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Abstract: Various solid forms of pharmaceutically important compounds exhibit different physical
properties and bioactivity; thus, knowledge of the structural landscape and prediction of sponta-
neous polymorph transformations for an active pharmaceutical ingredient is of practical value for
the pharmaceutical industry. By recrystallization from ethyl acetate, a novel polymorph of 6-fluoro-3-
hydroxypyrazine-2-carboxamide (trademark favipiravir, RNA polymerase inhibitor) was obtained
and characterized using differential scanning calorimetry (DSC), infra-red spectroscopy and pow-
der X-ray diffraction (XRD) analysis. The favipiravir molecule in two polymorphs realizes similar
H-bonding motifs, but the overall H-bonded networks differ. Based on periodic density functional
theory calculations, the novel tetragonal polymorph with two interpenetrated H-bonded networks
is slightly less stable than the orthorhombic one with the zst topology of the underlying H-bonded
net that is in accord with experimentally observed powder XRD patterns of slow conversion of
the tetragonal phase to the orthorhombic one. However, topological analysis of net relations revealed
that no transformations can be applied to convert H-bonded networks in the experimental unit cells,
and DSC data indicate no solid-state reactions at heating.

Keywords: active pharmaceutical ingredient; quantum theory “atoms in molecules”; polymorphism;
powder X-ray diffraction; periodic density functional theory calculations

1. Introduction

A detailed understanding of polymorphism is of crucial importance for many appli-
cations in a range of industries due to the prominent variation in properties of solids of
the same chemical formula but with different crystal packing. Particularly in the phar-
maceutical industry, different polymorphs of an active pharmaceutical ingredient (API)
are known to exhibit different solubility, hygroscopicity, tabletability, bioavailability, et
cetera [1–8]. Polymorphism at ambient conditions can be associated with various confor-
mations of a flexible API, various molecular packing or with different systems of hydrogen
bonds for polytopic molecules. In the latter case, either the local molecular environment
can differ as a result of competition between various functional groups, or topological
isomers of H-bonded networks can appear for molecules with similar local environments.

During our study devoted to the screening of novel solid forms of active pharma-
ceutical ingredient, a novel polymorph of favipiravir (Scheme 1) was obtained. This
compound is used as antiviral medication against Ebola virus [9], Lassa virus [10] and
COVID-19 [11,12]. Herein, we report on the crystal structure of the novel polymorph
of favipiravir as obtained from powder X-ray diffraction data, its infra-red spectra and
calorimetric data. A comparison of the local molecular environment and overall packing
was carried out. The absence of direct transformations between two H-bonded networks
was demonstrated.
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Scheme 1. Favipiravir molecule with atom numbering. Intramolecular OH...O bond is depicted 
with dashed line. 

2. Materials and Methods 
Favipiravir substance was obtained from Nantong Jinghua Pharmaceutical Co., Ltd. 

(Nantong, China) and recrystallized from ethyl acetate. IR spectra of solids were rec-
orded on an IR spectrometer with a Fourier transformer Shimadzu IRTracer100 (Kyoto, 
Japan) in the range of 4000–600 cm−1 at a resolution of 1 cm−1 (Nujol mull, KBr pellets). The 
calorimetric studies were performed on a Discovery DSC 25 calorimeter (TA Instruments, 
New Castle, DE, USA). The heating and cooling rates were both equal to 5 °C/min. 

2.1. Powder XRD studies 
The powder patterns were measured using a Bruker D8 Advance (λ(CuKα) = 1.5418 

Å, Ni filter, Bragg–Brentano geometry, 1D-detector LynxEye, Bruker AXS, Inc., Madison, 
WI, USA) diffractometer, θ/θ scan from 5.0° to 50°, step size 0.020°, with the sample de-
posited on a silicon zero background holder. The pattern of the new form was indexed 
using the SVD-Index [13] as implemented in TOPAS 5 software [14]. The model for the 
solution and refinement was prepared based on a structure of the orthorhombic modifi-
cation. The solution was obtained using the Parallel Tempering method as implemented 
in FOX [15]. The position of the favipiravir molecule in the new tetragonal modification 
was then refined using rigid body and Rietveld refinement in TOPAS 5 [14]. The atomic 
coordinates of the orthorhombic modification in the final refinement were not refined. 

Crystal Data for C5H4FN3O2 (M = 157.11 g/mol): space group P42/n (no. 86), a = 
9.2805(7) Å, c = 14.6491(13) Å, V = 1261.7(2) Å3, Z = 8, T = 298 K, Dcalc = 1.657 g/cm3 (Table 
1). The Rietveld refinement converged to Rp/RP’/RWP/RWP’/RBragg values of 
3.79/10.23/5.19/10.13/1.48% with Rexp/Rexp’ of 2.35/4.59%, GOF = 2.21. The crystallographic 
data for the new tetragonal form were deposited in CCDC № 2047143. 

Table 1. Summary of the powder patterns depicted in Figure 1 refinement. 

