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ABSTRACT
Background: Costimulatory molecules play significant roles in mounting anti-tumor immune responses, 
and antibodies targeting these molecules are recognized as promising adjunctive cancer immunothera-
pies. Here, we aim to conduct a first full-scale exploration of costimulatory molecules from the B7-CD28 
and TNF families in patients with lung adenocarcinoma (LUAD) and generated a costimulatory molecule- 
based signature (CMS) to predict survival and response to immunotherapy.
Methods: We enrolled 1549 LUAD cases across 10 different cohorts and included 502 samples from TCGA 
for discovery. The validation set included 970 cases from eight different Gene Expression Omnibus (GEO) 
datasets and 77 frozen tumor tissues with qPCR data. The underlying mechanisms and predictive 
immunotherapy capabilities of the CMS were also explored.
Results: A five gene-based CMS (CD40LG, TNFRSF6B, TNFSF13, TNFRSF13C, and TNFRSF19) was initially 
constructed using the bioinformatics method from TCGA that classifies cases as high- vs. low-risk groups 
per OS. Multivariable Cox regression analysis confirmed that the CMS was an independent prognostic 
factor. As expected, CMS exhibited prognostic significance in the stratified cohorts and different validation 
cohorts. Additionally, the prognostic meta-analysis revealed that CMS was superior to the previous 
signature. Samples in high- and low-risk groups exhibited significantly different tumor-infiltrating leuko-
cytes and inflammatory activities. Importantly, we found that the CMS scores were closely related to 
multiple immunotherapy biomarkers.
Conclusion: We conducted the first and most comprehensive costimulatory molecule landscape analysis 
of patients with LUAD and built a clinically feasible CMS for prognosis and immunotherapy response 
prediction, which will be helpful for further optimize immunotherapies for cancer.
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Background

Over the last few years, lung cancer has become the most 
common malignant tumor and is a grave danger to global 
human health, with an annual incidence increasing at a rate of 
7.5%.1 Approximately four out of five lung cancers are classified 
as non-small cell lung cancer (NSCLC). As the major histological 
subtype of NSCLC, lung adenocarcinoma (LUAD) accounts for 
over 1 million worldwide deaths annually.2 Despite the amplifi-
cation of traditional approaches which – in combination with 
targeted therapy – have reduced mortality, the five-year OS (OS) 
rate of LUAD remains about 15%.3 The introduction of immu-
notherapy, especially immune checkpoint inhibitors (ICIs) tar-
geting programmed cell death protein 1 (PD-1) and 
programmed cell death 1 ligand 1 (PD-L1), has revolutionized 
lung cancer treatment.4,5 More recently, pembrolizumab mono-
therapy was approved to replace chemotherapy as the frontline 
treatment for patients with PD-L1 positive metastatic NSCLC.6 

Although treatment for lung cancer has been improved with the 
development of ICI-based immunotherapies, only a small 

proportion of patients with lung cancer can benefit from this 
schedule. Therefore, we must be able to predict the best candi-
dates for immunotherapy and develop other novel immune 
checkpoint targets.

The success of ICIs has emerged from a deep understanding 
of the functions of the immune system and immunosuppres-
sive conditions that are generated in the tumor microenviron-
ment (TME).7,8 In the TME, T cells help distinguish cancer 
cells from healthy cells and initiate subsequent attacks. Before 
the attack, the naïve T cells need two signals to be active. The 
first signal is generated once a specific antigen is recognized by 
the T cell receptor (TCR). The second signal is a nonspecific 
costimulatory signal.9 Based on the fact that the naïve T cells 
cannot be activated in without costimulatory signals,10 cancer 
cells prevent the recognition of these signals by changing the 
costimulatory molecule signals and expressions in the TME.11 

Hence, ICIs prevent tumor cells from delivering incorrect 
messages to T cells, thereby selectively restoring a tumor- 
induced immune deficiency in the TME.12 In addition to the 
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best described immune checkpoint pathways (PD-L1/PD-1, 
CD86/CTLA4) that belong to the B7-CD28 family,13,14 other 
co-stimulation pathways mainly arise from the tumor necrosis 
factor (TNF) family.15

Currently, 13 molecules are classified as B7-CD28 family 
members, including eight molecules (CD80, CD86, PD-L1, PD- 
L2, ICOSLG, B7-H3, B7x, and HHLA2) that belong to the B7 
family and five molecules (CD28, CTLA4, ICOS, PD-1, and 
TMIGD2) that belong to the CD28 family.13 The TNF family 
consists of the TNF ligand superfamily (TNFSF) and the TNF 
receptor superfamily (TNFRSF) with 48 molecules.16 Nineteen 
legends were defined as TNFSF, and other 29 receptors consid-
ered members of the TNFRSF (Table 1). These costimulatory 
molecules – consisting of members of the B7-CD28 and TNF 
families – constitute potential molecular targets for the develop-
ment of novel ICIs and may make excellent additions to existing 
immunotherapeutic strategies.17,18 However, the expression pat-
terns and clinical significance of the majority of these members 
remain unknown. There is a need for full-scale investigations of 
these molecules in patients with LUAD.

We used LUAD gene expression data from The Cancer 
Genome Atlas (TCGA) to systematically explore the expression 
patterns and prognoses of these costimulatory molecules. Then, 
through a series of statistical methods, we built a costimulatory 
molecule-based signature (CMS) with significantly different 
prognoses. The CMS was well-validated in nine different cohorts 
from Gene Expression Omnibus (GEO) datasets and an inde-
pendent cohort using clinical samples. Also, according to 
a prognostic meta-analysis, we determined that CMS was super-
ior to the previous costimulatory molecule-related model. We 
also found that the CMS was characterized by distinct inflam-
matory profiles and specific immune infiltrating lymphocytes. 
What’s more, the CMS was able to predict the immunotherapy 
response in patients with LUAD. Therefore, our work describes 
the systemic landscape of costimulatory molecules based on B7- 
CD28 and TNF families and highlights the potential underlying 
clinical applications for the CMS, thereby supporting the devel-
opment of rationales to guide prognosis management and 
immunotherapy in patients with LUAD.

