <0.0001 0.0001

Geometric mean 248.0 0.56 248.8 0.38 <0.0001 0.0001

Harmonic mean 246.1 1.04 247.6 0.70 <0.0001 0.0001

2nd STD 3.2 0.48 3.9 0.78 <0.0001 0.0001

STD5 3.6 0.56 4.8 0.96 <0.0001 0.0001

STD9 3.5 0.54 5.7 1.3 <0.0001 0.0001

4th moment 4384199.1 2820540.2 1259420.0 1216812.6 <0.0001 0.0001

I QR 41.0 3.1 35.1 5.1 <0.0001 0.0001

Entropy 7.3 0.20 7.2 0.48 0.516 0.554

GLCM

Entropy 2.2 0.39 3.0 0.61 <0.0001 0.0001

Contrast 16.7 4.5 23.2 7.7 <0.0001 0.0001

Correlation 0.93 0.04 0.89 0.04 <0.0001 0.0001

Energy 0.009 0.002 0.005 0.002 <0.0001 0.0001

Homogeneity 0.57 0.02 0.49 0.06 <0.0001 0.0001

GLRL

SRE 0.11 0.03 0.07 0.04 <0.0001 0.0001

LRE 0.11 0.03 0.07 0.04 <0.0001 0.0001

GLN 0.12 0.03 0.07 0.04 <0.0001 0.0001

RLN 0.11 0.03 0.07 0.04 <0.0001 0.0001

RP 144.5 19.2 212.0 63.3 <0.0001 0.0001

LGRE 141.0 20.6 212.6 63.6 <0.0001 0.0001

HGRE 139.5 20.4 214.8 62.7 <0.0001 0.0001

SRLGE 140.6 20.5 212.5 64.2 <0.0001 0.0001

SRHGE 2037.7 592.1 3844.4 1321.0 <0.0001 0.0001

LRLGE 2421.5 660.9 4429.5 1460.6 <0.0001 0.0001

LRHGE 1753.3 466.9 3845.8 1323.4 <0.0001 0.0001

Law's features

L1 186793.4 33134.5 194202.9 8099.2 0.189 0.236

L2 17662.7 8333.2 17104.7 1293.8 0.691 0.707

L3 7092.6 2150.3 6323.8 399.1 0.036 0.049

L4 39166.7 4904.5 38746.2 2016.0 0.621 0.650

L5 5836.4 4462.7 5002.2 524.1 0.267 0.316

L6 4712.7 3135.9 4141.0 407.6 0.279 0.322

L7 3724.9 2070.2 3072.0 206.5 0.062 0.082

L8 10812.2 5484.5 9691.9 1184.0 0.229 0.279

L9 17868.8 2408.8 18978.0 1267.0 0.010 0.014

GLGM

MGR 14.1 8.9 16.2 1.9 0.166 0.213

VGR 11304.8 7622.5 12137.4 1222.2 0.517 0.554

Skewness 9.2 1.7 7.9 0.52 <0.0001 0.0001

(Continues)
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frequently reported in the radiomics literature.7,8,30 We recognize that

this subset may have excluded additional texture features of interest.

The inclusion of additional texture features in our in‐house developed

texture analysis program will be addressed in future research endeav-

ors. Lastly a limitation of this study, is the investigation of only GRE‐
based MRI sequenced. Again, our investigation was limited to the

information available in the RIDER dataset. We do recognize that

investigating how texture analysis features are influenced by MRI

scanning parameters on non‐GRE based sequences would be of great

interest. Future investigations in this subject matter with an expanded

analysis of additional texture analysis features are warranted.

5 | CONCLUSION

Texture analysis represents an increasingly popular, post‐processing,
quantitative evaluation technique that can potentially be used as an

adjunct in diagnostic imaging, and as a possible imaging biomarker.

The results of this study demonstrate that MRI acquisition parameters

have a significant influence on specific texture analysis features. This

work serves as a pilot study highlighting the importance of using a

standardized and controlled MRI scanning protocol when using a tex-

ture analysis. Multi‐institutional research endeavors, or single institu-

tion endeavors using different MRI scanning platforms and scanning

protocols should exercise caution when using texture analysis.
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Additional supporting information may be found online in the

Supporting Information section at the end of the article.

Table S1. Texture parameters: Standard deviation by flip angle

264 | BUCH ET AL.

https://doi.org/10.1002/jmri.26178
https://wiki.cancerimagingarchive.net/display/Public/RIDER+NEURO+MRI
https://wiki.cancerimagingarchive.net/display/Public/RIDER+NEURO+MRI

