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Circulating EVs long RNA-based subtyping and
deconvolution enable prediction of immunogenic
signatures and clinical outcome for PDAC
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Identification of clinically applicable molecular subtypes
of pancreatic ductal adenocarcinoma (PDAC) is crucial to
improving patient outcomes. However, the traditional tissue-
dependent transcriptional subtyping strategies are invasive
and not amenable to routine clinical evaluation. In this study,
we developed a circulating extracellular vesicle (cEV) long RNA
(exLR)-based PDAC subtyping method and provided exLR-
derived signatures for predicting immunogenic features and
clinical outcomes in PDAC. We enrolled 426 individuals,
among which 227 PDACs served as an internal cohort, 118
PDACs from two other medical centers served as an indepen-
dent validation cohort, and 81 healthy individuals served as
the control. ExLR sequencing was performed on all plasma
samples. We found that PDAC could be categorized into three
subtypes based on plasma exLR profiles. Each subpopulation
showed its own molecular features and was associated with
patient clinical prognosis. The immunocyte-derived cEV frac-
tions were altered among PDAC subtypes and interconnected
with tumor-infiltrating lymphocytes in cancerous tissue. Addi-
tionally, we found a significant concordance of immunoregula-
tors between tissue and blood EVs, and we harvested potential
PDAC therapeutic targets. Most importantly, we constructed a
nine exLR-derived, tissue-applicable signature for prognostic
assessment of PDAC. The circulating exLR-based features
may offer an attractive platform for personalized treatment
and predicting patient outcomes in multiple types of cancer.
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INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) is currently the fourth
leading cause of cancer-related death worldwide.1 The treatment
efficiency of PDAC is restricted by the aggressive tumor-intrinsic
characteristics and suppressive tumor microenvironment (TME).2

Previous studies showed that personalized treatment approaches
based on PDAC genotypic and phenotypic characteristics may poten-
tially improve patient outcome.3,4 However, most of these reports
focused on gene subtyping and exploring biomarkers in resectable tu-
mors. Resection is possible only in a minority of patients, as most pa-
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tients present at an advanced stage at the time of diagnosis,5 and safely
obtaining sufficient quantities of pancreatic tumor tissue for molecu-
lar analysis is difficult at unresectable stages. Therefore, the develop-
ment of specific, robust, and noninvasive molecular subtyping
strategies for the stratification and prognostic evaluation of PDAC
are required.

Extracellular vesicles (EVs) have become a hotspot in liquid biopsy
for cancer precision medicine. EVs are nanometer-sized mem-
brane-bound particles that are shed from both tumor and nonneo-
plastic cells into the peripheral circulation. EVs deliver a milieu of
cargo material, such as proteins, genomic DNA, and lipids, as well
EV long RNAs (exLRs), from parent cells to receptive cells.6 Circu-
lating EVs (cEVs) contain approximately 10,000 exLRs, mainly
mRNAs, long non-coding RNAs, and circular RNAs, which are stably
expressed and have shown clinical significance.7 Tissue- and tumor-
originated exLRs are specifically enriched in cEVs and reflect the bio-
logical activities, metabolic conditions, and immunogenic features of
their host cells.8 Previous studies showed that PDAC tumor-derived
EVs regulate the immunosuppressive TME and deliver anti-tumoral
transcriptomic signals, and that plasma-originated exLRs are critical
indicators of PDAC antitumor immune activities.9,10 Additionally,
exLRs are involved in critical processes of PDAC carcinogenesis,
including tumor growth, metastasis, drug resistance, and immune
modulation.11,12 Therefore, the mixture of non-enriched cEVs con-
taining both tumor-derived and non-tumor-derived exLRs13 may
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reflect tumor-intrinsic and non-tumor signatures, and evaluation of
exLRs may represent a new strategy for noninvasive molecular strat-
ification, prognostic evaluation, and treatment monitoring in PDAC.

We previously determined the abundance of exLRs in the plasma of
cancer patients14 and developed a strategy for exLR sequencing
(exLR-seq) in human plasma.15 Our study indicated that cEVs
contain approximately 10,000 exLRs, mainly mRNAs, which are sta-
bly expressed, harbor tissue-cellular specificity, and could serve as
biomarkers for PDAC early screening.13

In this study, we evaluated the potential usefulness of the circulating
exLR profile for PDAC subtyping. We traced the tissue-cellular
source contribution of cEVs and explored the correlation of the im-
mune landscape between tumors and cEVs. Our study established a
prognostic signature enabling noninvasive prediction of immuno-
genic features and clinical outcome for PDAC.

RESULTS
Circulating exLR-based subtyping of PDAC

The exLR-seq approach was implemented on plasma samples from an
internal cohort of 227 PDAC patients (Table S1). Approximately
14,000 exLRs were reliably detected, including protein-coding genes
(10,253, 74.91%), circRNAs (1,322, 9.66%), pseudogenes (1,218,
8.9%), lncRNA genes (764, 5.58%), and other small non-coding
RNAs (130, 0.95%) (Figure S1A).We included the top 60% aberrantly
expressed exLRs as candidate targets to explore underlying exLR-
based PDAC subtypes. We assessed clustering stability using the
consensus-clustering algorithm, which indicated the existence of
three major clusters (Figures S1B–S1F; see Materials and methods);
60, 97, and 70 cases were stratified to clusters C-I, C-II, and C-III,
respectively (Figure 1A). Principal-component analysis demonstrated
a clear distinction between each subgroup (Figure 1B). The number of
detected exLR species shows a significant difference between three
clusters. In particular, the amount of enriched protein-coding genes
in C-III was greater than in other group sets (C-I and C-II), which in-
dicates that plasma EVs of the third cases were additionally enriched
with exLRs, which could conduct exclusive biological functions
(Figure 1C).

Evaluation of the clinical characteristics of the three clusters revealed
a significantly increased number of patients with advanced tumor
stage and shorter overall survival (OS) time in C-III; the other char-
acteristics (age, sex, and CA19-9) were not associated with exLR-
based stratification (Figure 1D). Survival analysis showed that C-III
correlated with the shortest OS, while C-I correlated with the longest
OS (log-rank test, p < 0.001; Figure 1E). Therefore, our results sug-
gested that circulating exLR-based subtyping enables noninvasive
prediction of clinical outcome for pancreatic cancer.

