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In this issue, Tojima et al.1 describe the occurrence of a progressive cerebellar ataxia of 1-year
duration in an 81-year-old Japanese woman that was associated with the presence of 31 DNA
CAG repeats in the ATXN2 gene. The pathologic threshold for disease causing spinocerebellar
ataxia type 2 (SCA2) is usually considered to be 33 repeats and above, whereas 31 repeats
would not be considered to be causative for cerebellar neurodegeneration. The twist in this case
report is the fact that the patient carried 2 alleles with 31 repeats, suggesting that the 31-CAG
repeat allele acted in a recessive fashion.

The gene causing SCA2 was independently identified by 3 groups using different ethnic groups
in 1996.2–4 The mutation is an expansion of a CAG DNA repeat in the coding region of the
ATXN2 gene, encoding a polyglutamine. Although the lower threshold for dominant patho-
logic alleles was originally thought to be ≥35 repeats, subsequent studies identified SCA2
patients with ≥33 repeats.5,6 Consistent with dominant inheritance in human pedigrees, the
CAG repeat expansion acts as a gain-of-function mutation. This is also supported by cerebellar
neurodegeneration seen on transgenic overexpression of mutant ATXN27–9 and by absence of
a neurodegenerative phenotype in mice lacking functional Atxn2 alleles.10–12 Gain-of-function
of expanded ATXN2 is also supported by therapeutic responses to antisense oligonucleotides
that lower ATXN2 expression in SCA2 mouse models.13

In most normal individuals, the repeat is once or twice interrupted by a CAA codon, which also
codes for glutamine. In all populations, the 22-repeat allele is the most common, followed by
the 23-repeat allele. The frequency of the 27-repeat allele can be highly variable.

The ATXN2 gene is a good example for the complexities associated with genetic variation in
a given gene and the associated risk for a number of diseases. At least 4 categories of variation can
be distinguished: dominant deterministic alleles leading to SCA2, a multisystem neurologic
disease affecting primarily or initially the cerebellum, repeat alleles that are unstable and although
not disease-causing in the carrier can expand to give rise to disease in the offspring, risk alleles for
other neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) frontotemporal
dementia (FTD) and ALS/FTD, dominant acting repeat alleles giving rise to noncerebellar
phenotypes, and now also recessively acting alleles causing very late-onset cerebellar disease.

Other phenotypes associated with deterministic
dominant alleles
SCA2 patient phenotypes are dominated by cerebellar Purkinje cell and deep cerebellar nuclei
pathology. Careful clinical and pathologic examination also revealed the involvement of other
neurologic systems.14–17 Several years were needed, however, to appreciate that some of these
“noncerebellar” phenotypes could occur in patients without cerebellar ataxia and that they
could even segregate in families. For example, parkinsonian signs and symptoms and L-dopa
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responsiveness are seen in many SCA2 patients in the pres-
ence of cerebellar signs. In some patients, however, L-dopa–
responsive Parkinson disease without overt cerebellar findings
has been described and this “restricted” phenotype can even
segregate in families.18–20

The importance of motor neuron degeneration in SCA2
was highlighted initially by molecular studies that identified
ATXN2 as a protein interacting with TDP-43, a protein
mutated or aggregating inmost patients with ALS and in some
with FTD. These molecular insights prompted Elden et al.21

to examine ATXN2 alleles in patients with ALS. They showed
that alleles with ≥27 repeats were a risk factor for ALS. Sub-
sequent meta-analyses in 2 nonoverlapping data sets led to
more precise assessments of risk associated with long normal
alleles indicating that alleles with 27–29 repeats do not in-
crease ALS risk22 and that the 27-repeat allele may actually
be protective.23 For alleles with 30–34 repeats, ALS risk
increases in a length-dependent fashion. Pedigrees segre-
gating an ataxia and an ALS phenotype in separate individ-
uals also exist.24 Of note, the sister of the patient described in
the study by Tojima et al.1 developed ALS, although her
genotype is not known.

Meiotic and mitotic stability
As in other DNA repeat diseases, the ATXN2 CAG repeat is
meiotically and mitotically unstable. Meiotic instability leads
to the phenotypic phenomenon of anticipation. In one study
in Cuban SCA2 pedigrees, the repeat on average increased by
;5 units, when inherited from the father, but only by ;1.5
units when inherited from the mother.25 One-fifth of large
expansions occurred in relatively short mutant alleles with 36
repeats. The risk of expansion in normal alleles is unknown,
although it seems likely that the risk increases with increasing
length of the normal allele and with the lack of interruptions
by CAA repeats. The presence of CAA interruptions may also
influence phenotypic expression of ATXN2 repeat mutations
in that interrupted repeats are more stable in a lineage-
dependent fashion during neurogenesis or during DNA repair
in postmitotic cells.

ATXN2 variation in common disease
In addition to CAG repeat expansion, other genetic variation
within or near the ATXN2 gene exists. This genetic variation
has largely been explored through genome-wide association
studies. Common variants in ATXN2 have been associated
with a number of disease traits such as obesity, insulin re-
sistance, or glaucoma (reviewed in references 26 and 27). The
ATXN2 locus is also thought to influence human longevity.28

The recessive mode of alleles with 31 repeats is not totally
surprising as an effect of normal alleles on age at onset of
SCA2 had been reported. These results, however, were largely
focused on the more common alleles of 23–27 repeats and

showed that CAG repeat length in the normal allele was in-
versely related to age at onset in SCA2.29

The results of the study by Tojima et al.1 deserve confirma-
tion. Despite the most diligent efforts, phenocopies and
presence of other genetic variants or environmental effects
can never be completely excluded. Although a true causal
relationship between the 31/31 genotype and very late-onset
ataxia is difficult to prove, the rarity of the CAG31 allele and
especially the 31/31 genotype would strengthen a causal re-
lationship. A fertile population to examine the presence of
recessive alleles and the importance of repeat interruptions
exists in the Holguin province, Cuba.25,30

In summary, genetic counseling for individuals with long
normal ATXN2 repeat alleles will require a very nuanced
approach, correct determination of repeat length, and
knowledge of the precise repeat configuration. The instability
of the repeat when transmitted to offspring needs to be dis-
cussed as well as the increased relative risk for ALS. Fortu-
nately, long normal ATXN2 repeat alleles are rare in the
general population.
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