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Abstract
Functional long non-coding RNAs (lncRNAs) have been bringing novel insight into biologi-

cal study, however it is still not trivial to accurately distinguish the lncRNA transcripts

(LNCTs) from the protein coding ones (PCTs). As various information and data about

lncRNAs are preserved by previous studies, it is appealing to develop novel methods to

identify the lncRNAs more accurately. Our method lncRScan-SVM aims at classifying

PCTs and LNCTs using support vector machine (SVM). The gold-standard datasets for

lncRScan-SVMmodel training, lncRNA prediction and method comparison were con-

structed according to the GENCODE gene annotations of human and mouse respectively.

By integrating features derived from gene structure, transcript sequence, potential codon

sequence and conservation, lncRScan-SVM outperforms other approaches, which is evalu-

ated by several criteria such as sensitivity, specificity, accuracy, Matthews correlation coef-

ficient (MCC) and area under curve (AUC). In addition, several known human lncRNA

datasets were assessed using lncRScan-SVM. LncRScan-SVM is an efficient tool for pre-

dicting the lncRNAs, and it is quite useful for current lncRNA study.

Introduction
Recently tens of thousands of long non-coding RNAs (lncRNAs) have been discovered in the
transcriptome using biotechnology such as cDNA cloning [1, 2], tiling mircoarray [3–5] and
high throughput sequencing [6, 7]. Studies also reveal that the lncRNAs are extensively
involved numerous cellular processes, such as embryonic stem cell (ESC) pluripotency, eryth-
ropoiesis, cell-cycle regulation and diseases [8–11]. However, current lncRNA function studies
can be hampered by lack of complete and high-quality lncRNA gene annotations, especially
when conducting analysis on the genome scale. Although there appear several lncRNA data
sources, such as lncRNAdb [12], NONCODE [13] and GENCODE [14], they seldom perform
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well-matched intersection between each other [15], which implies that the lncRNA catalogue
needs to be developed. Meanwhile, with the widespread usage of deep sequencing in life sci-
ence, more and more novel lncRNAs can be found due to their tissue-specific expression char-
acteristic. The newly-discovered lncRNAs are always compared with previous annotations for
guaranteeing the quality of further analysis [8, 9].

Either for lncRNA gene annotation or novel lncRNA discovery, it is crucial to evaluate the
protein coding potential of a transcript. As similar as protein-coding genes, lncRNAs are RNA
polymerase II products, and can be capped and polyadenylated [16], and also present similar
histone-modification profiles, splicing signals and exon/intron lengths [15]. Due to the similar-
ities between mRNAs and lncRNAs, it is challenging to separate the lncRNA transcripts
(LNCTs) from the protein coding ones (PCTs) [17].

Thanks to the advance of bioinformatics, discriminating LNCTs from PCTs can be mod-
elled as a binary classification problem, which has been solved by several computational meth-
ods, such as CONC [18], CPC [19], CNCI [20], iSeeRNA [21] and RNAcon [22]. CONC
integrates various features in its classification model, but it is slow for large datasets and also
performs less accurate than other newer methods such as CPC [19]. CPC uses features derived
from open reading frame (ORF) and sequence alignment, and the developers also provide
users with a web interface. CNCI distinguishes protein-coding and non-coding sequences by
profiling adjoining nucleotide triplets, however it cannot work on large datasets. iSeeRNA out-
performs previous methods and it also provides users with a program for training a new classi-
fication model based on custom dataset. RNAcon applies features of tri-nucleotide
composition to the classification, but it does not show better performance than other methods
in our experiment. Compared to these support vector machine (SVM) based methods inspect-
ing the entire transcript, a comparative genomics method named PhyloCSF [23] focuses on
classifying protein-coding and non-coding regions, and it has been frequently used for lncRNA
identification [7, 24]. In addition, CPAT [25] is another tool for assessing coding potential of a
transcript using an alignment-free logistic regression model. Based on these computational
methods, lncRNA function studies usually build a pipeline to obtain a set of confident lncRNAs
[16, 24, 26]. For example, a simple pipeline consisting of length filtering (> 200nt), CPC and
BLAST [27] can make a stringent lncRNA dataset. However, it is still not convenient to master
such non-standard filtering workflow.