Unit cell parameters Tetragonal* Orthorhombic** 
a, Å 9.2805(7) 9.1133(6) 
b, Å 9.2805(7) 14.7708(10) 
c, Å 14.6491(13) 4.6893(3) 

V, Å3 1261.7(2) 631.23(7) 
ρ, g/cm3 1.6557(3) 1.6531(2) 
Rwp, % 5.190 8.339 

Rbragg, % 3.394 4.537 
*The sample depicted in Figure 1a contains 6.4(4)% of the orthorhombic modification. ** Powder 
pattern is depicted in Figure 1b. 

2.2. DFT Calculations 
All DFT calculations of the crystal structures of polymorphs were performed within 

the PBE exchange–correlation functional using VASP 5.4.1 [16–19]. Atomic coordinates 
were optimized; however, cell parameters were fixed at their experimental values to 
prevent cell contraction or expansion. To improve the description of van-der-Waals in-
teractions, D3 correction [20] was applied. Atomic cores were described using small-core 
PAW potentials. Valence electrons (2s and 2p for O and N atoms; 3p, and 3s for S; 1s for 

Scheme 1. Favipiravir molecule with atom numbering. Intramolecular OH...O bond is depicted with
dashed line.

2. Materials and Methods

Favipiravir substance was obtained from Nantong Jinghua Pharmaceutical Co., Ltd.
(Nantong, China) and recrystallized from ethyl acetate. IR spectra of solids were recorded
on an IR spectrometer with a Fourier transformer Shimadzu IRTracer100 (Kyoto, Japan)
in the range of 4000–600 cm−1 at a resolution of 1 cm−1 (Nujol mull, KBr pellets). The calori-
metric studies were performed on a Discovery DSC 25 calorimeter (TA Instruments, New
Castle, DE, USA). The heating and cooling rates were both equal to 5 ◦C/min.

2.1. Powder XRD Studies

The powder patterns were measured using a Bruker D8 Advance (λ(CuKα) = 1.5418 Å,
Ni filter, Bragg–Brentano geometry, 1D-detector LynxEye, Bruker AXS, Inc., Madison, WI,
USA) diffractometer, θ/θ scan from 5.0◦ to 50◦, step size 0.020◦, with the sample deposited
on a silicon zero background holder. The pattern of the new form was indexed using
the SVD-Index [13] as implemented in TOPAS 5 software [14]. The model for the solution
and refinement was prepared based on a structure of the orthorhombic modification. The so-
lution was obtained using the Parallel Tempering method as implemented in FOX [15].
The position of the favipiravir molecule in the new tetragonal modification was then re-
fined using rigid body and Rietveld refinement in TOPAS 5 [14]. The atomic coordinates of
the orthorhombic modification in the final refinement were not refined.

Crystal Data for C5H4FN3O2 (M = 157.11 g/mol): space group P42/n (no. 86), a =
9.2805(7) Å, c = 14.6491(13) Å, V = 1261.7(2) Å3, Z = 8, T = 298 K, Dcalc = 1.657 g/cm3

(Table 1). The Rietveld refinement converged to Rp/RP’/RWP/RWP’/RBragg values of
3.79/10.23/5.19/10.13/1.48% with Rexp/Rexp’ of 2.35/4.59%, GOF = 2.21. The crystallo-
graphic data for the new tetragonal form were deposited in CCDC № 2047143.
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fication has two characteristic peaks at 2θ = 14.8 and 18.1°. Their presence allows one to 
reveal the formation of this form even without refining the powder pattern. Note that the 
pure orthorhombic form was obtained from methanol, ethanol, iso-propanole, 
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Figure 1. Powder XRD patterns for new tetragonal (a) and orthorhombic (b) forms of favipiravir. Experimental (blue), 
calculated (red) and their difference (grey) curves are depicted. The asterisks denote characteristic peaks of the new te-
tragonal form (111 and 112 reflections). 

Figure 1. Powder XRD patterns for new tetragonal (a) and orthorhombic (b) forms of favipiravir. Experimental (blue),
calculated (red) and their difference (grey) curves are depicted. The asterisks denote characteristic peaks of the new
tetragonal form (111 and 112 reflections).
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Table 1. Summary of the powder patterns depicted in Figure 1 refinement.

Unit Cell Parameters Tetragonal * Orthorhombic **

a, Å 9.2805(7) 9.1133(6)
b, Å 9.2805(7) 14.7708(10)
c, Å 14.6491(13) 4.6893(3)

V, Å3 1261.7(2) 631.23(7)
ρ, g/cm3 1.6557(3) 1.6531(2)
Rwp, % 5.190 8.339

Rbragg, % 3.394 4.537

* The sample depicted in Figure 1a contains 6.4(4)% of the orthorhombic modification. ** Powder pattern is
depicted in Figure 1b.