Molecular features and pathway annotation of exLRs in exLR-

based clusters

To assemble these dysregulated circulating exLRs and explore their
underlying biological functions in each exLR-based cluster, the
weighted correlation network analysis (WGCNA) approach was
used to generate co-expressing exLR modules based on circulating
exLR-seq expression profiles, and it correlated each module with
phenotypes and clinical parameters (see Materials and methods and
Figure S2A). The variably expressed exLRs were distributed in eight
independent modules according to their degree of connectivity. Six
gene modules (M2–M7) were significantly associated with C-III
and one module (M1) was particularly referred to C-I (Spearman’s
correlation analysis, p < 0.001, Rho > 0.45; Figures 2A and S2B).
The exLRs that could not be contained in any modules were placed
into M8. All C-III-related modules were positively correlated with tu-
mor aggressiveness, whereas the inverse was observed with the C-I-
specific module; none of the modules showed any demographic
bias (Figure 2A).

Gene Ontology (GO) enrichment analysis was conducted to annotate
exLR genes in each module (Figure S2B). The exLRs of M1 (corre-
sponding to C-I) were involved in the adhesion and migration of
hemopoietic cells and represented favorable indicators for PDAC
prognosis (Figures 2B and S2C). Conversely, the exLRs of M2–M7
(C-III) were involved in the activation of tumoral and immunogenic
features, including RNA anabolic and catabolic processes, energy
metabolism, cellular and immune responses, and DNA replication
(Figures 2B and S2C; Tables S2–S8). The pre-ranked gene set enrich-
ment analysis (GSEA) strategy identified 191 pathways that were
significantly different in each cluster (C-I, n = 57; C-II, n = 42; C-
III, n = 92; false discovery rate [FDR] < 0.1, normalized enrichment
score > 1.5; Table S9). Unsupervised hierarchical clustering of the ab-
solute enrichment score determined two distinct pathway signatures
enriched in C-I and C-III samples (Figure 2C). C-I was exclusively en-
riched in vesicle-mediated molecule transport, GPR signal transduc-
tion, and cell motility-related pathways, while C-III was enriched in
cell proliferation and metastasis, metabolism, and immune-related
pathways (Table S9). The activation of chemokines, T cell receptor
(TCR)/B cell receptor (BCR) and antigen processing and presentation
signaling, as well as complement component genes overexpressed in
cEVs suggests that patients in the C-III group showed primary and
adaptive immune reactions in response to PDAC development.

Correlation analysis revealed 77 signaling pathways that showed
similar patterns in cEVs and tissue profiles, including PDAC- and im-
mune-related hallmark signatures, such as JAK-STAT, transforming
growth factor b (TGF-b), and WNT/b-catenin pathways and TLR-9/
10 cascades (Figure 2D; Table S10). These results suggest that circu-
lating exLRs serve as noninvasive indicators to jointly reflect tumor-
intrinsic and antitumor immune signatures.

Comprehensive landscape of tissue-cellular origins for cEVs

We previously developed a deconvoluting approach, termed EV-
origin, as a computational framework to infer the tissue-cellular ori-
gins of cEVs and cell type-specific genes from transcriptomic profiles
of cEVs.16 In this study, we expanded the number of traceable hemo-
poietic cell fractions. A total of 39 types of tissue-cellular fractions
were relatively or absolutely quantified, including 23 hematopoietic
Molecular Therapy: Nucleic Acids Vol. 26 December 2021 489
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Figure 1. PDAC prognostic subtyping based on circulating exLR-seq profile

(A) Consensus clustering matrix of exLR-seq data from the internal cohort for aggregating number k (k = 3), representing the clustering stability using 500 iterations of the

hierarchical clustering approach. The heatmap depicts the relative abundance of signature exLRs. (B) Two-dimensional scatterplot of principal-component analysis (PCA);

first two principal components derived from expression intensities of variable exLRs, with samples connected by centroids according to exLR-based PDAC subsets (red, C-I;

blue, C-II; yellow, C-III), are shown. The ellipse indicates the 90% confidence interval for each clustered group. (C) The relative distribution of exLR species per sample among

PDAC clusters. The diagram shows exLRs reliably enriched in plasma vesicles, with a frequency > 0.1 and mean expression value > 1. The center of the boxplots indicates

median values; the boundaries of the boxes show 25% and 75% quantiles. (D) Alluvial diagram shows differences among PDAC clusters according to overall survival (OS),

patient status, tumor stage, and carbohydrate antigen 19-9 (CA19-9). CA19-9 level greater than 100 U/mL was defined as high. **p < 0.01; n.s., not significant. (E) Kaplan-

Meier curves for OS in the 227 PDAC patients in the internal exLR-seq cohort indicate that exLR-based phenotypes strongly correlated with PDAC prognosis (log-rank test,

p < 0.001).
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components and 16 types of tissue constituents. Detailed information
of the candidate tissue/blood components with their hierarchical re-
lationships are shown in Table S11. Using the updated EV-origin
strategy, we portrayed an integrated atlas of a traceability system of
cEVs in exLR-seq samples from the internal cohort. In evaluation
of hemopoietic components, cEVs predominantly originated from
the hematopoietic stem cell fraction (platelets, 57%; red blood cells,
13%), followed by immunocyte components (30%) (Figure 3A, left).
Concerning the proportion of immune cell sources, lymphocytes ac-
counted for 81%, and the remaining myeloid component was 19%
(Figure 3A, right). These immune cell constituents were categorized
into adaptive (71%) and innate (29%) immune-related components
(Figure 3A, right; Table S11). CD8/CD4+ T cells accounted for 66%
of all immunocyte-derived constituents, and there was also a consid-
erable abundance of immunosuppressive cell components (regulatory
490 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
T cells, 5%; monocytes, 16%). We also evaluated the abundance of tis-
sue/solid organ-originated cEVs in PDAC plasma. Adipose tissue was
the most prominent tissue contributor to plasma EVs (72%), followed
by muscle (10%), lung (4%), and liver (4%); the pancreas accounted
for only 0.24% (Figure 3B; Table S8).