As various information and data about lncRNAs are preserved by previous studies, it is
appealing to develop new methods to identify the lncRNAs more accurately. By integrating fea-
tures derived from gene structure, transcript sequence, potential codon sequence and conserva-
tion, a novel computational method is proposed here for solving the problem.

Methods

Gold-standard datasets
Since a reliable dataset is of importance to model training and testing, we adopted the high-
quality manually-curated GENCODE gene annotations (version 19/v19 of human and version
M2/vM2 of mouse) [14, 15] for constructing the gold-standard datasets, which are composed
of gene annotations in Gene Transfer Format (GTF) and corresponding genome sequences in
FASTA format for human and mouse respectively. Specifically, the human gene annotation
(GENCODEv19) includes 81814 PCTs and 23898 LNCTs, while the counts are 47394 and
6053 respectively for mouse (GENCODEvM2). In addition, the genome sequences of human
(GRCh37/hg19) and mouse (GRCm38/mm10) were downloaded from University of California
Santa Cruz (UCSC) genome browser respectively [28]. For model training and testing, we cre-
ated Training-A, Testing-A and Testing-B (S1 Dataset) by splitting the gold-standard datasets
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(See Table 1). All transcripts in training and testing sets were randomly sampled from the com-
plete dataset, and there are no overlapping areas between the training and testing sets. Since
our prediction model was trained on Training-A, in which a proportion of transcripts may
have similar sequences to that in Testing-A, which could lead to an unfair comparison between
our method and the others though our method does not only use sequence features. To make a
fairer comparison, Testing-B datasets were created by removing similar transcripts from Test-
ing-A using CD-HIT (v4.6.1, cut-off 0.8) [29], compared to Training-A sequences. To alleviate
the effect of imbalanced-classes, we constructed the training and testing sets with equal or simi-
lar sizes.

Feature selection
Since each feature selected can affect the overall classification performance, we conducted fea-
ture selection (FS) (See S1 File) based on a set of candidate features, which were derived from
our current knowledge about lncRNAs. The candidate features can be classified into three cate-
gories. The first category includes features extracted from nucleotide sequences, and they are
14 tri-nucleotides attributes, namely ACG, CCG, CGA, CGC, CGG, CGT, CTA, GCG, GGG,
GTA, TAA, TAC, TAG and TCG [22], and standard deviation of stop codons (TAG, TAA and
TGA) between three frames, and GC content. The second category was extracted from the out-
put of a program called txCdsPredict from UCSC, which is used to predict a codon sequence
with the most likelihood from an input nucleotide sequence, and it includes features like
txCdsPredict score, CDS length and CDS percentage (CDS_length divided by transcrip-
t_length) [21]. The third category of features was extracted from gene structure of the tran-
script, and they are transcript length, exon count and average exon length.

Then six features (See Table 2) were selected from the total candidates by FS. First, tran-
script length was selected since the length of PCTs and LNCTs can be differentially distributed
[7, 15, 24]. Second, with an assumption that a true PCT may have a long ORF in one of the

Table 1. Dataset partition.

Traing-A Testing set Remaining Sum

Testing-A Testing-B

human PCTs(Positive) 5000 10000 8307 66814 81814

human LNCTs(Negative) 5000 10000 8875 8898 23898

mouse PCTs(Positive) 2500 3500 3130 41394 47394

mouse LNCTs(Negative) 2500 3500 2975 53 6053

The gold-standard datasets were divided for model training and testing. The first two rows show counts of

divided human dataset while the other two ones show that of mouse. For human, Training-A includes 5000

