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Prevalence and impact of baseline 
resistance-associated substitutions 
on the efficacy of ledipasvir/
sofosbuvir or simeprevir/sofosbuvir 
against GT1 HCV infection
Gary P. Wang1,2, Norah Terrault3, Jacqueline D. Reeves4, Lin Liu1, Eric Li1, Lisa Zhao1, Joseph 
K. Lim5, Giuseppe Morelli1, Alexander Kuo6, Josh Levitsky7, Kenneth E. Sherman8, Lynn M. 
Frazier9, Ananthakrishnan Ramani10, Joy Peter1, Lucy Akuskevich11, Michael W. Fried11 & 
David R. Nelson1

Baseline resistance-associated substitutions (RASs) have variable impacts in clinical trials but their 
prevalence and impact in real-world patients remains unclear. We performed baseline resistance 
testing using a commercial assay (10% cutoff) for 486 patients treated with LDV/SOF or SMV/SOF, 
with or without ribavirin, in the multi-center, observational HCV-TARGET cohort. Linkage of RASs was 
evaluated in selected samples using a novel quantitative single variant sequencing assay. Our results 
showed that the prevalence of NS3, NS5A, NS5B RASs was 45%, 13%, and 8%, respectively, and 10% 
of patients harbored RASs in 2 or more drug classes. Baseline LDV RASs in GT1a, TE, and cirrhosis LDV/
SOF subgroup was associated with 2–4% lower SVR12 rates. SMV RASs was associated with lower 
SVR12 rates in GT1a, treatment-experienced, cirrhotics SMV/SOF subgroup. Pooled analysis of all 
patients with baseline RASs revealed that SVR12 was 100% (19/19) in patients treated for longer than 
98 days but was 87% (81/93) in patients treated for shorter than 98 days. These results demonstrate 
that RASs prevalence and their impact in real world practice are in general agreement with registration 
trials, and suggest that longer treatment duration may overcome the negative impact of baseline RASs 
on SVR12 rates in clinical practice.

According to the latest WHO estimates, approximately 1% of the world’s population is infected with hepatitis C 
virus (HCV), corresponding to 71 million people worldwide1,2. Chronic hepatitis C is the most common cause of 
liver cirrhosis and is the leading indication of liver transplantation due to cirrhosis and hepatocellular carcinoma. 
Chronic HCV is responsible for 12,000 deaths annually, and the morbidity and mortality associated with HCV 
infection will continue to increase over the next few decades3–5.

Several direct acting antivirals (DAAs) have been developed with multiple options now to treat HCV genotype 
1 (GT1) infection, the predominant genotype in the U.S. With the development of DAAs, multiple regions of 
HCV (NS3, NS5A, and NS5B) are major targets for pharmacologic intervention leading to highly potent treat-
ment combinations with sustained virologic response (SVR) rates well above 90%6–12. Although recently approved 
glecaprevir-pibrentasvir13 and sofosbuvir-velpatasvir-voxilaprevir9 with pangenotypic activity and a high barrier 
to resistance may be used increasingly and may also fill an important role as pangenotypic regimens for patients 
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who previously failed DAA therapy, up to 5–10% of treated patients still fail some of the current recommended 
first-line DAA regimens, which leads to the selection of resistant variants, making regimen selection a major 
consideration for providers and patients.

The nomenclature for resistant HCV has varied in recent years, including resistance-associated substitutions 
(RAS), resistance-associated variants (RAV), and resistance-associated polymorphisms (RAP). HCV replicates at 
high rates allowing for rapid response to selective immune or drug induced pressure which may select for resist-
ant variants in vivo14. Viral resistance-associated substitutions (RASs) have also been observed in patients naïve 
to HCV treatment (i.e. pre-existing) and RASs can develop in the setting of DAA therapy. Clinical trials have 
demonstrated that baseline resistance can play a role in HCV treatment response. For example, in the COSMOS 
study combining simeprevir (protease inhibitor) with sofosbuvir (SOF, NS5B nucleoside inhibitor), 58 genotype 
1a patients had the Q80K substitution in the NS3 region at baseline, 7 of those failed to achieve SVR1211. In a 
combined analysis of baseline samples from Phase 2 and Phase 3 Gilead-sponsored HCV studies, baseline NS5A 
resistance mutations were present in 13% of 3,507 samples. Among patients treated with ledipasvir (LDV) plus 
SOF, lower SVR12 rates (88.2%; 105 of 119) were observed in treatment experienced patients with baseline NS5A 
RASs as compared to those without NS5A RASs (SVR12 of 97.7%, 646/661)15. In the C-EDGE trial combining 
grazoprevir (NS3 protease inhibitor) with elbasvir (NS5A inhibitor), 58% (11/19) of GT1a patients with base-
line RASs achieved SVR12, whereas 99% (133/135) of patients without baseline RASs achieved SVR1212. If high 
fold-change RASs (i.e. >5-fold increase in EC50) are considered, only 22% (2/9) of patients achieved SVR12. 
This large impact of baseline NS5A RASs on treatment outcome has led the FDA to recommend baseline NS5A 
resistance testing in GT1a patients prior to grazoprevir/elbasvir therapy.

While the presence of baseline RASs has impacted viral outcomes in small numbers of patients in tightly con-
trolled clinical trials, the prevalence and the range of baseline RASs and the extent to which they impact the effi-
cacy of DAAs in diverse, real-world populations, including certain sub-populations (e.g. treatment-experienced, 
cirrhosis, liver transplant recipients) in usual clinical practice remains unclear. Real-world patients receiving 
treatment outside of highly selected clinical trial populations have diverse baseline characteristics and many have 
prior exposure to one or more DAAs. The commercial availability of resistance testing is limited and clinicians 
often do not test patients for baseline resistance prior to initiating therapy. Moving into an era where DAA com-
binations will be heavily used in real-world populations, viral factors such as HCV genotype, genome targets, and 
drug resistant variants must be balanced with host factors including cirrhosis and prior treatment response in 
order to select the optimal regimen for each individual patient.