We additionally evaluated the cEV fractions from 81 healthy individ-
uals. In the comparison of absolute fractions of components, there
was no statistically significant difference in blood cell/tissue-derived
fractions between healthy and PDAC individuals (Mann-Whitney
U test, p > 0.05; Figure 3C). Source contribution heterogeneity anal-
ysis revealed that 80% (12/15) of the tissue-derived components were
increased in the PDAC group, while 65% (15/23) of hemopoietic-
sourced fractions were highly enriched in the healthy cohort (absolute
score, mean fold change > 1; Figure 3C). The enriched level of the



Figure 2. Systematic annotation of molecular features and pathway activation of exLR-based clusters

(A) The module-trait correlating matrix displays the correlation coefficients and significance levels of PDAC clusters and clinical and demographical factors for each exLR

module. (B) Systematic GeneOntology (GO) annotation network for genes in the eight modules in biological process, cellular component, andmolecular function aspects. We

filtered the top 10 significant annotating terms of each module and displayed these terms on the network diagram. The annotated GO terms are shown on each ellipse; the

size of the ellipse reflects the degree of enrichment (�log10[p value]), and the transparency of the text indicates the number of exLR genes from each enriched GO term (log2
transferred). The gray connection communicates each gene module with its corresponding annotation information. (C) Unsupervised clustering heatmap of ssGSEA

enrichment score of 191 cluster-specific signaling pathway signatures in the exLR-seq data from the internal cohort. Hierarchical clustering was implemented with Euclidean

distance and Ward linkage. Rows represent the signaling pathways derived from the current MSigDB 7.2 database that includes three major gene set collections (Hallmark,

Reactome, and KEGG sets), and columns represent plasma samples. The right panels display the average normalized enrichment score (NES) of represented signaling

pathways in PDAC clusters I and III. (D) The scatterplot demonstrates the tissue-cEV correlated signaling pathways from 61 PDAC patients with cEV and matched tissue

transcriptomic expression profiles.
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pancreatic tissue-sourced cEV fraction demonstrated a modest upre-
gulation in the PDAC cohort (Figure 3D).

Immunocyte-derived EVs perturbed in PDAC subtypes and

interconnected with tumor-infiltrating lymphocytes (TILs) in

tissue

We next investigated the underlying heterogeneity of cEVs and their
immunogenic source contribution among the PDAC phenotypes.
The immunocyte-derived EV fractions can be categorized into innate
and adaptive immunity categories to decode complex TME compo-
nents. The three clusters showed significant differences in four types
of innate immune constituents (i.e., monocytes, natural killer [NK]
cells, dendritic cells [DCs], and gd T cells). C-III exhibited the highest
proportion of all four innate immune cell types while C-I showed the
lowest proportions (Kruskal-Wallis rank-sum test, p < 0.05; Fig-
ure 4A, top). Among the adaptive immunity constituents, T helper
(Th)2 and Th17 cell fractions were upregulated in C-I, while high pro-
portions of T regulatory (Treg) cells, naive Th cells, central memory
CD8 T cells, memory B cells, and plasmablasts were observed in C-III
(Figure 4A, bottom). We further examined the absolute numbers to
determine the true abundance of cEVs derived from each immune
cell population. The immunogenic composition of cEVs gradually
increased from C-I to C-III (mean absolute score: C-I, 0.38; C-II,
0.40; C-III, 0.51; Figure 4B). The levels of innate and adaptive
Molecular Therapy: Nucleic Acids Vol. 26 December 2021 491

http://www.moleculartherapy.org


Figure 3. Comprehensive landscape of tissue-cellular origins for cEVs

(A) Relative distribution of all blood cell components estimated using the EV-origin approach from exLR-seq data from the internal PDAC cohort. The bar chart on the left

displays the relative abundance of cEVs from erythrocytes, immune cells, and platelets. The multilayer pie chart on the right shows the relative proportions of immunocyte-

originated cEV fractions. The diagram represents the categorization of immune cells belonging to each hemopoietic constituent and indicates the relative proportion of each

subset in the total immune fraction. (B) Relative distribution of tissue/solid organ-derived EV fractions from the internal PDAC exLR-seq cohort. n.s., not significant. (C) Integral

comparison of hemopoietic- and tissue-derived cEV absolute fractions from healthy control and PDAC plasma exLR-seq samples. The mean and upper and lower standard

deviation values are indicated by bars in each panel; the pink and yellow boxes show the absolute scores of hemopoietic- and tissue-derived EV fractions for healthy control

and PDAC exLR-seq samples, respectively. (D) Overview of the results of tissue-cellular originated cEVs in the PDAC and healthy control exLR-seq samples. The y axis shows

the mean fold change of all absolute fractions for PDAC versus healthy individuals.
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immunogenic cell fractions were both significantly upregulated in C-
III compared with C-I and C-II (Mann-Whitney U test, p < 0.05;
Figure 4B).

In addition, we dichotomized the absolute enrichment score of each
fraction and identified six innate immune subpopulations, including
five risk components (monocytes, basophils, DCs, NK cells, and neu-
trophils; hazard ratio [HR] > 1) and one potential protective factor
(gd T cells; HR < 1), that were significantly related to OS in PDAC
(p < 0.05; Figure 4C, left). In addition, 8 of 12 adaptive immune pop-
ulations were significantly correlated with OS in PDAC, including five
unfavorable (naive Th cells, Treg cells, plasmablasts, effector memory
492 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
CD8 T cells, and terminal effector CD8 T cells) and three protective
cell subsets (memory B, naive CD8 T, and Th2 cells) (Figure 4C,
right). Univariate regression analysis indicated that 4 of 7 innate
cell fractions and 9 of 12 adaptive-lymphocyte-derived components
were likely to be associated with exLR-based PDAC phenotypes
(p < 0.05; Figure 4D). We then used a stepwise variable selection pro-
cedure from Cox’s model to identify the most prognostic immuno-
genic fractions as variables, including Th2 cells, monocytes, Treg cells,
neutrophils, and effector memory CD8 T cells. By taking the intersec-
tion of the variables and the significant cell sets with regard to OS
(Figure 4C) and subtypes (Figure 4D), we identified three hub immu-
nocyte-originated cEV fractions, including two adaptive immune



Figure 4. Immunocyte-derived EVs perturbed in PDAC subtypes and interconnect with TILs in tissue

(A) The graph indicates the relative enrichment results of EV fractions from 21 types of immunocytes in the three PDAC subtypes from the discovery exLR-seq dataset. The

graph shows 7 types of innate immunity components on the top and 14 adaptive immune subsets on the bottom. The significantly different immune constituents are

highlighted in red color. (B) Comparison of the absolute fractions of cEVs from innate and adaptive immunocytes in the three exLR-based subtypes. The points and error bars

indicate the mean value and standard deviation of the absolute score, respectively. *p < 0.05; n.s., not significant. (C) OS in high- and low-enriched groups for absolute

immunocyte fractions by calculating the hazard ratio (HR) through Cox regression analysis. High and low expression was defined by the optimal cutoff of the quantitative

score. The dots represent the HR of univariate Cox test and the error bars show the 95% confidence intervals. (D) The panel displays the correlation between exLR-based

PDAC classifications and immune cell-originated EV fractions. The dots show the odds ratios of univariate logistic regression for immune cells in innate and adaptive

categories. The error bars show 95% confidence levels of odds ratios. (D) Venn diagram illustrating the number of immunocyte-originated EV constituents that are significantly

perturbed in PDAC subtypes and may function as prognostic indicators for PDAC. The bottom panel lists the three hub immune cell components along with their cell origin

and prognostic impact. (F) Co-enrichment network of tissue/cEV immune-relevant signatures. The three candidate immunocyte-originated EV constituents are shown in the

inside track (yellow triangles). The outside panel refers to the TILs in paired PDAC tissue. Each line represents the correlation coefficient of the immune cell signature between

tissue and circulating vesicles among the same PDAC cases. The bottom panel shows the prognostic value (high level, orange line; low level, purple line) of the three hub TIL

signatures in TCGA cohort.
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components (Treg and Th2 cells) and one innate immune fraction
(monocytes) that displayed critical roles for PDAC clinical outcome,
and these components showed significant differences among PDAC
subsets (Figure 4E).