2.2. DFT Calculations

All DFT calculations of the crystal structures of polymorphs were performed within
the PBE exchange–correlation functional using VASP 5.4.1 [16–19]. Atomic coordinates
were optimized; however, cell parameters were fixed at their experimental values to
prevent cell contraction or expansion. To improve the description of van-der-Waals inter-
actions, D3 correction [20] was applied. Atomic cores were described using small-core
PAW potentials. Valence electrons (2s and 2p for O and N atoms; 3p, and 3s for S; 1s
for H) were described in terms of a plane-wave basis set (the kinetic energy cutoff was
1000 eV). Atomic coordinates of optimized structures are given as Supplementary material
S1. The vibrational contribution was not considered because its evaluation is extremely
time-consuming. Charge density studies were carried out using the AIM program (a part
of ABINIT software [21]). The energies of intermolecular interactions were estimated with
the formula proposed by Espinosa, Mollins and Lecomte (EML) for hydrogen bonds [22].

3. Results
3.1. Crystallization and Characterization

6-Fluoro-3-hydroxypyrazine-2-carboxamide commercially named favipiravir is an
inhibitor of viral RNA polymerase; it is active against RNA viruses in vitro and in vivo [23].
A four-step synthesis and crystal structure of favipiravir were published by F. Shi et al.
in 2014 [24]. In orthorhombic form, the molecule is nearly planar due to intramolecular
O-H...O bonding, and is involved in intermolecular H-bonding and aromatic stacking.

By recrystallization of the orthorhombic form from ethyl acetate, a novel polymorph
was obtained from powder X-ray diffraction data (Figure 1). The pattern was indexed
in the tetragonal P42/n space group, and the crystal structure of the novel polymorph was
solved and refined using powder XRD data. The unit cell parameters of the tetragonal
and orthorhombic modifications demonstrated some similarities: atetra ≈ aorth ≈ 2corth, ctetra
≈ borth. That is why the peaks of two modifications partly overlap. However, the new
modification has two characteristic peaks at 2θ = 14.8 and 18.1◦. Their presence allows
one to reveal the formation of this form even without refining the powder pattern. Note
that the pure orthorhombic form was obtained from methanol, ethanol, iso-propanole,
tert-butanole, acetone, acetic acid, acetonitrile, butylacetate, toluene and water. No crystals
of the tetragonal polymorph suitable for single crystal X-ray diffraction could be obtained
(Figure 2), as their sizes were less than 1µm. These results are in accord with the crys-
tallite size for the tetragonal phase estimated from powder XRD data using the Rietveld
refinement as 107(5) nm.
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ravir in the two polymorphs are similar, and in both solids, the molecule can be consid-
ered as a four-connected node of a network formed by hydrogen bonds. Note that in ac-
cord with the Etter rules [27,28], the molecule should tend to form all the possible hy-
drogen bonds. As the molecule realizes the intramolecular O-H...O bond, we expect that 
a pure favipiravir will be involved in four strong hydrogen bonds (through two donor 
hydrogen atoms of the amide group, and any two of the four remaining acceptor atoms, 
N2, N3, O1 or O2). However, possible competition between various functional groups 
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ronment corresponds to the most likely H-bonds, and if the OH group can also form in-
termolecular interactions. 

Figure 2. Microphotography of favipiravir recrystallized from ethyl acetate. A single crystal in the cen-
ter corresponds to the impurity of the orthorhombic phase in mass of the tetragonal one.

The tetragonal polymorph was additionally characterized by means of infra-red (IR)
spectra and differential scanning calorimetry (DSC) depicted in Supplementary Figures S1
and S2, respectively. In both IR spectra, the most intense band is situated in the 1380–
1450 cm−1 region and corresponds to the ν(C-F) vibrations. Intensities of the sharp bands
at c.a. 1275 and 1650 cm−1 corresponding to the ν(C-OH) and ν(C=O) vibrations are higher
for the tetragonal polymorph, while intensities of bands in the range 1550–1630 cm−1

indicative of the N-C=O group remain nearly unchanged.
DSC curves for both polymorphs were measured from −50 to 210◦C (Figure S2, ESI).

Tetragonal and orthorhombic polymorphs melt at, respectively, 192.5 and 190.7◦C with
partial decomposition. No peaks corresponding to phase transitions at heating or cooling
were observed; thus, temperature-induced phase1-to-phase2 transformations between
these polymorphs are absent. For both substances, amorphous solids were obtained
from melt.