HCV-TARGET is an IRB approved, carefully maintained research registry of sequential patients treated for 
chronic HCV within academic and community real-world practices. The registry was designed to rapidly inform 
strategies for better management of populations underrepresented in clinical trials, identify and remediate edu-
cational gaps relative to treatment guidelines and adverse event management in order to optimize rates of SVR, as 
well as to serve as the core resource for important collaborative translational studies utilizing biospecimens and 
clinical data from diverse patient populations. Serum samples are collected within HCV-TARGET for research 
towards the understanding of HCV pathogenesis and treatment. To date, over 10,000 patients have been enrolled 
into the study with over 8,600 being enrolled since the FDA approval of simeprevir and sofosbuvir in late 2013. 
Here, we describe the prevalence of NS3, NS5A, and NS5B RASs in a real-world cohort of ~500 patients with 
HCV genotype 1 infection whose baseline samples were banked prior to DAA therapy, and report the impact 
of baseline RASs on the effectiveness of ledipasvir/sofosbuvir (LDV/SOF) ± ribavirin (RBV) and simeprevir/
sofosbuvir (SMV/SOF) ± RBV.

Methods
Study population. A subset of HCV-TARGET patients consented to serum collection and specimen storage 
in the “HCV-TARGET: Biorepository Specimen Bank” prior to initiating HCV therapy. All patients included in 
this study (n = 494) have provided informed consent to study participation. Subjects were included for the pres-
ent study if (1) patient in the HCV-TARGET cohort consented to stored serum for future research, (2) pre-treat-
ment serum sample was collected and stored at the HCV-TARGET biorepository housed at the University 
of Florida (UF), (3) HCV genotype 1 infection, and (4) patient was treated with ledipasvir/sofosbuvir (LDV/
SOF) ± ribavirin (RBV) or simeprevir/sofosbuvir (SMV/SOF) ± RBV. Baseline and treatment clinical data for 
the subjects were extracted from REDCap database for analysis. The present study was approved by University of 
Florida Institutional Review Board, and all experiments were performed in accordance with relevant guidelines 
and regulations.

Determination of resistance-associated substitutions (RASs). Resistance testing was performed on 
baseline samples by Monogram Biosciences (South San Francisco, CA) using their commercial assay. The assay 
reports the population sequence derived from Illumina MiSeq data using a 10% variant reporting threshold. 494 
genotype 1 patients samples were deep sequenced and evaluated against a reference sequence (H77 for GT1a and 
Con-1 for GT1b) for NS3 protease inhibitor (PI), NS5A inhibitor, and NS5B nucleotide (NI) and non-nucleotide 
(NNI) inhibitor RASs. HCV genotype subtype 1a and 1b were verified along with the presence of Q80K polymor-
phism in genotype 1a patients.

Analysis of RASs. Baseline clinical and demographic data, HCV treatment regimen, and viral outcomes 
were paired with RAS testing results for descriptive analyses. Percentage of patients in different patient subgroups 
with baseline NS3 protease inhibitor, NS5A inhibitor and NS5B nucleotide and non-nucleotide inhibitor RASs 
were analyzed using descriptive statistics and their proportions compared using Fisher’s exact test. For analysis 
of prevalence of baseline RASs, NS3 RASs were defined as the following substitutions at the following positions: 
V36M/A/G/I/L, T54A/S, V55A/I, Q80K/R, S122A/G/I/R/T, R155K/Q, A156T, D168A/E/F/H/I/T/V/Y, and I/
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V170T. NS5A RASs were defined as M28A/T/V (1a), L28M (1b), Q30E/H/L/R (1a), L31I/M/V, H58D (1a), and 
Y93C/H/N/S. NS5B RASs were defined as L159F, S282R/T, C316F/H/N, L320F/I/V, V321A/I, M414T/I, Y448H, 
A553T, G554S, S556G, and D559G/N. For analysis of the impact of baseline RASs on treatment response, a subset 
of positions and their substitutions shown above were included in the analysis: NS3: 80, 122, 155, 156, 168, and 
170; NS5A: 28, 30, 31, 58, and 93; NS5B: 159, 282, 316, 320 and 321 (Supplementary Table S1).

Quantitative resistance analysis and mutation linkage. HCV NS3, NS5A or NS5B gene segments 
were amplified and sequenced from extracted RNA using the SVS methods described previously16. Briefly, a 
random 12-nt sequence (i.e. tag) was incorporated into the 5’ end of the reverse-transcription (RT) primer to tag 
individual RNA templates during RT reaction, and this random sequence tag was flanked by a primer binding 
sequence on the 5′ end, which served as a binding site for subsequent PCR reactions. Following RT, excess RT 
primers were removed using a Macherey-Nagel DNA purification column using a modified protocol following 
manufacturer’s instruction (Macherey-Nagel, Bethlehem, PA, USA). The cDNA was PCR amplified using bar-
coded primers, and tailed with Illumina adaptor sequences required for deep sequencing. PCR conditions were: 
initial denaturation at 94 °C for 2 min followed by 30 cycles of 94 °C for 20 s, 56 °C for 20 s, and 68 °C for 1 min, an 
extra 5 min at 68 °C was added at the end of amplification. Primers were designed based on a curated set of 390 
subtype 1a or 453 subtype 1b full-length human HCV sequences from GenBank that represent HCV genomes 
from popular circulating strains17. Final PCR products were purified using a gel extraction kit (Macherey-Nagel, 
Bethlehem, PA, USA), quantified using a Qubit kit (Life technologies), and pooled with equimolar concentra-
tions. The concentration of the final DNA pool was quantified by real-time PCR using a SYBR Green qPCR kit 
(KAPA Biosystems). The DNA library was then prepared and sequenced on a MiSeq sequencer (Illumina, San 
Diego, CA) following manufacturer’s instructions. A Q30 filter was used to select for high quality reads, generat-
ing a total of 5.62 Gigabases of nucleotides. Insertions and deletions were found to be minimal in our sequence 
dataset.