The enrichment results of immunogenic cEVs raises questions
regarding whether EVs from blood could represent the abundance
of TILs in PDAC tissue. By deciphering the detailed portraits of
immunocyte disaggregation from transcriptomic profiles of cEVs
and paired tissues, we generated a full-scale correlation network
between TILs and hub cEV fractions (Figure 4F). The Treg cell-
originated EV component positively correlated with DC and
CD8+ T cell infiltration, whereas it was inversely associated with
Th2 cell abundance in paired tissue. There was a parallel enrich-
ment pattern between the congenital immunity cell-derived vesicle
components (monocytes) and the infiltration of NKT cells in
tissues.

We externally validated the prognostic significance of the three hub
constituents on PDAC patient survival using The Cancer Genome
Molecular Therapy: Nucleic Acids Vol. 26 December 2021 493
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Figure 5. Concordance of gene expression of immunoregulatory targets in cEVs and neoplastic tissues

(A) The heatmap of the expressional heterogeneity of immunomodulator (IM) genes in exLR-seq data from the internal PDAC cohort, scaled by row. Each row refers to an

immune-related gene and columns represent exLR-seq samples. Detailed classification and underlying functions of these immunoregulatory targets are listed in Table S12.

(B) Scatterplot displaying the relationship of IM gene expression values between cEVs and paired tissue in 61 PDAC patients. (C) Correlation of ligand-receptor immune

checkpoint genes in cEVs and corresponding paired tissues. (D) Circular chart represents the differently expressed IMs among the three PDAC subtypes. From the outside to

the inside, the diagram displays the average gene expression level of IMs in cEVs and matched tumor tissue, the mean fold-change enrichment of IMs among PDAC

subtypes, the p value (�log transformed), and the hazard ratio from univariate Cox analysis. The innermost arc-shaped curve highlights the prognostically consistent targets

for tissue and plasma vesicles. (E) Bubble plot indicates the prognostic concordance of 17 IM genes in cEVs, paired tumor tissue, and TCGA expression profiles. Three of the

IMs (dotted box marked) predicted PDAC prognosis (p < 0.05) in both blood and tissue datasets.
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Atlas (TCGA) dataset. The enrichment of immunogenic signatures
from Treg and monocyte cells exhibited equivalent prognostic value
in tissue and cEVs, which is consistent with their immunosuppressive
properties, whereas the Th2 cell-derived fraction showed opposite re-
sults (Figure 4F, bottom). The two candidate immune cell (Treg cells
and monocytes)-originated cEV components could jointly serve as
unprotective factors to forecast the clinical outcome for PDAC. Taken
together, these data suggested perturbed immunogenic cEVs that
were associated with immunosuppressive TILs in the TME.

Concordance of immunoregulatory targets in cEVs and cancer

tissues

Immunomodulators (IMs) are critical regulators for cancer chemo-
radiotherapy and immunotherapy, and numerous IM agonists and
antagonists have been explored and applied in clinical oncology.17,18

We collected a list of 76 IMs from the literature that exhibit multiple
494 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
effects on the tumor immunoreaction, with functions in antigen
presentation, cell adhesion, and immune checkpoint responses19

(Table S12). The exLR level of IMs perturbed and unsupervised
clustering results demonstrated that the IM profiles in cEVs could
distinctly segregate patients into three groups, which precisely
matched the exLR subtypes aforementioned in this study (Fig-
ure 5A). Eight immunogenic exLRs that are upregulated in C-I
show antitumor effects such as major histocompatibility complex
(MHC) class I antigen presentation and stimulatory immune check-
point responses. C-III was over-enriched with both antitumor and
immunosuppressive IMs, with an expression pattern that was
completely different from that of C-I. In addition, we compared
candidate immune-related targets in paired cEV and tumor tran-
scriptomes from 61 patients and observed close correlations of
expression between the two IM profiles (Rho = 0.65; Figures 5B
and 5D, top two tracks).
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Considering that the ligand-receptor pairs of immune checkpoint
genes (ICGs) are key factors that reflect the magnitude and duration
of the immune checkpoint response,20 we evaluated the expression
correlation of 19 ICG pairs in cEVs and matched cancer tissue. All
19 pairs were detected in tumors and cEVs (Table S13), and 7 of 19
ICG pairs showed coincident expression patterns (p < 0.01; Fig-
ure 5C). The expression levels of nine ligands displayed a significantly
positive correlation with their receptors in cEV profiles (p < 0.05;
Figure 5C). Overall, four ligand-receptor ICG pairs were activated
both in cEVs and tissue, including three inhibitory pairs (LGALS9-
HAVCR2, CD80-CTLA4, and PVR-TIGIT) and one stimulatory pair
(TNFRSF14-CD160) (Table S14). No significant expression correla-
tion was observed between CD274 (which encodes PD-L1) and
PDCD1LG2 (PD-L2) and their co-receptor PDCD1 (PD1) in cEVs
(Figure 5C). The inhibitory immune checkpoint receptor HAVCR2
(TIM-3) and its ligand LGALS9 (GAL9) represented the most signif-
icant co-expressed targets activated both in cancer tissue and cEVs
(Figures 5C, S3A, and S3B).

We next investigated whether these immunogenic targets can be
noninvasively used as biomarkers to track patient clinical outcomes.
We identified 52 IM targets that were differentially expressed
among the three PDAC clusters (Kruskal-Wallis rank-sum test,
p < 0.05; Figure 4A) and we correlated their expression level with
OS in PDAC using HRs from univariate Cox regression model.
Higher levels of 34 (65%) IMs indicated an increased risk of death
in PDAC (HR > 1), whereas 18 (35%) IMs showed the opposite
prognostic trend (HR < 1; Figure 5D, last track). Notably, HAVCR2
(TIM-3) was significantly upregulated in C-III and represented the
best survival predictor (p < 0.05; Figures 5D and S3C). Figure 5E
summarizes the risk assessment power of all IMs in PDCA from
both internal and independent cohorts. Seventeen IMs showed
similar prognostic patterns between cEVs and cancer tissue. Among
the 17 IMs, two immunosuppressive targets, TIM-3 and VEGFA,
were significantly correlated with poor prognosis, while one stimu-
latory target, SELP, was correlated with good prognosis (Figures 5D,
S3D, and S3E).