3.2. Crystal Structure of the Tetragonal Polymorph

The asymmetric unit of the tetragonal polymorph contains one molecule of the title
compound. The planar molecular conformation is supported with the intramolecular
O-H...O bonding between hydroxide and amide groups. Additionally, each molecule takes
part in intermolecular H-bonding with four neighboring molecules. Hydrogen atoms
of the amide group interact with oxygen atoms of the amide group, and N(4) atoms of
the pyrazine cycle. In both polymorphs, the local environment is similar. For three of
the four neighbors, the average deviation of non-hydrogen atoms is less than 0.1 Å, and
only the disposition of the acceptor of H-bonding towards the oxygen atom of the amide
group differs for the two polymorphs (Figure 3a). Comparison of two crystal structures us-
ing the ”Crystal Packing Similarity” tool [25,26] indicates clusters of seven molecules with
an average deviation of non-hydrogen atoms of 0.08 Å only (Figure 3b) connected through
H-bonds, C-H...O and C-H...F interactions. The H-bonded chains formed by N-H...N
interactions are packed parallel to the distance between their meanplanes equal to 3.17–3.31
Å (Figure 3c). Thus, molecular conformations of favipiravir in the two polymorphs are
similar, and in both solids, the molecule can be considered as a four-connected node of
a network formed by hydrogen bonds. Note that in accord with the Etter rules [27,28],
the molecule should tend to form all the possible hydrogen bonds. As the molecule real-
izes the intramolecular O-H...O bond, we expect that a pure favipiravir will be involved
in four strong hydrogen bonds (through two donor hydrogen atoms of the amide group,
and any two of the four remaining acceptor atoms, N2, N3, O1 or O2). However, possi-
ble competition between various functional groups arouses the question as to whether
the experimentally observed local H-bonded environment corresponds to the most likely
H-bonds, and if the OH group can also form intermolecular interactions.
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Figure 3. (a) and (b) Comparison of local environment of favipiravir in orthorhombic (red) and tetragonal (blue) poly-
morphs. (c) Side view of parallel motifs in the tetragonal polymorph of favipiravir. H-bonds are shown with dashed lines. 
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take part in intramolecular H-bonding with the oxygen atom of the amide group. Experimentally 
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Figure 3. (a,b) Comparison of local environment of favipiravir in orthorhombic (red) and tetragonal (blue) polymorphs.
(c) Side view of parallel motifs in the tetragonal polymorph of favipiravir. H-bonds are shown with dashed lines.

Recently, a convenient tool for analysis of the competition of H-bonding donors and
acceptors in crystals of polyfunctional molecules was suggested [29]. The tool is based
on occurrences of various H-bonded synthons in the Cambridge Structural Database
containing more than 1,000,000 crystal structures of small organic and organometallic com-
pounds [30]. The tool was previously applied for analysis of H-bonding systems in some
drug molecules [31–38]. The results of ranking synthons by propensity for the favipiravir
molecule are listed in Table 2. The favipiravir molecule contains four functional groups
(amide, two aromatic nitrogens and hydroxide) that contain, in total, three donor hydrogen
atoms (from amide and hydroxide) and four acceptors (oxygen atoms of amide and hydrox-
ide, two aromatic nitrogen atoms) of H-bonding. Thus, the solvent-free form of favipiravir
can theoretically realize eleven different types of hydrogen bonds. These bonds are ranked
using the H-bonding propensity tool implemented within the Mercury package [39] as
listed in Table 1. Among them, the amide . . . pyrazine NH . . . N and amide . . . amide NH
. . . O hydrogen bond are the most likely intermolecular interactions to occur. The hydrox-
ide group is more likely to take part in intramolecular H-bonding with the oxygen atom
of the amide group. Experimentally observed H-bonds in both polymorphs are in accord
with the results of this calculation, indicating that other theoretically possible polymorphs
with another H-bonding environment would be less stable than experimentally observed
ones. This conclusion is visualized in Figure 4, where a possible H-bonded polymorphism
is depicted as a set of green and blue triangles. Green and blue denote the overall number
of H-bond pairs of a molecule (3 and 2, respectively), so that the higher the overall number
of H-bonds and of H-bond pairs, the lower a point is situated on the putative structure
landscape. For each set of H-bond pairs, their mean H-bond propensities were also cal-
culated based on values in Table 2. Thus, the higher the mean propensity is, the more
a point is shifted to the right. Thus, the points that correspond to a molecule that realizes
the maximal number of H-bonds with the highest propensities are situated in the bottom
right corner of Figure 4 and are expected to correspond to the most stable polymorph.
Despite variations in the overall packing, positions of H-bonding environments for both
polymorphs of favipiravir correspond to the most stable bonding. Thus, additional calcu-
lations of crystal packing energy are required to reveal which of the two polymorphs is
more stable.
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Table 2. Propensities of H-bonding in two polymorphs of favipiravir.

Donor Acceptor Propensity
Observed in

Orthorhombic
Polymorphs

Observed in
Tetragonal

Polymorphs

Intermolecular

NH (amide) N3 (pyrazine) 0.78 Yes Yes
NH (amide) O1 (amide) 0.77 Yes Yes
NH (amide) N2 (pyrazine) 0.75

OH N3(pyrazine) 0.50
OH O1 (amide) 0.48
OH N2 (pyrazine) 0.46

NH (amide) OH 0.42
OH OH 0.17

Intramolecular

NH (amide) OH 0.88
OH O1 (amide) 0.84 Yes Yes

NH (amide) N2 (pyrazine) 0.62
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Figure 4. The putative structure landscape for favipiravir, expressed as mean H-bond coordination
and propensity for different sets of H-bonds. Theoretically calculated sets of H-bonds are shown with
triangles (blue and green correspond to 2 and 3 H-bond pairs for a molecule, respectively). The sets
of H-bonds for actual orthorhombic (refcode {DOHVED} in the Cambridge Structural Database [30])
and tetragonal (optimized at VESTA) polymorphs are depicted in the black diamond and red circle,
respectively.