Bioinformatics analysis of HCV resistance variants. Illumina paired-end sequencing data were 
de-multiplexed into individual samples according to unique combinations of forward and reverse barcodes, 
followed by additional filtering criteria to select for high-quality reads. Each paired-end read was joined using 
FLASh (http://ccb.jhu.edu/software/FLASH/) with a minimum of 10 base overlap. For each sample, joined reads 
were grouped by unique 12-nt sequence tags introduced during the RT reaction. To determine the authentic 
sequence of each initial cDNA template and correct for PCR amplification and sequencing errors, a consen-
sus sequence was determined for each unique sequence tag based on an alignment of at least three reads using 
MAFFT (http://mafft.cbrc.jp/alignment/software/). Those with fewer than 3 reads per unique tag were discarded. 
Consensus sequences were then aligned against HCV-H77 (NC004102) or HCV-CON1 (AJ238799) reference 
sequence using a 36 CPU Amazon Web Services EC2 Ubuntu Linux (version 14.04) instance (https://aws.ama-
zon.com/ec2), and visualized using BioEdit (version 7.2.5.0; http://www.mbio.ncsu.edu/BioEdit/bioedit.html).

Translation of codons, calculation of proportions of RASs, and linkage analysis of RASs were carried out 
using custom R scripts (https://www.r-project.org/) with the BioStrings package (http://bioconductor.org/pack-
ages/release/bioc/html/Biostrings.html). Amino acid substitutions at each position were identified by comparing 
translated consensus reads against HCV H77 or CON-1, and the proportions of wild-type and RASs at each posi-
tion were calculated. Linkage between RASs was determined by calculating the proportions of variants carrying 
single, double or multiple RAS(s) compared to the reference sequence.

Results
Study population. From the “HCV-TARGET: Biorepository Specimen Bank”, we identified 494 patients 
who met our inclusion criteria. Pretreatment samples of these subjects were submitted to Monogram Biosciences 
for sequencing and RASs determination. Of the 494 samples, 492 had evaluable RASs sequence dataset, from 
which the prevalence of NS3, NS5A, and NS5B RASs was determined (Fig. 1). To examine the impact of baseline 
RASs on the effectiveness of LDV/SOF ± ribavirin (RBV) or SMV/SOF ± RBV, we excluded 21 of 492 patients 
who were lost to follow up, had missing outcome data, were treated with additional regimens, or discontinued 
therapy prematurely due to drug intolerance, generating a dataset of 471 subjects with evaluable treatment out-
comes (Fig. 1).

Prevalence of RASs in routine clinical practice. Demographics and baseline characteristics of 492 sub-
jects with evaluable RASs dataset for analysis of RASs prevalence are shown in Table 1. Overall, the median age in 
this cohort was 60 years. The study population was predominantly white (70.7%) and male (62.6%), with 75.6% 
GT1a and 24.4% GT1b. Approximately half of the cohort was treatment-experienced (TE, n = 270; 54.9%), the 
majority of whom (185 of 270, 68.5%) had prior treatment with pegylated interferon plus ribavirin. Overall, 
63 (12.8%) patients were DAA-experienced. These include 50 patients with prior exposure to triple therapy 
(pegylated interferon, ribavirin and either boceprevir or telaprevir), 5 patients with simeprevir and sofosbuvir, 4 
patients with sofosbuvir, 1 with declatasvir, 1 with simeprevir, and 1 with an unknown DAA. A large proportion 
of patients had cirrhosis (52%) or were recipients of liver transplantation (17.7%).

Of the 492 patients with evaluable RASs data, 482 (98%) had RASs data available for all 3 gene targets (NS3, 
NS5A, and NS5B). A total of 486 samples had NS3 RASs data, 490 with NS5A data, and 486 with NS5B data. 
Discordance in genotype 1 subtype between the clinical data submitted by clinical sites and the sequence data 
generated by the Monogram resistance assay was identified in 11 subjects (2.2%; 7 were submitted as GT1b but 
were later determined as GT1a at Monogram, and 4 were submitted as GT1a but were later determined as GT1b). 
For consistency, the subtype data reported by the Monogram assay was used for all subsequent analysis.

http://ccb.jhu.edu/software/FLASH/
http://mafft.cbrc.jp/alignment/software/
https://aws.amazon.com/ec2
https://aws.amazon.com/ec2
http://www.mbio.ncsu.edu/BioEdit/bioedit.html
https://www.r-project.org/
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html


www.nature.com/scientificreports/

4SCieNtiFiC RePoRTS |  (2018) 8:3199  | DOI:10.1038/s41598-018-21303-2

To determine the prevalence of NS3, NS5A and NS5B RASs in patients prior to initiating HCV ther-
apy, we defined the presence or absence of specific RASs using a set of pre-defined amino acid substitutions 
(Supplementary Table S1). For NS3, Q80K/R substitution was common in GT1a (45%; 44% Q80K and 1% Q80R) 
but uncommon in GT1b (2.6%) (Fig. 2A). RASs at other pre-defined sites were generally uncommon, and RASs 
at position A156 were not observed in any of the 486 samples. Overall, 45% of patients (54% of GT1a and 16% of 
GT1b) harbored NS3 RASs at at least 1 position, and 8% of GT1a and 2% of GT1b harbored RASs in 2 or more 
positions.

The overall prevalence of RASs was lower in NS5A compared to NS3 (13% vs 45%) (Fig. 2A and B). GT1a 
NS5A RASs were generally uncommon, ranging from 2% (L31M/I) to 6% (M28T/V). Y93C/H/N substitution, 
which confers a high level resistance to most NS5A inhibitors, were uncommon (3%). In contrast, Y93C/H/N and 
L31M/I substitutions were more common in GT1b (11% and 7%, respectively), but RASs at other pre-defined 
sites were uncommon. Overall, 46 GT1a (12%) and 20 GT1b (17%) patients harbored RASs in at least 1 position 
(Fig. 2B), including 11 (2%) who harbored RASs at 2 different positions.

The overall prevalence of NS5B RASs was 8% (3.6% in GT1a compared to 22% in GT1b) (Fig. 2C). GT1a 
NS5B RASs were uncommon. In contrast, C316N and S556G substitutions in GT1b were common (8% and 14%, 
respectively). Interestingly, two GT1b subjects harbored 3 different RASs (L159F/C316N/S556G), but no GT1a 
subjects harbored more than 1 RAS. RASs at positions S282, L320, and V321 were not detected in any of the 486 
samples.

Figure 1. Selection of baseline samples from patients enrolled in HCV-TARGET for the study. Baseline samples 
from 492 patients with evaluable RASs were used to determine the overall prevalence of baseline RASs. Among 
them, 472 patients with clinical outcome data were selected and the impact of baseline RASs on SVR12 for each 
of the four treatment regimens was analyzed.