Construction of a tissue/cEV prognostic signature for tracking

PDAC clinical outcome

We next tried to simplify the above stratification strategy. The sample
sizes of our included internal and external cohorts enable adequate
power (1-b, more than 0.9) to predict patient survival and prognosis
(see Materials and methods). The workflow used to identify a tissue/
cEV prognostic signature for PDAC is shown in Figure 6A. We first
eliminated exLRs with an expression frequency less than 25% and
evaluated the differentially expressed genes among the three PDAC
subtypes from exLR-seq profiles in the internal cohort (Kruskal-
Wallis rank-sum test, FDR < 0.05; Table S15). We further harvested
markers with prognostic concordance in blood and lesions; the
univariate Cox approach was used to investigate the blood-tissue
prognostic valuable markers in patients with cEV and paired-tissue
transcriptomic profiles (p < 0.05, see Materials and methods). We ob-
tained 986 exLRs, most of which (n = 802) were associated with poor
prognosis of PDAC (HR > 1); a small number of candidate exLRs (n =
184) were indicated as protective prognostic factors (HR < 1) (Table
S16). GO enrichment analysis revealed that the exLRs were involved
in regulation of lymphocyte activation and differentiation, innate/
adaptive immune responses, RNA transport, and activation of can-
cer-related cell signaling (Table S17).

We further conducted a variable constriction in the internal exLR-seq
dataset; the random-forest algorithm and the LASSO-Cox method
were used to reduce the dimensionality. Nine exLR targets (HAVCR2,
ADK, TP53I11, TBL3, ACD, LGALS9, CANT1, LYL1, and PKIG) were
used to construct a model for predicting PDAC prognosis. The
immunoregulatory factors HAVCR2 and LGALS9, which were iden-
tified as receptor-ligand ICGs, were also selected as candidate prog-
nostic factors (Figure 6B). Using the multivariate Cox algorithm,
we established a prognostic model and generated an aggregate circu-
lating exLR-based prognostic score for PDAC (cp-score; Figure 6B,
left). C-III exhibited a high median cp-score compared with the other
exLR-based clusters (C-I, �0.39; C-II, �0.05; CIII, 0.40; Kruskal-
Wallis test, p < 0.001). Kaplan-Meier curves were constructed for
PDAC patients separated into high- and low-risk subgroups relative
to the optimal cutoff for cp-score (see Materials and methods). The
median OS in the low-risk group was significantly higher than that
of the high-risk group in the internal and external independent
exLR-seq cohorts (p < 0.001, internal cohort, n = 227; p = 0.013,
external independent cohort, n = 118; log-rank test; Figures 6D and
6E). Multivariate Cox regression analysis showed that the cp-score
was highly associated with the risk of death and was an independent
prognostic factor of survival in all exLR-seq datasets (p < 0.001;
Figure 6F).

We next explored whether the cp-score can be used for evaluation of
prognosis using resected tissue. Using the same markers, we recon-
structed a prognostic model and generated a tissue-specific p-score
(tp-score) from internal paired tissue profiles. The nine candidates
showed equivalent power for risk estimation in tissue consistent
with that in cEVs (Figure 6B, right). Patients with a high tp-score
showed a shortened survival time (p < 0.001, HR = 2.9; 95% confi-
dence interval [CI], 1.66–5.09; Figure 6G). The predictive ability of
the tp-score was externally validated in tissue transcriptomic profiles
from three independent datasets (TCGA-PDAC, p < 0.01, HR = 2.08;
ICGC-PDAC-AU, p < 0.05, HR = 2.99; ICGC-PDAC-CA, p < 0.05,
HR = 1.64; Figures 6H, S4A, and S4B).

In addition, we evaluated whether the p-score could predict PDAC
therapeutic effect by assigning the patients into high or low p-score
groups both in cEVs and tissue datasets. The cp-score predicted tu-
mor recurrence for resectable PDAC (stage I/II) cases after surgery
(TTR, HR, 1.71; 95% CI, 1.02–2.85; p < 0.05; Figure S4C). Consistent
with these findings, a low tp-score in patients showed significant as-
sociation with prolonged TTR both in the internal (HR, 2.69; 95% CI,
1.49–4.83; p < 0.001; Figure S4D) and independent tissue cohort (HR,
1.94; 95% CI, 1.17–3.22; p < 0.01; TCGA dataset; Figure 6I). Collec-
tively, our results suggested that the cEV-derived prognostic signature
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Figure 6. Construction of a tissue/cEV prognostic signature for tracking PDAC clinical outcome

(A) Workflow of prognostic marker selection and prognostic model construction. DEG, differentially expressed gene. (B) Characteristics of the nine markers with their co-

efficient and hazard ratios of a multivariate Cox model for PDAC prognosis prediction. (C) Comparison of cp-scores among the exLR-based PDAC subtypes. (D and E) OS

curves of PDAC patients were stratified according to high- and low-cp-score in the discovery (D) and independent datasets (E). (F) Multivariate Cox analysis of clinico-

pathologic factors and cp-score with OS in the entire cohort. Variables with independently prognostic significance are highlighted in red. (G) Analysis of the tissue prognostic

score (tp-score) using the paired tissue of the internal cohort; the number of patients in the high-tp-score and low-tp-score groups are n = 31 and n = 30, respectively. (H and I)

Kaplan-Meier curve shows the OS (H) and time to recurrence (I) in patients according to tp-score in the TCGA-PDAC cohort. All of the high and low classifications were

determined for each patient based on the dichotomized p-score.
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harbor equivalent as that of tumor tissue derived for predicting PDAC
clinical outcome, including for predicting risk of recurrence after
surgery.

DISCUSSION
PDAC is characterized by a high degree of intra-tumoral heterogene-
ity and an immunosuppressive TME, which represent the main
obstacles to accurate stratification and treatment efficiency.21,22 The
difficulty in obtaining tumor specimens from most PDAC patients
as well as the molecular heterogeneity of PDAC tumors make liquid
biopsy-based biomarker assays crucially important to individualize
management.5,13,23 In this study, we deciphered the cEV transcrip-
tomic information using exLR-seq profiles from 345 PDAC plasma
samples, representing the first study of noninvasive prognostic
subtyping of PDAC based on large-scale plasma EV transcriptome
analysis. We comprehensively characterized the heterogeneity of tis-
sue-cellular origins and the immunomodulatory landscape from cEV
496 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
profiles, identified novel therapeutic targets, and constructed a nine
exLR-based prognostic signature for PDAC.