3.3. DFT Calculations and Charge Density Studies

Detailed inspection of orthorhombic and tetragonal polymorphs revealed that struc-
tural data were obtained in noticeably different experimental conditions (single crystal and
powder XRD, respectively, different resolution, etc.); however, temperature was almost
the same. The optimization in experimental parameters using high cutoff for plane wave
expansion (1000 eV) and hard PAWs with small cores described by pseudowave function
indicated that the orthorhombic polymorph is 1.80 kJ/mol more stable that the tetragonal
one. To compare the structures of the polymorphs, we decided to optimize both cell pa-
rameters and atomic coordinates. As a result, the entirely relaxed structures of polymorphs
at 0 K were obtained. Unfortunately, the final structure of the polymorphs was affected by
uncertainties of DFT theory, i.e., wrong treatment of dispersion interactions that are crucial,
particularly for cell parameters. To partly compensate for such uncertainties, the empirical
dispersion corrections were utilized; the popular and robust choice was Grimme’s D3
correction [20]. Despite the D3 correction used for dispersion interactions, cell expansion
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was observed in optimized structures of both polymorphs. The density of tetragonal poly-
morphs appeared to be slightly less than that for orthorhombic polymorphs at 0 K. In turn,
the difference in the total energies of the polymorphs obtained in this way decreased to
1.26 kJ/mol. Formally, the orthorhombic polymorph is more stable; however, the value of
energy difference was calculated for 0 K without inclusion of entropy and vibrational terms.
According to Nyman and Day [40], at ambient conditions (room temperature), the use of
entropy and vibrational terms to calculate differences in energy (in this case, it is not total
energy but free energy) lead to re-ranking of the mutual stability in 9% of polymorph pairs.
Unfortunately, the calculation of phonon frequencies that is necessary for the evaluation of
entropy and vibrational terms at ambient conditions is too time consuming even for small
crystals. Although the DFT calculations predict the orthorhombic polymorph to be more
stable than the tetragonal one at 0 K, the ranking can change with temperature. The reason
for the increase in volume is the weakening of the staking interaction both in tetragonal and
orthorhombic polymorphs; however, in the former case, it is more pronounced. At the same
time, N-H . . . O bonds in H-bonded chains are the same as those compared in the cases of
experimental single crystal and powder structures.

A series of semiqualitative approaches based on the summation of energies of inter-
molecular interactions (taken from charge density descriptors, UNI (UNIversal force field)
potentials and CE–B3LYP/6-31G(d,p) calculations) were attested to compare the stability
of two polymorphs. The charge density study in terms of R. Bader’s “Atoms” in molecules
theory [41] was carried out for the structures of polymorphs optimized in experimental
cell parameters. According to the charge density study, the bcps corresponding to cova-
lent bond, intramolecular O-H . . . O bond and intermolecular interactions were revealed.
The energies of intra- and intermolecular interactions were estimated with the formula
proposed by Espinosa, Mollins and Lecomte for hydrogen bonds [22]. The strength of the in-
tramolecular O-H . . . O bond in both polymorphs is ~−93.9 kJ/mol (Table 3). The strongest
intermolecular N-H-O bond that is responsible for the formation of H-bonded chains is
as strong as −37.8 kJ/mol. At the same time, the energy of the N-H . . . N bond be-
tween the amine group and the nitrogen atom of the pyrazine ring is noticeably different
in orthorhombic and tetragonal polymorphs (−18.9 and −16.2 kJ/mol). The energies of
the rest of the intramolecular interactions are less than −4.2 kJ/mol; however, the total
energy of F . . . O, O . . . C and N . . . C interactions that correspond to aromatic stacking
is −14.7 kJ/mol. In turn, total energy of all intermolecular interactions in orthorhombic
and tetragonal polymorphs is −90.6 and −86.4 kJ/mol. In fact, this value corresponds
to the lattice energy and illustrates the mutual stability of the polymorphs. Thus, from
a charge density point of view, the orthorhombic polymorph appears to be more stable than
the tetragonal one. Thus, total energy values at 0 K and the lattice energy both indicate that
the orthorhombic polymorph is more stable. Experimentally, we observed that the ratio of
the orthorhombic and tetragonal polymorphs in one sample left for 10 months changes
from 0.06:0.94 to 0.15:0.85 (Figure S3), which confirms that the tetragonal polymorph is
the metastable form.
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Table 3. Hydrogen bonds for optimized polymorphs of favipiravir.