LDV/SOF LDV/SOF + RBV SMV/SOF SMV/SOF + RBV Total

n = 208 n = 34 n = 190 n = 60 n = 492

Median age (quartile) Age 61 (57, 65) 60 (54, 64) 60 (56, 65) 60 (54, 63) 60 (56, 65)

Gender, n (%) Male 124 (59.6) 24 (70.6) 124 (65.3) 36 (60.0) 308 (62.6)

Race, n (%)

White 138 (66.4) 19 (55.9) 143 (75.3) 48 (80.0) 348 (70.7)

Black 38 (18.3) 2 (5.9) 16 (8.4) 7 (11.7) 63 (12.8)

Other 31 (16.0) 13 (38.2) 31 (16.3) 5 (8.3) 81 (16.5)

Prior treatment status, n (%)

TN 106 (51.0) 11 (32.4) 83 (43.7) 22 (36.7) 222 (45.1)

TE 102 (49.0) 23 (67.7) 107 (56.3) 38 (63.3) 270 (54.9)

DAA hx 23 (11.1) 14 (41.2) 15 (7.9) 11 (18.3) 63 (12.8%)

Cirrhosis status, n (%) Cirrhosis 85 (40.9) 21 (61.8) 109 (57.4) 41 (68.3) 256 (52.0)

Liver transplant status, n (%) Transplant 19 (9.1) 19 (54.3) 38 (19.9) 11 (18.0) 87 (17.7)

Genotype
GT 1a 162 (77.9) 27 (79.4) 133 (70.0) 50 (83.3) 372 (75.6)

GT 1b 46 (22.1) 7 (20.6) 57 (30.0) 10 (16.7) 120 (24.4)

Mean HCV RNA, log IU/mL Viral load 6.6 6.7 6.6 6.8 6.6

Table 1. Demographics and Baseline Characteristics of 492 subjects with evaluable RASs dataset. Liver disease 
stage (cirrhosis or no cirrhosis) was defined at the time of enrollment by biopsy and/or or a combination of 
clinical, laboratory, histologic, and imaging criteria features as defined previously31,35. The LDV/SOF group 
included one patient who was treated with SOF/RBV followed by LDV/SOF. Only 36% of all patients had 
available IL28B data and thus were not included in the comparison.
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We next asked to what extent the prevalence of RASs differed according to different host and viral char-
acteristics. The overall prevalence of RASs was generally comparable between cirrhotics and non-cirrhotics, 
treatment-naïve and treatment-experienced (who were predominantly DAA-naïve), or liver transplant status 
(Table 2). However, there were small differences according to subpopulations. For example, NS3 RASs were 
more prevalent in GT1a (driven predominantly by the high frequency of Q80K/R substitutions in GT1a), 
cirrhotics, DAA-experienced, and liver transplant population. NS5A RASs were more common in GT1b, 
treatment-experienced, DAA-experienced, and non-transplant populations. For NS5B, the prevalence of RASs 
was higher in GT1b. Overall, 10% of patients harbored RASs in 2 or more drug classes. Among them, NS3/NS5A 
RASs combination was most common (65%), followed by NS3/NS5B (23%) and NS5A/NS5B (12%).

LDV RASs and efficacy of LDV/SOF ± RBV in routine clinical practice. To evaluate the impact of 
baseline RASs on the effectiveness of LDV/SOF ± RBV or SMV/SOF ± RBV, we analyzed a subset of key RASs 
(Supplementary Table S1) that were relevant for the DAA regimen that the patients received in clinical practice. 
The majority of this subset received LDV/SOF or SMV/SOF without RBV (41.0% and 39.7%, respectively), and 
the remaining patients received LDV/SOF or SMV/SOF with RBV (7.0% and 12.3%, respectively).

In the LDV/SOF cohort (n = 193), 22 patients (12%) harbored LDV-associated RASs, 5 (2.6%) had 
SOF-associated RASs, and 1 patient had both LDV and SOF-associated RASs prior to HCV therapy (Fig. 3). 22 
of 23 patients (96%) with LDV-associated RASs (positions 28, 30, 31, 58 and 93) achieved SVR12, and 163 of 
170 subjects (96%) without LDV RASs (Fig. 4A). The presence of baseline LDV RASs was associated with 2% 
(p = 0.50), 3% (p = 0.54), and 4% (p = 0.46) lower SVR12 rates in GT1a, cirrhotic, or treatment-experienced 
patients, respectively (Fig. 4B). Baseline LDV RASs was associated with 3% lower SVR12 rates in patients who 

Figure 2. Prevalence of RASs in (A) NS3, (B) NS5A, and (C) NS5B in 492 patients prior to initiating HCV 
therapy. Specific RASs are indicated on the x-axis. The proportion of samples with substitutions indicated, as 
determined by the commercial Monogram assay, is shown on the y-axis. Samples for GT1a and G1b are shown 
in blue and orange, respectively. Substitutions at positions NS3 A156, NS5A H58D, and NS5B S282, L320, or 
V321 were not detected in any of the samples analyzed. The proportion of samples with 2 or more RASs, and the 
overall proportions of samples with RASs are shown on the right.
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received ≤98 days of therapy. In contrast, all 8 patients with baseline LDV RASs who were treated for >98 days 
achieved SVR12 (Fig. 4B). Of the 193 patients in the LDV/SOF cohort, 9 patients were treated for 8 weeks and 8 
of 9 (89%) achieved SVR12. All 9 patients were treatment-naïve without cirrhosis and had HCV RNA <6 million 
IU/mL. However, none had baseline NS5A or NS5B RASs. The single patient who relapsed was white, GT1b, and 
HIV-uninfected with a baseline HCV RNA of 3 million IU/mL. Among the 7 patients with baseline Y93 RASs (3 
GT1a and 4 GT1b), only one patient (GT1a) failed to achieve SVR12 (Fig. 4C). This patient harbored dual RASs 
(Q30H/N/S + Y93H; detailed analysis of this viral quasispecies is described below), was treatment-experienced 
(pegylated interferon plus ribavirin), DAA-naïve, GT1a with cirrhosis, and developed viral breakthrough during 
12 weeks of therapy. For NS5B RASs, 179 of 186 patients (95%) without baseline NS5B L159F or C316N substi-
tutions and 6 of 7 patients (86%) with baseline L159F or C316N achieved SVR12. The single GT1b patient with 
NS5B RAS who failed to achieve SVR12 harbored C316N RAS, was treatment-naïve with no cirrhosis, and was 
treated for 12 weeks of LDV/SOF. In the LDV/SOF + RBV cohort (n = 33), LDV-associated RASs had no impact 
on SVR12, and no Y93C/H/N, L159F, or C316N substitutions were observed at baseline. Baseline NS3 RASs had 
no impact on SVR12 rates in the LDV/SOF ± RBV cohorts (Supplmentary Figure S4).