We identified three PDAC subtypes based on plasma exLR profiles.
Each subtype has its own molecular features and is related to patient
prognosis. C-III patients had the worst prognosis and exhibited high
expression of multiple cancer/immune-related exLRs in plasma. In
addition, many signaling pathways shared similar concordance
both in cEVs and cancer tissue, which includes PDAC- and im-
mune-related hallmark signatures. Wnt/b-catenin signaling plays a
critical role in pancreatic carcinogenesis and therapeutic resistance
and regulates cell cycle progression, apoptosis, epithelial-mesen-
chymal transition, angiogenesis, stemness, and the tumor immune
microenvironment.24 TGF-b signaling pathways play a central role
in the immunosuppressive response to cancer.25 PDAC-derived
EVs could transform TGF-b signaling relative signatures into Kupffer
cells and are involved in liver pre-metastatic niche formation and
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TME re-construction to increase PDAC metastatic burden.9 The
crosstalk between TGF-b and WNT/b-catenin signaling in EVs pro-
motes PDAC carcinogenesis. Thus, targeting these signaling path-
ways is an actively pursued strategy in PDAC treatment.26–28

We previously demonstrated that plasma exLRs derived from pancre-
atic cancer were significantly over-enriched in PDAC cases compared
with benign samples and healthy controls.13 Based on the enumer-
ating results of our EV-origin approach, the quantification of cEVs
from specific tissue sources may reflect organ status during disease
progression. In this study, cEVs in PDAC patients had significantly
dysregulated tissue/organ sources, such as pancreas and liver, and
were more likely severely affected by neoplastic invasion from pri-
mary and metastatic lesions, suggesting that the tissue/solid organ
tracing strategy of our approach may noninvasively monitor the
occurrence and development of PDAC in real time. We also observed
that the cytotoxic immune cell components with a tumor-killing ef-
fect in PDAC were significantly reduced while immunosuppressive-
related components were increased, reflecting neoplastic education
to the immune system in response to carcinogenesis.29–31

PDAC comprises tumor cells within a microenvironment of extracel-
lular matrix, stroma cells, endothelial cells, and immune cells.32 The
therapeutic limitations of chemotherapy and immunotherapy have
been attributed to the PDAC-specific TME.21 We hypothesize that
analysis of the immune cell source contribution of cEVs could
partially trace the body’s anti-tumor immune response and the dy-
namic alternation of the TME. A previous study reported that the
PDAC-specific TME was predominantly affected by immunosup-
pressive cells, which may lead to the dysfunction of infiltrated
CD8+ T cells.33 These findings are consistent with our results and
show that although cEV components from anti-tumor immune cells
(such as terminal effector CD8/CD4+ T cells) were enriched in C-III,
the patient prognosis and clinical outcome were still dismal. At the
same time, monocyte-derived suppressor components, as well as
Treg cells, are partnering factors that jointly contribute to local
immunosuppression and tumor immune escape.34,35 In agreement
with this, we found that monocyte- and Treg cell-originated EV frac-
tions were significantly associated with aggressive phenotype and
indicated poor patient outcome. In addition, pancreatic neoplasia
cells may produce high levels of cytokines to recruit Treg cells, which
in turn inhibit the anti-tumor effects of cytotoxic T lymphocytes.36

Treg cells engage in extended interactions with tumor-infiltrated
DCs and restrain their immunogenic function by suppressing the
expression of costimulatory ligands necessary for CD8+ T cell activa-
tion.37 Consistent with the results observed in the TME, we found that
the abundance of EVs derived from Treg cells was positively corre-
lated with DCs and CD8 T cells infiltrating in tissues, suggesting
that these interactions might be relevant to the immunosuppressive
function of Treg cells. The immunosuppressive cEV components
partially explain the poor prognosis in C-III. Therefore, exploration
of these immune cell-derived components can provide a noninvasive
and joint approach to dissect TME alterations and provide evidence
for PDAC treatment.
Advances in immune checkpoint blockade have brought a renewed
appreciation of the value for reversing the immunosuppressive
TME,38 and recent studies have focused on targeting PD-1/PDL1
and CTLA-4 in cancer treatment.39,40 However, it appears that other
key regulators also suppress the host’s immune system and function
in immunotherapy resistance in cancers, including PDAC. By deter-
mining the heterogeneous expression pattern of ICGs within PDAC
subtypes, we identified inhibitory immune checkpoint receptors,
including TIM-3 and TIGIT, which were upregulated in cEVs and
cancer tissue. TIM-3 and TIGIT expressed on the surface of T lym-
phocytes are bound by their ligands, Galectin-9 (encoded by
LGALS9) and CD155 (PVR), to induce T cell exhaustion and immune
escape.41,42 Several anti-TIM-3 agents have been evaluated in clinical
trials for solid and hemopoietic malignances.43 Targeting the TIM-3/
LGALS9 and PVR/TIGIT axis may represent a promising approach
for improvement of current immune checkpoint therapies.44,45 We
confirmed that this pattern of co-expression activation of ligand-
receptor pairs can be detected in cEVs and harbored prognostic
significance as in tissue. In addition, these suppressive ICGs
were strictly enriched in the aggressive subsets, which may also
explain why most patients with advanced PDAC are resistant to
immunotherapies.46

Our study had several strengths. First, this is the first PDAC subtyping
study using cEV long RNA profiling. Second, the EV-origin deconvo-
lution study has provided the first comprehensive landscape of tissue-
cellular origins for cEVs in PDAC and suggested that immune cell-
derived cEV components could reflect the TME heterogeneity, thus
allowing dynamic monitoring of TME remodeling in a real-time,
noninvasive fashion. However, this study has some limitations. The
subtyping study was based on retrospective cohorts, and therefore
most patients did not have enough gene mutation and cancer tis-
sue-based molecular information to annotate exLR-based molecular
subtypes. Moreover, the tumor samples matched with plasma EVs
included in our study were derived from early resectable PDAC tu-
mor tissue, which may insufficiently explain the characteristic corre-
lation in advanced PDAC.