PCTs randomly sampled from the totalling 81814 ones, and 5000 LNCTs sampled from the totalling 23898

ones. Human Testing-A was created by sampling another 10000 PCTs and LNCTs respectively, and

human Testing-B containing 8307 PCTs and 8875 LNCTs was created by removing transcripts that show

similar sequences (cutoff 0.8 of CD-HIT) to that in Training-A from Testing-A. Similarly for mouse, the

counts of PCTs and LNCTs in Training-A are both 2500, and the count is 3500 in Testing-A. And counts of

Testing-B for mouse PCTs and LNCTs are 3130 and 2975 respectively. Besides, the remaining transcripts

(Remaining) were not taken into account in the analysis.

doi:10.1371/journal.pone.0139654.t001
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three frames translated, we presume that the stop codons in the frame where the ORF emerges
are fewer than that randomly appear in the other two frames. Therefore, we selected the stan-
dard deviation (SCS) of stop codon counts (SCC) between three frames translated as the second
feature since the standard deviation of PCT should be smaller than that of LNCT (See Eqs (1)
and (2)).

�x ¼ 1

3

X2

i¼0

SCCi ð1Þ

SCS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

X2

i¼0

ðSCCi � �xÞ2
s

ð2Þ

where �x denotes the mean of stop codon counts of three frames (SCC0, SCC1 and SCC2).
Then SCS can be calculated using Eq (2). Similarly, since the PCT may have ORF potentially,
we used txCdsPredict to predict the codon sequence (CDS) of the candidate transcript, and the
score output by txCdsPredict was selected as the third feature. By analysing the gene structures
of transcripts, the exon count and average exon length were selected as features because the
lncRNA genes may have fewer exons and be shorter than the protein-coding ones. The last fea-
ture we selected is the conservation score calculated by averaging PhastCons scores of the
transcript.

lncRScan-SVM
The six features selected above were fed into the SVM framework to build a tool named
lncRScan-SVM (v1.0.0), which also depends on several third-part packages/programs such as
BioPython [30], LIBSVM [31] and txCdsPredict. Of the programs packaged by lncRScan-SVM,
two scripts can commonly be used. One is lncRScan-SVM-train.py for training a SVMmodel
and the other one is lncRScan-SVM-predict.py for predicting PCTs/LNCTs (See Fig 1). The
lncRScan-SVM package is freely available on http://sourceforge.net/projects/lncrscansvm/?
source = directory.

Model training. A SVMmodel for prediction can be generated using lncRScan-SVM-
train.py (See Fig 1a). Specifically, the lncRScan-SVM-train.py program first extracts nucleotide
sequences according to the gene models of training samples. Then a script extract_features.py
is used to extract transcript features. After transferring features to a standard format of

Table 2. Selected features.

Feature Description

transcript length sum of exon lengths of a transcript

stop codon std standard deviation of stop codon counts between three translated frames

CDS score score of txCdsPredict prediction

exon count exon count of a gene

exon length average exon length of a gene

consv average PhastCons scores of a transcript

This table lists features of lncRScan-SVM.

doi:10.1371/journal.pone.0139654.t002
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LIBSVM by feature2svm.py, a program svm-scale is used to scale the features. Finally, a predic-
tion model can be generated.

lncRNA prediction. Users can use lncRScan-SVM-predict.py to predict LNCTs or PCTs
(See Fig 1b). Specifically, the main input of lncRScan-SVM-predict.py is a GTF file, which lists
all transcripts for classification. Then the sequence of the query transcript is extracted using
gffread [6]. After feature extracting, formatting and scaling, svm-predict classifies PCTs and
LNCTs using the prediction model trained previously. And the prediction models for hg19 and
mm10 have been packaged in lncRScan-SVM.

Evaluation
The performance of lncRScan-SVM is compared to other methods, such as CPC (v0.9-r2),
CPAT (v1.2.2), iSeeRNA (v1.2.1) and RNAcon (v1.0), by several criteria, such as sensitivity
(SES) or true positive rate (TPR) or recall, specificity (SPC), accuracy (ACC), Matthews

Fig 1. lncRScan-SVM. (a) Model training. A GTF file of positive samples, a GTF file of negative samples and a configure file are input to lncRScan-SVM-
train.py for training a SVMmodel and getting scaling parameters. (b) lncRNA prediction. A GTF file of query transcripts and a configure file are input to
lncRScan-SVM-predict.py for predicting PCTs or LNCTs.

doi:10.1371/journal.pone.0139654.g001
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correlation coefficient (MCC).