NS3 NS5A NS5B ≥2 classes

Genotype 1a 54.3 (49.2–59.3) 12.4 (9.4–16.2) 3.5 (2.1–6.0) 9.7 (7.1–13.1)

Genotype 1b 15.5 (10.1–23.2) 16.7 (11.1–24.4) 22.0 (15.5–30.3) 15.0 (9.7–22.5)

No cirrhosis 39.7 (33.6–46.1) 13.6 (9.8–18.5) 8.6 (5.6–12.9) 9.3 (6.2–13.7)

Cirrhosis 50.0 (43.9–56.1) 13.4 (9.7–18.1) 7.5 (4.9–11.4) 12.5 (9–17.1)

TN 43.4 (37.1–49.9) 11.4 (7.9–16.2) 7.9 (5.1–12.2) 8.8 (5.8–13.2)

TE 46.5 (40.6–52.6) 15.3 (11.4–20.1) 8.1 (5.4–12.0) 12.9 (9.4–17.5)

DAA 60.0 (44.6–73.6) 15.0 (7.1–29.1) 0 (0.0–8.8) 10.0 (4.0–23.1)

No Transplant 43.1 (38.3–48.0) 15.1 (12.0–19.0) 7.5 (5.3–10.5) 11.1 (8.4–14.6)

Transplant 53.5 (43.0–63.7) 5.8 (2.5–12.9) 10.6 (5.7–18.9) 10.3 (5.5–18.5)

Table 2. Frequency of Baseline RASs in Specific Sub-Populations. The numbers represent the proportion of 
patients (95% CI) in a given sub-population (e.g. GT1a) who harbored RASs in the gene targets indicated (e.g. 
NS3), or in two or more gene classes. RASs were determined using the Monogram commercial assay.

Figure 3. Efficacy of DAA regimens with baseline RASs. (Top) The proportions of patients with LDV, SOF, 
or SMV-specific RASs are shown in green, purple and orange bars, respectively. (Middle) The proportions of 
patients with RASs relevant for the treatment regimens are indicated in red. For example, for the LDV/SOF 
cohort, total number of patients with baseline RASs included patients with LDV and/or SOF RASs. (Bottom) 
The proportions of patients with or without baseline RASs who achieved SVR12 are shown in red and blue bars, 
respectively.
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SMV RASs and efficacy of SMV/SOF ± RBV in routine clinical practice. Baseline SMV-associated 
RASs were common in the SMV/SOF (28%, 52 of 187) and SMV/SOF + RBV (50%, 29 of 58) cohorts (Fig. 3). 
As in LDV/SOF cohorts, SOF-associated RASs were uncommon. In the SMV/SOF cohort (n = 187), 45 of 52 
patients (87%) with baseline SMV RASs achieved SVR12, whereas 123 of 135 patients (91%) without SMV RASs 
achieved SVR12 (Fig. 5A). In GT1a, the presence of SMV RASs was associated with a small reduction in SVR12 
(85% vs 91%; p = 0.38). In contrast, SMV RASs had no impact on SVR12 in GT1b. Baseline SMV RASs was 
associated with 4% lower SVR12 rates in patients who received ≤98 days of therapy. All 7 patients treated for 
>98 days achieved SVR12 regardless of baseline SMV RASs (Fig. 5A). In patients with cirrhosis or who were 
treatment-experienced, the presence of SMV RASs was associated with a 5% and 3% reduction in SVR12, respec-
tively. Combining host and viral characteristics, only 69% of GT1a, treatment-experienced cirrhotic patients with 
baseline SMV RASs achieved SVR12, compared to 79% SVR12 rates in those without baseline SMV RASs.

Figure 4. Efficacy of LDV/SOF with baseline LDV RASs in different patient subpopulations. (A) and (B). 
Top: Proportions of patients with baseline LDV RASs are shown in red. Bottom: Proportions of patients with 
or without baseline LDV RASs are shown in red and blue bars, respectively. (C) Top: SVR12 rates of patients 
with or without specific RASs indicated on the left are shown with 95% CI. Bottom left: Proportion of patients 
with Y93C/H/N RASs. Bottom right: Proportions of patients with or without Y93C/H/N RASs who achieved 
SVR12 are shown in red and blue, respectively. LDV RASs analyzed were M28A/T/V, Q30E/H/L/R, L31I/M/V, 
H58D, Y93C/H/N/S. No Y93 RASs was observed in the LDV/SOF/RBV cohort. No L159F or C316N RASs were 
observed in the LDV/SOF/RBV cohort.
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In the SMV/SOF + RBV cohort (n = 58), baseline SMV RASs was associated with 4% lower SVR12 rates (86% 
vs 90%) (Fig. 5B). The presence of SMV RASs in GT1a was associated with 9% lower SVR12 rates (86% vs 95%; 
p = 0.38), but SMV RASs had no impact in GT1b. Similar to the SMV/SOF cohort, baseline SMV RASs was asso-
ciated with 6% lower SVR12 rates in patients who received ≤98 days of therapy, but had no impact on SVR12 
rates in patients treated for >98 days (Fig. 5B). Baseline SMV RASs had a larger impact on SVR12 rates in GT1a, 
treatment-experienced cirrhotics (85% vs 100%; p = 0.49), although the number of GT1a, treatment-experienced 
cirrhotic patients was small. In both SMV/SOF and SMV/SOF + RBV cohorts, Q80K/R substitutions had a small 
but detectable impact on SVR12 (Fig. 5C), especially in GT1a. In addition, the presence of R155K or D168E 
substitutions were associated with lower SVR12 rates, although the number of patients who harbored these 
RASs was small. Baseline NS5A RASs had no impact on SVR12 rates in SMV/SOF or SMV/SOF + RBV cohorts 
(Supplmentary Figure S4).