Conclusions

Our findings demonstrated the potential of circulating exLR for
PDAC subtyping. Based on a deconvolution study and paired cancer
tissue profiling, we identified a profound correlation of the immune
landscape between tumors and cEVs and identified novel PDAC ther-
apeutic targets. Importantly, we constructed a robust nine exLR-
based tissue-applicable signature for prognostication assessment of
PDAC. Therefore, cEV long RNA-based subtyping and deconvolu-
tion enable noninvasive prediction of immunogenic signatures and
clinical outcomes for PDAC.

MATERIALS AND METHODS
Study design

This study employed a two-phase design. First, the subtyping, decon-
voluting, and biomarker discovery phase was conducted, where we
comprehensively analyzed the circulating exLR-seq transcriptomic
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data from patients with PDAC in the internal cohort for the identifi-
cation of exLR-based PDAC phenotypes and clinical significance. We
deconvoluted the tissue-cellular origin of cEVs between healthy con-
trols and PDAC samples and investigated the potential clinical effi-
cacy of immunogenic components at tissue and circulatory levels.
In the second phase, we identified a clinically translatable signature
from cEVs that predicts patient survival and tumor relapse. We per-
formed validation of the discovered biomarkers both in cEVs and tis-
sue profiles from multiple clinical cohorts of patients with PDAC.

Patient cohorts, sample characteristics, and data generation

A total of 426 individuals were enrolled in this study, including 345
patients with pathologically confirmed PDAC and 81 healthy controls
receiving routine healthcare. Among the 345 PDAC cases, 227 plasma
specimens were collected from Fudan University Shanghai Cancer
Center (Shanghai, China) (as an internal cohort) between January
31, 2012 and June 6, 2017, and 118 PDAC cases (as an external inde-
pendent cohort) were recruited from Shanghai Hospital of the Second
Military Medical University (Shanghai, China; n = 100) and Xi’an
Jiaotong University Affiliated Medical Center (Xi’an, China; n = 18)
between September 11, 2018 and April 2, 2019. Plasma was collected
from PDAC patients before surgery for patients with resectable tu-
mors and before chemotherapy for patients with inoperable tumors.
The available plasma EV transcriptomic profiles originated from our
previously published study13 and can be downloaded from the Gene
Expression Omnibus (GEO) dataset with the access no. GEO:
GSE133684. For tissue specimen collection, we obtained 61
formalin-fixed, paraffin-embedded exLR-seq-matched PDAC tumor
tissues from the internal cohort. The transcriptomic expression pro-
files of plasma EVs and matched tissue specimens from 61 PDAC pa-
tients from the internal cohort with OS and TTR information were
determined. We downloaded tissue transcriptomic profiles from
three external PDAC datasets (TCGA-PDAC, n = 150; ICGC-
PDAC-CA, n = 131; ICGC-PDAC-AU, n = 73) to further validate
the candidate exLR signature at the tissue level. The demographics
and clinicopathologic characteristics for all patient cohorts are shown
in Table S1.

We isolated plasma EVs by affinity-based binding to a spin column
using the exoRNeasy serum/plasma kit (QIAGEN, Hilden, Ger-
many). A SMARTer stranded total RNA-seq kit (Clontech, Palo
Alto, CA, USA) was used to prepare the strand-specific RNA-seq li-
braries. The library quality of the 10 plasma exLR-seq samples per
lane was sequenced with adding 20% PhiX to control base balance.
The previously published Assembling Splice Junctions Analysis
(ASJA) approach was used to conduct quality control, reads mapping,
and transcripts quantification.47 The raw count matrixes were trans-
formed into transcripts per kilobase million (TPM) values with
gencodeV29 annotation to make gene expression profiles more com-
parable between cEVs and paired tissues. The expression of a
circRNA gene for each exLR-seq sample was calculated as spliced
reads per billion mapping (SRPBM = number of circular reads/total
mapped reads [units in billion]). For the external TCGA-PDAC
cohort, the RNA sequencing data and updated clinicopathological in-
498 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
formation were downloaded from UCSCXenaTools package (https://
github.com/cran/UCSCXenaTools).

Digital quantification of tissue-cellular-originated cEVs and TILs

We used the EV-origin approach to quantify the abundance of EV
fractions from blood and tissue origins from plasma exLR expression
data.16 The EV-origin method was constructed from two representa-
tive signature matrices and a core SVM regression algorithm to de-
convolute 7 hemopoietic cells and 16 tissue components from
exLR-seq transcriptomic profiles. In this study, we expanded the
number of traced hemopoietic fractions to 23, including 21 types of
immunocytes and 2 hematopoietic stem cell constituents (see Table
S11). The new hemopoietic signature matrix was constructed by the
normalized expression profiles of isolated blood cells from two data-
sets.16,48 We selected cell-specific genes and re-built the comparable
blood signature matrix by the samemethod as EV-origin. The relative
proportions and absolute fractions of 23 hemopoietic cells and 16
types of tissue/solid organ-derived cEV constituents were detected
in each exLR-seq sample. To determine the abundance of infiltrating
immune cells in PDAC tissue, we used a single-sample GSEA
(ssGSEA) integrated with TIL gene signatures,49,50 which allows for
reliably discriminating the enrichment of 17 human immune cell phe-
notypes from tissue expression profiles.

exLR-based PDAC subtyping

We used the ConsensusClusterPlus package to select the optimal clus-
ter number and determined the clustering stability for the internal
cohort.51 To capture stabilized exLR-based subtypes of PDAC, we
first removed the exLRs with expression frequency no more than
50% to reduce the influence of low-frequency noises. Then we used
a median absolute deviation (MAD) algorithm (a robust measure of
sample bias for univariate numerical data) to fully characterized the
exLR expressional viability in the internal exLR-seq cohort. We finally
harvested 8,922 exLR targets (top 60% targets of MAD quantitative
ranking) as input markers for consensus clustering. These exLR-seq
samples were grouped using hierarchical agglomerative clustering
based on Manhattan distance and the strategy of partition around
medoids (PAM). We selected the iteration number as 500 and
the subsampling ratio as 0.8 to identify optimal clusters from a
consensus similarity matrix generated by consensus clustering. Three
completely segregated subtypes from the exLR-seq data in the internal
cohort were obtained. These discovered clusters were used as repre-
sentative subpopulations for further analysis.