D-H...A a d(D-H), Å d(H...A), Å d(D...A), Å <(DHA), ◦ ρ(r) b, a.u. ∇2ρ(r) b, a.u. Eint
b, kJ/mol

Orthorhombic Polymorph
O2-H1...O1 1.017 1.602 2.545 152 0.064 0.142 −93.9

N1-H3...O1#1 1.030 1.817 2.836 169 0.035 0.084 −37.8
N1-H2...N3#2 1.024 2.144 2.981 138 0.021 0.062 −18.9
C4-H4...O1#3 1.092 2.386 3.391 152 0.010 0.040 −8.1
C4-H4...F1#4 1.092 2.861 3.447 114 0.001 0.008 −1.0

Tetragonal Polymorph
O2-H1...O1 1.017 1.599 2.543 152 0.064 0.144 −93.9

N1-H3...O1#5 1.029 1.820 2.839 170 0.035 0.083 −37.2
N1-H2...N3#6 1.023 2.202 3.018 135 0.019 0.058 −16.2
C4-H4...O1#7 1.091 2.406 3.381 148 0.010 0.039 −7.8
C4-H4...F1#8 1.091 2.795 3.346 111 0.004 0.019 −2.8

a Symmetry transformations used to generate equivalent atoms: #1 1−x, 1−y, −1/2+z; #2 −1/2+x, 1/2−y, −1+z; #3 3/2−x, −1/2+y,
1/2+z; #4 1−x, −y, 1/2+z; #5 y, −1/2−x, 1/2−z; #6 1/2+x, −1/2+y,−z; #7 −1/2+y, −x, −1/2+z; #8 −1/2−y, x, −1/2−z. b ρ(r)—electron
density at bcps; ∇2ρ(r)—Laplacian of electron density at bcps; Eint—energy of an interaction estimated using the correlation proposed
in [22] as −0.5V(r).

Unfortunately, faster and user-friendly calculations based on pairwise interactions
failed to rank polymorph stability. Crystal packing energy for the experimentally observed
orthorhombic and tetragonal polymorphs estimated using UNI potentials [42,43] is equal
to, respectively, −115.5 and −119.3 kJ/mol, and for the optimized crystal structures,
the corresponding values are −119.6 and −119.1 kJ/mol. Lattice energies estimated
with the method suggested by Mackenzie et al. [44] also resulted in inversed values for
the stability of polymorphs (−95.6 and −142.9 kJ/mol for the orthorhombic and tetragonal
polymorphs; Table S1). Thus, ranking of polymorph stabilities based on analysis of pairwise
interactions should be carefully used. For CE-B3LYP, this may also be indicative of the need
to change the basis set [45]. At the same time, application of polymorph ranking based on
the EML formula [22] should also be carefully used, as was demonstrated by Spackman [46].
For favipiravir, this approach obtained correct values, as (i) c.a. 3/4 of crystal packing
energy corresponded to H-bonds that were analyzed in the original paper [22], and (ii)
energies of interactions that corresponded to aromatic stacking appeared to be the same
in the two polymorphs.

3.4. Hirshfeld Analysis of Two Polymorphs

Hirshfeld surface analysis of two polymorphs was carried out using Crystal Explorer
17.5 [47], as it was proved to be a valuable tool for the analysis of polymorphs [48–50] sen-
sitive to both weak and strong interactions. The molecular Hirshfeld surfaces of favipiravir
in two polymorphs are depicted in Figure 5a,b, mapped with de. The closest distances to an
external atom (de) enable the visualization of the closest intermolecular interactions colored
with the red spots. For both polymorphs, the deep red spots on the Hirshfeld surface repre-
sent the O–H···O hydrogen bonds, orange—the N-H...N and yellow—the C-H...O bond.
The same information about bond distances can be derived from the two-dimensional
fingerprint plots given in Figure 5c–h, where the H...O and N...H bonds show the closest
intermolecular interactions and form sharp peaks on the plots. Distributions for the H...F
interactions are more diffused, and these are situated at longer distances. A summary of
the relative contributions of intermolecular contacts in the area of molecular surfaces is
given in Table 4. Contribution of the O...H, N...H, H...H and F...F interactions to the surface
is lower for the orthorhombic polymorph (18.2, 11.2, 12.7 and 3.7% as compared with 19.0,
12.9, 13.6 and 5.3%), but is larger for the F...H, C...H and N...C interactions (14.9, 9.5 and
8.1% as compared with 11.2, 8.1 and 6.0%). Contributions of the other interactions are
nearly the same and do not exceed 4.6%. All 15 theoretically possible types of interactions
are observed in the tetragonal polymorph, while C...C and O...O interactions are absent
in the orthorhombic polymorph.



Pharmaceutics 2021, 13, 139 9 of 14
Pharmaceutics 2021, 13, x 9 of 14 

 

possible types of interactions are observed in the tetragonal polymorph, while C...C and 
O...O interactions are absent in the orthorhombic polymorph. 

 
(a) 

 
(b) 

  
(c)              (d)               (e) 

  
(f)              (g)               (h) 

  

Figure 5. de plotted on atomic Hirshfeld surface (close contacts are red and elongated are blue) for favipiravir molecule in 
(a) the orthorhomibc polymorph, (b) tetragonal polymorph; corresponding fingerprint plots delineated into contribution 
of O...H, N...H and F...H interactions for the orthorhombic (c, d, e) and the tetragonal (f, g, h) polymorphs. 