Interestingly, a pooled analysis of all patients from the 4 cohorts revealed that 100% of patients (19/19) with 
baseline RASs treated for more than 98 days achieved SVR12, whereas 81/93 patients (87%) with baseline RASs 
treated for ≤98 days achieved SVR12 (p = 0.21; Supplementary Figure S3). This 19-patient cohort was predom-
inantly GT1a (74%, 14/19), treatment-experienced (84%, 16/19), and was mostly DAA-naïve (only 3 had prior 
exposure to telaprevir), and a large proportion of patients had cirrhosis (74%, 14/19). The median duration of 
therapy was 168 days (range: 99–176). The clinical characteristic of these 19 patients is shown in Supplementary 
Table S5. In contrast, in patients without baseline RASs, 95% (77/81) of patients treated for >98 days achieved 
SVR12 and 93% (259/278) treated for ≤98 days achieved SVR12.

Abundance and linkage of specific RASs. In an exploratory analysis, we employed a novel quantita-
tive single-variant sequencing (SVS) assay16 to more accurately quantify the proportions and linkage of RASs 
in selected baseline samples. Since Y93 RASs confer high level resistance to NS5A DAAs, we first examine all 7 
patients in the LDV/SOF cohort (n = 193) with known baseline Y93H RASs using SVS.

Of these 7 patients, 2 of 3 GT1a and 2 of 4 GT1b patients had baseline samples available for SVS analysis. Of 
the 3 GT1a patients, one failed to achieve SVR12 and harbored baseline Q30H/N/S + Y93H substitutions (based 
on commercial assay) prior to LDV/SOF therapy. Subsequent analysis using quantitative SVS revealed that 100% 
of the baseline virus had dual RASs, with 83% Q30N/Y93H, 12% Q30S/Y93H, and 5% Q30H/Y93H (Fig. 6A). 
Of the remaining 2 patients (both achieved SVR12), one had a single RAS (Y93Y/N by commercial assay) and 
harbored 13% Y93N (Fig. 6B), and the second patient had two RASs (M28M/V + Y93Y/C), but no remaining 
samples from this patient were available for further SVS analysis.

All 4 GT1b patients with baseline Y93 RASs achieved SVR12 and all 4 had Y93Y/H as determined by com-
mercial resistance assay. One patient had Y93H variant in 77% of the baseline viral population (Fig. 6C), and a 
second patient had only 0.3% of Y93H (Fig. 6D). Two other patients had no baseline samples available for further 
analysis. Interestingly, while both samples (Fig. 6C and D) were determined to have Y93Y/H by commercial 
assay, their viral quasispecies compositions were drastically different (Fig. 6C and D). In an exploratory analysis, 
we sequenced an additional sample from a patient with known baseline Y93Y/H substitutions who discontinued 
LDV/SOF early due to drug intolerance (Fig. 1; this patient was excluded from the efficacy analysis). Quantitative 
SVS revealed that 65.4% of the baseline virus had dual R30Q/Y93H substitutions that were linked, R30Q and 
Y93H single substitutions were present at 5.9% and 2.7%, respectively, and 25.9% of the baseline population had 
no major NS5A RASs (Fig. 6E).

To further characterize baseline virus in patients with virologic failure, we analyzed all remaining patients 
who failed LDV/SOF and had samples available for quantitative SVS and linkage analysis (5 GT1a and 2 GT1b). 
Of these 7 patients, only one had baseline RASs that were detectable by quantitative SVS (threshold of detection 
~0.1–0.5%). This patient had a GT1b virus, characterized by a dual P58S/A92T RASs at a frequency of 2.9%, P58S 
single substitution at 95%, and A92T single substitution at 1.5%. The remaining 6 patients had no NS5A RASs 
detectable by either the Monogram Assay or SVS.

To further explore RASs linkage, we sequenced additional 12 subjects in the LDV/SOF cohort and 12 subjects 
in the SMV/SOF ± RBV cohort who had known NS5A RASs identified by the Monogram assay. All 24 subjects 
had achieved SVR12. Interestingly, while data between Monogram assay and the quantitative SVS assay were 
concordant for most samples, differences in RASs were detectable in some samples, and the proportions of viral 
quasispecies and RASs linkage were identifiable using the SVS analysis (Fig. 7).

Finally, we examined baseline RASs in 5 GT1a patients who relapsed after SMV/SOF treatment and had base-
line samples available. Two of the 5 GT1a subjects harbored Q80K substitutions that were detectable by both the 
Monogram assay and the SVS assay (both had a frequency of 100%). Of the 3 remaining patients with baseline 
NS3 RASs identified by Monogram assay, one harbored a baseline virus with dual R155K/D168E RASs at 7%, and 
R155K and D168E single substitutions at 8% and 90%, respectively. A second patient had S122G RAS at 1.5%, and 
a third patient had no baseline NS3 RASs (Supplementary Table S2).

Discussion
High replication rate of HCV coupled with error-prone HCV RNA-dependent RNA polymerase leads to the qua-
sispecies nature of HCV populations. Although wild-type viruses are fit and generally outcompete viruses with 
pre-existing RASs, some variants (e.g. NS5A RASs) may pre-exist and circulate at high frequency within the viral 
swarm that may impact response to DAA therapy. A number of clinical trials have reported the impact of baseline 
RASs on outcomes of DAAs therapy. However, the prevalence and impact of baseline RASs in postmarketing, 
diverse, real-world cohorts of patients treated outside of clinical trials remains unclear. Leveraging the data and 
specimen repository of the prospective, multi-center, observational cohort study of HCV-TARGET, we report 
the prevalence and impact of baseline NS3, NS5A, and NS5B RASs in real-world clinical practices in patients 
treated with ledipasvir/sofosbuvir or simeprevir/sofosbuvir, with or without ribavirin. We found that the overall 
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Figure 5. Efficacy of SMV/SOF with baseline SMV RASs in all patients, by genotype 1 subtype, and by patient 
subpopulations. (A) and (B). Top: Proportions of patients with baseline SMV RASs are shown in red. Bottom: 
Proportions of patients with or without baseline SMV RASs are shown in red and blue bars, respectively. (A) 
Patients treated with SMV/SOF, (B) Patients treated SMV/SOF//RBV. (C) Top: SVR12 rates of patients with 
or without specific RASs indicated on the left are shown with 95% CI. Bottom left: Proportion of patients with 
Q80K/R. Bottom right: Proportions of patients with or without Y93C/H/N RASs who achieved SVR12 are 
shown in red and blue, respectively. SMV RASs analyzed were Q80K/R, S122A/G/I/R/T, R155K/Q, D168A/E/F/
H/I/T/V/Y, IV170/T.
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prevalence of baseline RASs in clinical practice is generally comparable to data from clinical trials. SVR rates 
across different patient subgroups did not differ significantly according to baseline RASs, but lower SVR12 rates 
were observed in certain patient subgroups. Interestingly, all 19 patients with baseline RASs who were treated for 
more than 98 days with one of the 4 regimens analyzed in this study achieved SVR12. In selected patients, linkage 
between RASs and their proportions could be determined using quantitative single-variant sequencing analysis.