SES ¼ TP
P

¼ TP
TP þ FN

ð3Þ

SPC ¼ TN
N

¼ TN
TN þ FP

ð4Þ

ACC ¼ TP þ TN
P þ N

ð5Þ

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞ � ðTP þ FNÞ � ðTN þ FPÞ � ðTN þ FNÞp ð6Þ

where TP, P, TN, N, FP, FN denote true positive, positive, true negative, negative, false posi-
tive and false negative respectively. In this paper, ‘positive’ and ‘negative’ correspond to PCT
and LNCT respectively. And area under curve (AUC) of receiver operation characteristic
(ROC) are also used as another indicator [32]. In addition, PhyloCSF is not took into account
as it focuses on distinguishing protein-coding regions from non-coding ones, which is slightly
different from the objective of the methods for classifying PCTs and LNCTs.

Ethics Statement
N/A

Results and Discussion

Performance of single feature
Since every candidate feature can contribute to the overall classification performance of a pre-
dictor, the performance of each feature was evaluated by AUC scores on the hg19 and mm10
Training-A datasets respectively (See Fig 2). As seen from the ranking result, the top eight fea-
tures are CDS length, consv, CDS score, CDS percentage, exon count, stop codon std, tran-
script length and CGA, which show slightly different orders between hg19 and mm10.
Particularly, five of the six lncRScan-SVM features, namely transcript length, stop codon std,
CDS score, exon count and consv, are included in the top eight ranked features, which indicates
that most of the lncRScan-SVM features can contribute positively to the predictor. In addition,
the features of hg19 and mm10 represent similar performance as seen from the the Pearson
correlation coefficient (0.9484604) of the AUC scores, which shows the robustness of classifica-
tion performance of the candidate features between the species.

Comparison of prediction methods
The prediction performance of lncRScan-SVM was evaluated by comparing to several other
methods, such as CPC, CPAT, iSeeRNA and RNAcon, on Testing-A and Testing-B. When test-
ing iSeeRNA, we used two kinds of models. One is the default iSeeRNA prediction model and
the other one (iSeeRNA2) is generated by re-training iSeeRNA on Training-A. As a result,
lncRScan-SVM outperforms other methods in most aspects, such as SPC, ACC, MCC and
AUC (See Tables 3 and 4).

As seen from the testing result on Testing-A for either hg19 or mm10, lncRScan-SVM
shows slightly smaller SPC, but higher SES and overall ACC, MCC and AUC scores than
CPAT. In contrast, RNAcon presents the worst performance as it obtains the lowest score in
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Fig 2. Feature ranking by AUC scores. (a) The candidate features are ranked by AUC scores calculated on hg19 Training-A; (b) The candidate features
are ranked by AUC scores calculated on mm10 Training-A. Each feature ID is labelled in brackets.

doi:10.1371/journal.pone.0139654.g002

Table 3. Method comparison on Testing-A and Testing-B of hg19.

Testing-A Testing-B

SES(%) SPC(%) ACC(%) MCC(%) AUC(%) SES(%) SPC(%) ACC(%) MCC(%) AUC(%)

CPC 97.62 67.23 82.425 68.069 94.55 97.328 69.262 82.831 68.898 94.78

CPAT 85.28 94.60 89.94 80.23 95.17 83.941 95.223 89.768 79.896 95.14

lncRScan-SVM 89.20 93.88 91.54 83.17 96.39 88.215 94.479 91.45 82.985 96.39

iSeeRNA 87.97 92.32 90.13 80.36 95.33 87.04 92.965 90.082 80.238 95.28

iSeeRNA2 90.02 92.409 91.205 82.44 96.23 89.103 92.885 91.045 82.106 96.18

RNAcon 69.11 84.53 76.82 54.29 86.11 68.039 85.454 77.034 54.475 86.1

CPC and CPAT were run by submitting the GTF files of Testing-A and Testing-B through their web interfaces. The lncRScan-SVM predictor was run after

feature scaling. Besides, we tested the default iSeeRNA predictor and iSeeRNA2, an iSeeRNA model re-trained on Training-A, as well as RNAcon with a

parameter T equals 0. The biggest value in each column is in bold font while the smallest one is underlined.