Finally, we compared the contributions of various types of intermolecular interac-
tions to the Hirshfeld surface (CXY) with their theoretical proportion of random contacts 
RXY as described in [51]. The enrichment ratios EXY = CXY/RXY are given in Table 4, and the 
values >>1.0 are marked in bold to denote pairs of elements that tend to form interactions. 
EXY << 1 are associated with atomic pairs that are inclined to avoid contacts. For both 
polymorphs, the interactions with high propensity to appear are the O..H and F...H hy-
drogen bonds and F...F and F...O bonds. Among them, F...F, F...O and F...H interactions 
appear much more often than it was expected by chance, while F...N and F...C interac-
tions are disfavored. Indeed, for the tetragonal polymorph, bond critical points were 
found for F1...F1, F1...O1, F1...N3 and C-H...F1 interactions with the energy sum of −13.1 
kJ/mol, as obtained from the EML correlation [33]. In the orthorhombic polymorph, flu-
orine atom takes part in interactions with the energy sum of −12.9 kJ/mol. 

Table 4. Contributions CXY of various types of intermolecular interactions to the molecular Hirshfeld surface of two 
polymorphs, their RXY values and enrichment ratios EXY. 

Interaction RXY, % CXY,a % EXY 
Orthorhombic Tetragonal Orthorhombic Tetragonal 

O...H 7.1 18.2 19.0 2.6 2.7 
N...H 10.7 11.2 12.9 1.1 1.2 
F...H 3.6 14.9 11.2 4.2 3.2 
C..H 17.8 9.5 8.1 0.5 0.5 
C...C 11.1 0.0 1.7 0.0 0.2 
H...H 7.1 12.7 13.6 1.8 1.9 
O...O 1.8 0.0 0.3 0.0 0.2 
O...N 5.3 4.6 4.3 0.9 0.8 
O...C 8.9 7.0 7.4 0.8 0.8 
N...C 13.3 8.1 6.0 0.6 0.5 
N...N 4.0 3.8 4.1 1.0 1.0 
F...F 0.4 3.7 5.3 8.3 11.9 
F...O 1.8 4.5 2.9 2.5 1.6 
F...N 2.7 0.2 1.3 0.1 0.5 

Figure 5. de plotted on atomic Hirshfeld surface (close contacts are red and elongated are blue) for favipiravir molecule
in (a) the orthorhomibc polymorph, (b) tetragonal polymorph; corresponding fingerprint plots delineated into contribution
of O...H, N...H and F...H interactions for the orthorhombic (c–e) and the tetragonal (f–h) polymorphs.

Table 4. Contributions CXY of various types of intermolecular interactions to the molecular Hirshfeld surface of two
polymorphs, their RXY values and enrichment ratios EXY.

Interaction RXY, % CXY, a % EXY
Orthorhombic Tetragonal Orthorhombic Tetragonal

O...H 7.1 18.2 19.0 2.6 2.7
N...H 10.7 11.2 12.9 1.1 1.2
F...H 3.6 14.9 11.2 4.2 3.2
C..H 17.8 9.5 8.1 0.5 0.5
C...C 11.1 0.0 1.7 0.0 0.2
H...H 7.1 12.7 13.6 1.8 1.9
O...O 1.8 0.0 0.3 0.0 0.2
O...N 5.3 4.6 4.3 0.9 0.8
O...C 8.9 7.0 7.4 0.8 0.8
N...C 13.3 8.1 6.0 0.6 0.5
N...N 4.0 3.8 4.1 1.0 1.0
F...F 0.4 3.7 5.3 8.3 11.9
F...O 1.8 4.5 2.9 2.5 1.6
F...N 2.7 0.2 1.3 0.1 0.5
F...C 4.4 1.4 1.9 0.3 0.4

a Atomic coordinates and unit cell parameters for experimentally obtained crystals structures were taken.

Finally, we compared the contributions of various types of intermolecular interactions
to the Hirshfeld surface (CXY) with their theoretical proportion of random contacts RXY as
described in [51]. The enrichment ratios EXY = CXY/RXY are given in Table 4, and the values
>>1.0 are marked in bold to denote pairs of elements that tend to form interactions. EXY <<
1 are associated with atomic pairs that are inclined to avoid contacts. For both polymorphs,
the interactions with high propensity to appear are the O..H and F...H hydrogen bonds and
F...F and F...O bonds. Among them, F...F, F...O and F...H interactions appear much more often
than it was expected by chance, while F...N and F...C interactions are disfavored. Indeed,
for the tetragonal polymorph, bond critical points were found for F1...F1, F1...O1, F1...N3
and C-H...F1 interactions with the energy sum of −13.1 kJ/mol, as obtained from the EML
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correlation [33]. In the orthorhombic polymorph, fluorine atom takes part in interactions
with the energy sum of −12.9 kJ/mol.