We note that the prevalence of RASs in a given population is dependent on the sequencing methods used for 
detection, and thus the comparison of prevalence data between studies will require knowledge of sequencing 
and analysis methods used. For example, minor variants constituting less than 10–20% of the viral population 
may not be detectable by Sanger population sequencing18,19, but RASs as low as 1% of the quasispecies could be 
detected using next-generation sequencing (NGS)16,20, although the clinical relevance of these low frequency 
variants remains to be defined. To determine the prevalence of baseline RASs and their impact on treatment 
response in patients in clinical practice, we chose the LabCorp/monogram resistance assay that is widely used 
in clinical practice. This assay uses Illumina MiSeq deep sequencing with a 10% cutoff to define the presence or 
absence of a specific RAS.

Figure 6. Viral quasispecies composition of (A,B) GT1a and (C–E) GT1b patients with baseline Y93H RASs. 
The relative proportions of RASs in the viral quasispecies are shown in pie charts. Clinical characteristics are 
shown in the table below.
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Not surprisingly, the prevalence of RASs varied according to gene targets and amino acid position. The overall 
prevalence of NS3, NS5A, NS5B RASs (determined at 10% threshold) was 45%, 13%, and 8%, respectively, which 
are comparable to previous literature. For NS3, the prevalence of baseline RASs varies widely in the literature, 
ranging from 5.5% to 46%21–23. This wide variation largely depends on whether Q80 RASs are included in the 
analysis. We found that baseline Q80K RAS was common (45%) in GT1a patients, but uncommon (3%) in GT1b 
patients. However, other clinically important NS3 RASs often selected following virologic failure of PI-containing 
regimens, including R155K, A156S/T/V, and D168 substitutions, were uncommon (<3%) in real world practices. 
For NS5A, baseline RASs at positions 28, 30, 31, 58, 93 were found in 13% of our patient population (12% in GT1a 
and 17% in GT1b), which is in agreement with the range of 5–15% in published reports18,24. For GT1a, M28T/V 
was most common (6%), comparable to published data of 4–8%21,23, but Y93C/H/N, a RAS that confers high-level 
resistance to NS5A inhibitors25, was uncommon (3%). In contrast, Y93C/H/N was common in GT1b (11%), 
followed by L31M/I (7%). For NS5B, baseline sofosbuvir RASs were uncommon (4%), and S282T, L320 or V321 
substitutions were not detected in any of the 492 baseline samples. On the other hand, dasabuvir RASs were prev-
alent (22%) in GT1b but not in GT1a patients, due primarily to the high prevalence of C316N (8%) and S556G 
(14%) in GT1b viruses which is higher than previous reports26, although C316N may be a polymorphism com-
monly seen in GT1b in some parts of the world27,28. Within different patient subgroups, the prevalence of RASs 
was generally comparable between cirrhosis and non-cirrhosis, treatment-naïve (TN) and treatment-experienced 
(TE), and irrespective of liver transplantation status. Interestingly, 10% of patients in real world practices har-
bored RASs in 2 or more drug classes, with NS3/NS5A dual-class RASs being the most common, followed by 
NS3/NS5B RASs then NS5A/NS5B RASs. The very small number of patients with RASs in 2 or more classes in 
different treatment cohorts precluded a detailed analysis of their impact on treatment outcome.

Figure 7. Comparison of RASs dataset between Monogram assay and quantitative SVS in patients with baseline 
NS5A RASs. A broader list of RASs and substitutions was considered for the SVS assay. Discordant results are 
shown in red.
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While the presence of baseline RASs has impacted viral outcomes in small numbers of patients in con-
trolled clinical trials, the extent to which they impact efficacy of DAAs in the general population and in certain 
sub-populations in routine clinical practice remains unclear. Simeprevir (SMV) plus sofosbuvir (SOF) was the 
first interferon-free, all oral regimen that became available in late 2013 and is well tolerated with SVR rates of 
>90% in most patient subpopulations. However, the Q80K polymorphism, common in GT1a (45% prevalence 
in the present study), confers 7 to 10-fold increase in EC50 to simeprevir29. In OPTIMIST-1 and -2 registration 
trials of patients treated with 8 or 12 weeks of simeprevir plus sofosbuvir, the presence of baseline Q80K had a 
significant impact on SVR12 rates of patients with GT1a cirrhosis (25/34 or 74%), compared to other patient 
subgroups30. Consistent with data from registration trials, the presence of baseline Q80K or SMV RASs in the 
HCV-TARGET cohort had a small impact on SVR12 rates in each individual patient subgroup (i.e. cirrhosis, 
TE, or GT1a). However, when these unfavorable host and viral factors are present simultaneously (i.e. the GT1a, 
treatment-experienced cirrhotic subgroup) in the SMV/SOF cohort, those with baseline SMV RASs had lower 
SVR12 rates compared to those without baseline RASs (69% vs 79%). Similar trends were observed in patients 
treated with simeprevir plus sofosbuvir plus ribavirin (85% vs 100%, respectively).