doi:10.1371/journal.pone.0139654.t003
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most aspects. CPC obtains the highest SES (97.62% for hg19 and 98.371% for mm10), but it
shows poor performance in other aspects, e.g. the lowest SPC score (67.23% for hg19 and
75.457% for mm10), which means CPC may ignore a considerable proportion of true lncRNAs.
By training on Training-A, iSeeRNA2 shows better performance than the default one, but it is
still less accurate than lncRScan-SVM.

Meanwhile, similar performance of these methods can be observed from the testing result
on Testing-B of hg19 and mm10, where our lncRScan-SVM predictor consistently shows better
performance than other methods. As seen from the result on mm10 Testing-B (Table 4),
lncRScan-SVM is ranked the highest in almost all aspects, including SPC, ACC, MCC and
AUC. As indicated by SES, CPC still has a bias towards predicting PCTs, but has poor overall
performance. Although the re-trained iSeeRNA2 shows similar overall performance to
lncRScan-SVM, its SPC scores are much lower than the latter one, which means iSeeRNA2
would perform less accurate for identifying lncRNAs than lncRScan-SVM. In addition, the
AUC scores of these methods are visualized by ROC curves (Figs 3, 4, 5 and 6).

In addition to the accuracy evaluation, the computation time of these methods was also
compared on the same platform (Linux, Ubuntu 12.04.4 LTS 64bit, 800 MHz × 4 processors
and 4GB RAM). As seen from Table 5, lncRScan-SVM shows the longest computation time
(Nearly twice slower than iSeeRNA, four times slower than RNAcon and ten times slower than
CPAT) when conducting lncRNA prediction on Testing-A of hg19 and mm10 respectively.
The computation time difference can be caused by several reasons, such as different algorithms
and programming languages. As seen from the table, either of the methods with query file in
FASTA, namely CPAT and RNAcon, represents shorter running time than the other ones with
GTF is mainly because the latter one needs longer time to extract sequence information accord-
ing to the gene annotation in GTF. CPAT is faster than RNAcon because the logistic regression
model used by the former one could be faster than SVM used by RNAcon. And our lncRScan-
SVM is slower than iSeeRNA is mainly because we used Python scripts to implement our
method, which can be optimized and accelerated using C programming in the future. Despite
of that, the computation time of current lncRScan-SVM could be acceptable since its running
time for precessing thousands of transcripts is still limited in several minutes or seconds. It is
worth noting that CPC was not taken into account in the comparison because it is quite slow
when running on the same platform. For example, it takes about 3 minutes to process only one
sequence, which is much slower than the other methods.

Table 4. Method comparison on Testing-A and Testing-B of mm10.

Testing-A Testing-B

SES(%) SPC(%) ACC(%) MCC(%) AUC(%) SES(%) SPC(%) ACC(%) MCC(%) AUC(%)

CPC 98.371 75.457 86.914 75.847 95.43 98.211 78.42 88.567 78.483 95.75

CPAT 88.171 95.343 91.757 83.73 96.38 87.891 95.966 91.826 83.979 96.46

lncRScan-SVM 89.143 95.286 92.214 84.588 96.62 88.53 96.067 92.203 84.693 96.64

iSeeRNA 85.411 93.126 89.266 78.768 95.26 85.517 93.739 89.521 79.379 95.51

iSeeRNA2 88.426 93.27 90.846 81.79 95.98 87.958 93.807 90.806 81.793 96.04

RNAcon 73.086 79.60 76.343 52.798 84.84 72.62 80.874 76.642 53.604 85.19

The description for mm10 is the same as Table 3.