3.5. Analysis of H-Bonding Network

The difference in mutual position of favipiravir molecules connected through the strong
H-bonds results in prominent variation of the overall packing of the two polymorphs.
The underlying H-bonded network for the orthorhombic polymorph realizes the three-
periodic four-connected (4c) zst topology (Figure 6a,c), as described in [52]. In the tetragonal
polymorph, favipiravir molecules form two interpenetrated three-periodic networks each
with the 4/4/t39 topology (or [4.1016.62.62.62.62]; Figure 6c,d). Both H-bonding networks
are three-periodic, and their energies as we mentioned above are roughly comparable; thus,
one can hardly expect any difference in their mechanical properties. The zst and 4/4/t39
topologies for H-bonded networks were previously met in 2 and 14 crystal structures of
small molecules in accord with the Topcryst resource [53]. It is worth mentioning that favipi-
ravir, orcinol {EWAMAR01} [54] and methylimino-diacetic acid {FENTOH02} [55] with
the 4/4/t39 topology of the underlying net form an orthorhombic and an orthogonal poly-
morph, although topologies of H-bonding architectures in orthorhombic polymorphs do
not coincide for the three different compounds. Particularly, for methylimino-diacetic acid
that also has two interpenetrated H-bonded nets with the 4/4/t39 topology in the tetrag-
onal polymorph, the orthorhombic polymorph contains a two-periodic H-bonded net
with sql (square lattice) topology. Overall, the observed polymorphism of favipiravir
demonstrated a very rare example of polymorphism associated with different topologies of
H-bonded architectures, one of which had two interpenetrated architectures. Particularly
for small organic molecules taken from the Cambridge Structural Database in 2006, only
seven polymorph families were found, with at least one polymorph realizing H-bonded
interpenetrated architectures [56].

DSC measurements of both samples indicate no phase transitions in the solid state at
heating, although powder XRD data of the fresh sample and the sample after 10 months
demonstrated partial conversion of the metastable tetragonal polymorph to the orthorhom-
bic one. Thus, additional analysis of unit cells and net relations was carried out. The or-
thorhombic phase has unit cell parameters similar to those of the tetragonal phase. How-
ever, neither Pna21 space group, nor any of its supergroups are among the subgroups
of the P42/n space group. Thus, direct phase transition between two polymorphs is
forbidden. Recently, the network topological model of solid-state transformations was
suggested [57,58]. The method consists of screening the subnets and/or supernets which
can represent the potential connectivities of the intermediate structures or the resulting
stable phases in the process of solid-state transformation. Analysis of net relations between
experimentally observed zst and two interpenetrated 4/4/t39 nets was carried out using
ToposPro software [59]. This also revealed no common subnets and supernets for these
architectures (Figure S4), as analyzed within the experimental unit cells. This may explain
why the metastable phase very slowly transforms to the stable one.



Pharmaceutics 2021, 13, 139 11 of 14Pharmaceutics 2021, 13, x 11 of 14 

 

 

 
(a) 

 

(b) 

 

(c) 

 

(d) 

  

Figure 6. Fragment of H-bonded networks in (a) orthorhombic and (b) tetragonal polymorphs of favipiravir and their 
underlying nets ((c) zst and (d) 4/4/t39, respectively). H(C) and F atoms are omitted. Two interpenetrated networks are 
depicted with black and fuchsia. 

DSC measurements of both samples indicate no phase transitions in the solid state at 
heating, although powder XRD data of the fresh sample and the sample after 10 months 
demonstrated partial conversion of the metastable tetragonal polymorph to the ortho-
rhombic one. Thus, additional analysis of unit cells and net relations was carried out. The 
orthorhombic phase has unit cell parameters similar to those of the tetragonal phase. 
However, neither Pna21 space group, nor any of its supergroups are among the sub-
groups of the P42/n space group. Thus, direct phase transition between two polymorphs 
is forbidden. Recently, the network topological model of solid-state transformations was 
suggested [57,58]. The method consists of screening the subnets and/or supernets which 
can represent the potential connectivities of the intermediate structures or the resulting 
stable phases in the process of solid-state transformation. Analysis of net relations be-
tween experimentally observed zst and two interpenetrated 4/4/t39 nets was carried out 
using ToposPro software [59]. This also revealed no common subnets and supernets for 
these architectures (Figure S4), as analyzed within the experimental unit cells. This may 
explain why the metastable phase very slowly transforms to the stable one. 

Figure 6. Fragment of H-bonded networks in (a) orthorhombic and (b) tetragonal polymorphs of favipiravir and their
underlying nets ((c) zst and (d) 4/4/t39, respectively). H(C) and F atoms are omitted. Two interpenetrated networks are
depicted with black and fuchsia.

4. Conclusions

A novel polymorph of favipiravir was obtained and characterized using FT-IR spectra
and DSC measurements. Its crystal structure was determined using powder X-ray diffrac-
tion as the tetragonal polymorph with crystal parameters similar with those of the known
orthorhombic polymorph. The orthorhombic polymorph is more readily obtained from
different solvents and realizes a more widespread H-bonding architecture. The tetragonal
polymorph slightly converts to the orthorhombic one at room temperature. The periodic
DFT calculations with Grimme’s D3 correction and lattice energy calculations both indicate
that the tetragonal polymorph is metastable. The lattice energy calculation with UNI poten-
tials and CE-B3LYP model energies based on experimental data failed to predict the most
stable polymorph, which indicates that such approximate calculations should be carefully
used. Analysis of intermolecular interactions indicates the similarity in the geometry and
energy of hydrogen bonds.
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