Building a predictive model for PDAC clinical outcome

On the basis of the exLR-seq analysis, we developed a combined
circulating prognostic score (cp-score) for noninvasively estimating
PDAC prognosis. We used the 227 cases in the internal cohort for dis-
covery and 118 cases in the external independent cohort for valida-
tion. In the exLR-seq data from the internal cohort, we removed
exLRs with a frequency less than 25% to obtain reliably expressed var-
iables. A Kruskal-Wallis test was used to assess the differential expres-
sion of exLRs among the three clusters, and the p value of eachmarker
was adjusted by the Benjamini-Hochberg method to control the
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FDR.52 We retained exLRs with an FDR less than 0.05 and carried out
a consecutive model-based variable selection approach to identify
prognostic valuable markers for predicting survival outcome.53 We
first performed a univariate pre-screening procedure to remove exces-
sive noise and obtain cancer-related targets to facilitate the subse-
quent computational analysis. We used whole-transcriptomemarkers
as covariates, and the univariate Cox proportional hazards model was
fitted to explore prognostic targets both in cEVs and paired tumor tis-
sue profiles. Only markers with a p value <0.05 from theWald statistic
were retained. Overall, we obtained 986 exLRs that concurrently
showed prognostic concordance in blood and tissue, in which the
expression level indicates the same prognostic risk both in patient
cEVs and tissues. We then used LASSO-Cox and the random forest
algorithm to further shrink the marker number to a reasonable
range.54,55 For the LASSO-Cox constraint, 80% of exLR-seq samples
from the training cohort were randomly subsampled to conduct
LASSO regularization in 1,000 repetitions. We used 10-fold cross-
validation and the Akaike information criterion to select an optimal
value of “1-se” lambda parameter to construct an adaptive prognostic
model for marker selection. The Boruta algorithm (a wrapper built
around the random forest classification algorithm) was used to
concurrently conduct dimension reduction and screen prognostically
significant exLRs. This process generated nine final markers for a
prognostic signature in the internal and validation cohorts. By fitting
a multivariable Cox proportional hazards model on these nine targets
from the internal EVs and tissue dataset, we determined the coeffi-
cients of each marker and generated two combined prognostic scores
(p-score, designated as the cp-score for blood EVs and the tp-score for
PDAC tumor tissue) for each individual. We then validated the signif-
icance of the prognostic scores in the independent datasets for the
assessment of clinical outcome of PDAC.

Functional and pathway enrichment analysis

Weighted gene co-expression network analysis (WGCNA) was per-
formed to construct co-expressed networks and identify co-expres-
sion of exLRmodules in the exLR-seq data from the internal cohort.56

We usedmedian absolute deviation to estimate the degree of variation
for exLR expression and applied WGCNA based on the exLR-seq
expression data constructed by the top 5,000 aberrantly expressed
exLRs. We first created a matrix of adjacencies by conducting the
Pearson correlation analysis between gene pairs to determine the con-
cordances of gene expression; this matrix was then transformed into a
topological overlap matrix. The resulting topological overlap is a bio-
logically meaningful measure of gene similarity based on co-expres-
sion relationships for the comparison of each gene pair. To identify
the relatively balanced scale independence and mean connectivity
of the WGCNA, we carefully selected the scale-free topology fit index
to find an optimal soft-thresholding power. As shown in Figure S2A,
the power value 16 was used to produce a hierarchical clustering
dendrogram of 5,000 variable exLR genes. The module eigengenes
were determined as the primary key components computed by prin-
cipal-component analysis that represents the manifestation of exLRs
of a functional module into a unitary characteristic quantitative value.
The manifestation configurations of exLR modules related to the
traits of internal individuals were quantified by gene significance
(GS) and module significance (MS). The GS measure was defined
as the results of the Spearman correlation analysis among the ith
gene profile xi and the sample trait T, and MS was defined as the
average GS for all genes in the module:

GSi = jcorðxi; TÞj:
The exLR genes were separated into eight co-expression modules
according to their degree of connectivity. Each subunit was autono-
mously authenticated with another, which revealed a high level of in-
dividuality among the modules and the comparative independence of
gene manifestation in each module. The exLRs that could not be con-
tained in anymodules were placed into module 8, which was removed
in the subsequent GO analysis. All modules revealed a high correla-
tion with PDAC phenotypes (C-I and C-III) and stage (Figure 2A).
We represented seven modules (M1–M7) as the most significant
modules to reflect cEV inner transcriptomic heterogeneity among
PDAC clusters. Gene annotation enrichment results were estimated
from the clusterProfiler package57 for each module-specific exLR
gene. We used a strict cutoff of FDR <0.05 to identify GO terms
that were significantly enriched in each module (Tables S2–S8). We
identified the aberrantly enriched signaling pathways among PDAC
subtypes by running a pre-ranked GSEA of the expression data for
exLR genes. Gene sets were downloaded from the MSigDB platform
of the Broad Institute that includes current annotations of Hallmark,
Reactome, and KEGG datasets (Molecular Signatures Database
v7.2).58,59 The p value calculations were based on 5,000 permutations
of GSEA, and the multiple testing was subsequently adjusted by Ben-
jamini-Hochberg method to regulate the FDR.52

Statistical analysis

We used the Shapiro-Wilk normality test to examine the normality of
quantitative variables. For the comparison of variables in two groups,
the statistical significance for normally distributed variates was eval-
uated by a two-side Student’s t tests, and the group with non-normal
distributions was tested by a Mann-Whitney U test (Wilcoxon rank-
sum test). For the comparison of unreplicated data in more than two
groups, the Kruskal-Wallis test and Friedman rank-sum test were im-
plemented as non-parametric statistical approaches. We applied the
Benjamini-Hochberg strategy to adjust the p value of multiple DEG
analysis to control the FDR.52 The logistic regression was used to
determine the statistical significance of the correlation between qual-
itative variables and PDAC subtypes. The optimal cutoff values of
each dataset were calculated based on the correlation between patient
survival data and continuous variables in each separate dataset using
the survminer package. The Kaplan-Meier approach was used to
construct cumulative survival curves for subgroups of each cohort,
and the log-rank test was implemented to determine the statistical dif-
ference between groups. We used the univariate Cox proportional
hazards regression model to analyze HRs for univariate prognostic
analysis. We hypothesized that the power of prognostic evaluation
could be more than 0.9 with the introduction of exLRs, EV-derived
components, and p-signature. With a two-side alpha (significance
level) at 0.05, an overall event rate set at 0.93 for the internal cohort
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and 0.72 for the independent cohort, and an HR at 1.5, the included
sample size was sufficient in the internal and validation cohorts to
ensure a power of more than 95% for predicting PDAC prognosis (ac-
cording to the PASS 11.0 software of power [1�b] calculation for
the Cox proportional hazards regression analysis with covariates).60

The prognostic independence of the p-score was determined by the
multivariate Cox regression model. All statistical analyses were
conducted by R program (v3.6.1, https://www.r-project.org/). The
p values were two-sided, and a p value less than 0.05 was considered
statistically significant.
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