doi:10.1371/journal.pone.0139654.t004
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Prediction on known human lncRNA datasets
In addition to the high-quality GENCODE lncRNA dataset, previous studies have published
several other lncRNA datasets, such as the NONCODEv4 dataset containing 92343 human
lncRNAs [13] and the Cabili et al. dataset containing 14353 human long intergenic ncRNAs
(lincRNAs) [7], which can be evaluated by lncRScan-SVM. Before conducting lncRNA predic-
tion, we checked the overlap between these datasets. As seen from Fig 7 plotted by eulerAPE v3
[33], the human lncRNA annotated by NONCODEv4 contains most of the lncRNAs annotated
by Cabili et al. (21106,* 88.32%) and GENCODEv19 (13546,* 94.38%) due to the fact that
NONCODEv4 published on 2014 collects a large number of ncRNAs from various literatures
and databases [13]. On the other hand, the overlapping area between Cabili et al. and GENCO-
DEv19 lncRNAs is small (3874,* 16.36% of GENCODEv19 or* 27.24% of Cabili et al.).

Fig 3. ROC curves of lncRNA prediction on hg19 Testing-A. The prediction performance of CPC, CPAT, lncRScan-SVM, iSeeRNA, iSeeRNA2 and
RNAcon on hg19 Testing-A is illustrated by ROC curves with colors of blue, orange, red, green, purple and pink respectively. The definitions of the sensitivity
for x axis and specificity for y axis are the same as Formulas 3 and 4. The top-left area is zoomed in on for distinguishable observation.

doi:10.1371/journal.pone.0139654.g003
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Then we applied lncRScan-SVM to the Cabili et al. and NONCODEv4 datasets respectively,
compared with other methods (See Table 6). As a result, lncRScan-SVM successfully identified
14069 (98.52%) of 14281 lincRNAs annotated by Cabili et al., which were generated by a com-
plex filtering pipeline mentioned in their paper [7]. On the NONCODEv4 lncRNA dataset,
lncRScan-SVM successfully predicted 77435 (85.63%) of the totalling 90429 lncRNAs, which is
much lower than that on the Cabili et al. dataset due to the fact that the lncRScan-SVM predic-
tion model trained on GENCODEv19 that contains 12152 (50.85%) lincRNAs might have a
bias towards predicting lincRNAs rather than non-intergenic lncRNAs. To test this hypothesis,
we conducted lncRScan-SVM on the 43730 lincRNAs (the lncRNAs located in the intergenic
regions of GENCODEv19 protein coding transcripts) extracted from the NONCODEv4 data-
set. As a result, 41984 (96.01%) lincRNA were predicted successfully. Similarly, the prediction
ratios of the other methods all decline as test sets change from lncRNA to lincRNA, which
means they all have a bias towards predicting lincRNAs. In contrast, most of the other tools

Fig 4. ROC curves of lncRNA prediction onmm10 Testing-A. The description of ROC curves for tests on mm10 Testing-A is the same as Fig 3.

doi:10.1371/journal.pone.0139654.g004
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represent lower prediction ratios than lncRScan-SVM on the three datasets except CPAT,
which has the highest prediction ratio (90.29%) on NONCODEv4 lncRNA dataset since CPAT
has a bias towards predicting the lncRNAs (See previous section). However, CPAT still repre-
sents poorer performance on either Cabili et al. or NONCODEv4 lincRNAs. Overall, the pre-
diction of these methods on the general lncRNA datasets is consistent with that on our gold-
standard sets.

In addition, the remaining 72 lincRNAs of Cabili et al. dataset and 1964 lncRNAs or 1914
lincRNAs of NONCODEv4 were not took into account analysis because they are not annotated
on the main reference chromosomes, such as chr1, chr2 and so on, but are annotated on on the
other regions such as patches, scaffolds and haplotypes, and they can not be processed by sev-
eral methods.