Ledipasvir (LDV) plus sofosbuvir (SOF) is a well tolerated, all oral regimen with SVR rates in the real world 
over 90–95%31. In ION-1 and −3 registration trials, SVR12 rates were over 97% across all arms with no significant 
difference in SVR based on length of treatment, use of ribavirin, cirrhosis status, or HCV GT1 subtype6–8. In the 
present study, the presence of LDV RASs (at positions 28, 30, 31, 58, 93) was associated with a small reduction 
of 3% in SVR12 rates in the LDV/SOF cohort (a range of 1–7% reduction in SVR12 rates across different patient 
subgroups including cirrhosis status, GT1 subtype, and TN vs TE). Interestingly, although Y93 RASs were rare 
(4%), one of the three GT1a patients with baseline Y93H failed to achieve SVR12, which may be due in part to its 
more complex quasispecies populations (Fig. 6A) that may confer a higher level of resistance to NS5A inhibitors.

Current commercial HCV resistance assays rely on either population sequencing or next generation sequenc-
ing (NGS). Population sequencing reports the sequence of the predominant circulating HCV variants, which is 
insensitive in detecting minority variants present in less than 10–15% of viral quasispecies population. Although 
deep sequencing is more sensitive, the conventional sequencing approach suffers from technical artifacts, which 
could arise from amplification errors and bias associated with reverse transcription and PCR, resampling errors 
from low copy number of viral templates, and sequencing errors16,32,33. Since the commerical lab did not pro-
vide quantitative data and instead reported only the population sequence using a pre-defined variant reporting 
threshold (10% cutoff in the present study), data between commercial labs and qSVS could not be compared 
quantitatively (Fig. 7). A 10–15% threshold is widely used in research settings and a cut-off of 15% was recom-
mended by the recent EASL guideline34. Our study used a pre-defined 10% cut-off from the commercially availa-
ble Monogram assay, which may have resulted in a slightly higher overall prevalence of RASs compared to a 15% 
cut-off. However, the percent cut-off that is clinically relevant for each specific regimen is currently unknown. 
In addition, deep sequencing assays are generally performed without correcting for potential technical errors as 
described above, and the information regarding linkage of RASs is not reported in commercial assays. Our data 
suggest that mutation linkage may be clinically relevant and impact treatment response. For example, viruses with 
NS5A dual Q30H/Y93H substitutions may confer higher level of resistance against NS5A inhibitors compared to 
viruses with Q30H or Y93H single substitutions.

To our knowledge, the impact of relative abundance and linkage of RASs on treatment response has not 
been previously investigated. Using a recently developed quantitative single-variant sequencing (qSVS) assay16 
that potentially overcomes technical artifacts as described above, we conducted a secondary exploratory analy-
sis of selected baseline samples to more accurately quantify the proportions and determine the linkage of vari-
ants within viral populations. Of the 7 patients (3 GT1a and 4 GT1b) who had baseline Y93 RASs detected by 
the Monogram assay, 1 of 3 GT1a patients failed to achieve SVR12, but all 4 GT1b patients achieved SVR12. 
Interestingly, analysis of baseline RASs by SVS revealed that the one GT1a patient who failed to achieve SVR12 
harbored a virus with 100% dual RASs (Q30 linked to Y93H). In contrast, one of the 2 GT1a patients who 
achieved SVR12 harbored Y93N RAS in only 13% of the viral population (the third patient had no samples 
remaining for SVS analysis). Although Y93N is known to confer higher level resistance to NS5A DAAs compared 
to Y93H (>10-fold higher), the lower frequency of Y93N (13%) in the viral quasispecies population may have 
allowed viral suppression and SVR12 by LDV/SOF combination therapy. However, these data should be inter-
preted with caution given the low frequency of Y93 RASs in the real world cohort and the small sample size with 
baseline RASs. Nonetheless, these results raise the possibility that a high proportion of highly resistant virus in the 
HCV quasispecies population may contribute to treatment failure, which could also explain the generally lower 
SVR12 rates during re-treatment of patients with detectable baseline NS5A RASs.

There are several weaknesses in this study. First, since this a real-world cohort and not a randomized control 
trial, patients received one of four possible regimens with varying treatment durations. Given our sample size, 
the low frequency of baseline Y93 RASs in the general population made it difficult to fully assess their impact on 
outcome. Secondly, it is possible that patients receiving ribavirin were considered by the treating providers to have 
unfavorable baseline characteristics which could have led to a bias for baseline RASs in the ribavirin-containing 
cohorts. Indeed, a higher proportion of patients with cirrhosis or prior DAA exposure was observed in the 
ribavirin-containing cohorts (Table 1). While the knowledge of baseline NS3 RASs (e.g. Q80K) may have influ-
enced some treating physicians to add ribavirin, Q80K polymorphism data was available in only 18% of patients 
in SMV-containing cohorts. The distribution of RASs reported in this study may also be different than the overall 
population with HCV, as samples from only a subset of HCV-TARGET patients (~5%) were studied and the age 
range of our cohort suggests an older population with likely more advanced liver disease. Finally, we could not 
fully address the impact of RASs in DAA-experienced patients because of the small sample size (only 63 patients 
or 12.8% of total), and as several newer regimens are now available, the importance of SMV-containing regimens 
will diminish.
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To our knowledge, this is the first study that reports the prevalence and impact of baseline RASs in patients 
treated with DAAs in routine clinical practice. Our results demonstrate that the overall prevalence of RASs was 
generally comparable to data in registration trials and between different patient subgroups in clinical practice. 
The presence of baseline LDV or SMV RASs was associated with a small but detectable reduction in SVR12 rates 
in select patient subpopulations, and the quasispecies population of the baseline virus may contribute in part to 
treatment failure. Importantly, all 19 patients with baseline RASs treated for more than 98 days achieved SVR12, 
whereas 87% treated for ≤98 days achieved SVR12, suggesting that longer treatment duration may overcome the 
impact of baseline RASs on SVR12 rates in DAA-naïve patients. These data provide additional support for the 
clinical practice of extending treatment course to overcome the effects of unfavorable characteristics including 
baseline RASs, particularly in settings where SMV/SOF and LDV/SOF regimens are still used and where RAS 
testing may not be readily available. Emerging research is now focusing on specific patient subpopulations espe-
cially DAA-experienced patients that may be most impacted by the presence of different combinations of treat-
ment emergent RASs. However, the role of RASs may be diminished with a broader use of more recently approved 
DAAs9. As SVS analysis has the potential to provide detailed characterization of HCV quasispecies populations 
including RASs linkage, this approach may offer additional insights during re-treatment of DAA-experienced 
patients in future studies.
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