Fig 5. ROC curves of lncRNA prediction on hg19 Testing-B. The description of ROC curves for tests on hg19 Testing-B is the same as Fig 3.

doi:10.1371/journal.pone.0139654.g005
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Discussion
The lncRNA prediction problem can be solved by several computational methods mentioned
above, especially our lncRScan-SVM performs better than the others in several aspects by inte-
grating information extracted from gene structure, sequence composition and conservation in
the SVM framework. However several problems remain to be specified. First, novel features
and models can be developed to improve the prediction performance. For example, features
can be extracted from secondary structure of RNA since functional lncRNAs may have special
patterns in the secondary structure. Second, current lncRNA prediction methods present a bias
towards predicting lincRNAs, so new distinguishable features should be extracted for predict-
ing those non-intergenic lncRNAs, thereby helping solve the third problem, that is a more
detailed catalogue of lncRNAs needs to be created by classifying the lncRNAs into subclasses
corresponding to various functions. Last but not least, it is worth noting that classifying PCTs
and LNCTs might be meaningless since some lncRNAs can be bifunctional, that is some non-
coding RNAs can be translated into peptides in particular circumstances [16, 34].

Fig 6. ROC curves of lncRNA prediction onmm10 Testing-B. The description of ROC curves for tests on mm10 Testing-B is the same as Fig 3.

doi:10.1371/journal.pone.0139654.g006
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Table 5. Computation time comparison on Testing-A of hg19 andmm10.

query file format hg19 (seconds, s) mm10 (seconds, s)

lncRScan-SVM GTF 170 86

iSeeRNA GTF 88 59

iSeeRNA2 GTF 81 59

RNAcon FASTA 42 16

CPAT FASTA 19 8

There are 20000 and 7000 samples in the Testing-A of hg19 and mm10 respectively.

doi:10.1371/journal.pone.0139654.t005

Fig 7. Overlap between three human lncRNA datasets. The lncRNA counts of the three human lncRNA datasets are proportional to the area of the
ellipses. The largest ellipse denotes NONCODEv4 lncRNAs. The right-down and right-up ones are for GENCODEv19 and Cabili et al. lncRNAs respectively.

doi:10.1371/journal.pone.0139654.g007
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Therefore, identifying PCTs or LNCTs is not only a simple classification problem, but also
fundamental for further analysis, e.g. lncRNA function study. It is hopeful that various datasets
and novel hypothesis can help improve the prediction accuracy and further deepen our under-
standing of lncRNA functions.

Conclusions
Current lncRNA studies have been accelerated by various datasets and efficient bioinformatic
tools. Here we proposed lncRScan-SVM, which performs better than several popular methods
in predicting the lncRNAs. lncRScan-SVM is quite useful for lncRNA gene annotation and can
be integrated into pipelines of lncRNA study.
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Table 6. Prediction on known human lncRNA datasets.

Human lincRNA of Cabili et al. (14281
processed/14353 total)

Human lncRNA of NONCODEv4 (90429
processed/92343 total)

Human lincRNA of NONCODEv4 (43730
processed/45644 total)

lncRScan-
SVM

14069 (98.52%) 77435 (85.63%) 41984 (96.01%)

iSeeRNA 13887 (97.24%) 75535 (83.53%) 41143 (94.08%)

iSeeRNA2 13848 (96.97%) 73439 (81.21%) 40821 (93.35%)

RNAcon 12651 (88.59%) 67873 (75.06%) 35431 (81.02%)

CPAT 13973 (97.84%) 81651 (90.29%) 41276 (94.39%)

CPC 10910 (76.40%) Not availablea 26380 (60.32%)

The lncRNA prediction performance of lncRScan-SVM is compared with iSeeRNA, iSeeRNA2, RNAcon, CPAT and CPC on on three human lncRNA

datasets. The biggest prediction ratio is highlighted by bold font.
a CPC was not available for predicting NONCODEv4 human lncRNAs and reported TOO_MANY_ILLEGAL_CHARACTERS after submitting through its

web server.
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