Materials and methods

mRNA expression datasets and clinical information

A total of nine public datasets, including 1472 cases with corre-
sponding mRNA expression data and clinical data, were gath-
ered in this study. The training set consisted of data from 502 
patients with genetic information (Illumina HiSeq 2000, log2 
transformed RSEM normalized read count) and matching OS 
data from TCGA that were downloaded from the Cancer 
Genomics Browser of University of California Santa Cruz 
(UCSC) (https://genomecancer. ucsc.edu).19 Eight other public 
datasets with mRNA microarray data were collected from GEO 
datasets with processed series matrix files (http://www.ncbi.nlm. 
nih.gov/geo), including GSE11969 (n = 91, log10 ratio (Cy5/ 
Cy3) normalized read count),20 GSE13213 (n = 117, log10 ratio 
(Cy5/Cy3) normalized read count),21 GSE19188 (n = 40, log2 
transformed RMA normalized read count),22 GSE30219 (n = 83, 
log2 transformed RMA normalized read count),23 GSE31210 

(n = 226, log2 transformed RMA normalized read count),24 

GSE37745 (n = 106, log2 transformed RMA normalized read 
count),25 GSE41271 (n = 180, log2 transformed RMA normal-
ized read count),26 and GSE50081 (n = 127, log2 transformed 
RMA normalized read count).27 Moreover, for the genes with 
one more probe, mean expression values were recognized as the 
expression data. The clinical characteristics of these patients 
from multiple institutions are summarized in Table 2.

RNA extraction and quantitative real-time reverse 
transcription–PCR

We used 77 surgically resected LUAD tissues, collected from 
The First Affiliated Hospital of Zhengzhou University between 
August 2013 and January 2015, as the independent cohort. 
Then total RNA was extracted from LUAD tissues using the 
RNAiso Plus reagent (Takara, #9109) according to the manu-
facturer’s instructions. The first strand of complementary DNA 
was synthesized from total RNA using the Prime Script™ RT 
reagent kit (Takara, #RR047A). Quantitative real-time PCR 
was performed with SYBR Premix Ex Taq II (Takara, 
#RR820A), and data were analyzed in the Agilent Mx3005P. 
With the endogenous control for normalization of GAPDH, 
the expression data of all the selected genes were log2 trans-
formed before signature validation. All the primer sequences in 
this research are displayed in Supplementary Table 1. All 
patients were received and signed the informed consents. The 
samples used in the study were approved by the Institutional 
Review Boards of the First Affiliated Hospital of Zhengzhou 
University.

Functional enrichment analysis

After deleting the genes with low expression values (more than 
half of all genes analyzed had 0 expression), functional enrich-
ment analysis based on CMS related genes were conducted 
through the Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) in DAVID 6.8 (http://david.abcc. 
ncifcrf.gov).

Estimated the profiling of immune cell infiltration

The FPKM of mRNAseq data of LUAD from TCGA was used 
for estimating the fractions of 22 immune cell types in the TME 
by CIBERSORT.28 The data was not standardized and genes 
with mean expression 0 were filtered out before submitting to 
CIBERSORT. The profiling of multiple immune cell types was 
performed through the leucocyte gene signature matrix, termed 
LM22, for the CIBERSORT software (http://cibersort.stanford. 
edu/). LM22 consists of 547 genes that can distinguish 22 
immune cells, including different subtypes of B cell types, 
T cell types, natural killer cells (NKs), plasma cells, and myeloid 
cell types.

Biomarkers for predicting immunotherapy response

The potential immunotherapy response prediction perfor-
mance of CMS was estimated with the following biomarkers: 
tumor mutation burden (TMB), neoantigen, PD-L1 protein 

2 C. ZHANG ET AL.

https://genomecancer
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
http://david.abcc.ncifcrf.gov
http://david.abcc.ncifcrf.gov
http://cibersort.stanford.edu/
http://cibersort.stanford.edu/


expression, and Tumor Immune Dysfunction and Exclusion 
(TIDE) score. The TMB and neoantigen data of LUAD patients 
in the TCGA dataset were separated from The Cancer 
Immunome Atlas (TCIA) (https://tcia.at/home).29 The protein 
data of PD-L1 expression was realized through the reverse- 
phase protein array (RPPA) analysis, which was retrieved from 
cbioPortal (http://www.cbioportal.org). TIDE has been proven 
to outperform known immunotherapy biomarkers in 

predicting immunotherapy response in patients with mela-
noma and lung cancer, especially those treated with ICIs.30 

TIDE scores, T cell dysfunction scores, and T cell exclusion 
scores were download from the TIDE web (http://tide.dfci. 
harvard.edu) after following the instructions on the website 
to uploaded input data. All the expression details of these 
biomarkers used in this research are summarized in 
Supplementary Table 2.

Table 1. Univariate Cox analysis of costimulatory molecule genes in TCGA Cohort.

Official symbol Aliases Family HR 95%CI P value

CD27 TNFRSF7 TNFRSF 0.8682 0.7858-0.9592 0.0055
CD274 PD-L1, B7-H1 B7 1.0125 0.9239-1.1097 0.7897
CD276 B7-H3 B7 1.3865 1.0728-1.7919 0.0125
CD28 Tp44 CD28 0.8635 0.7721-0.9658 0.0102
CD40 TNFRSF5 TNFRSF 0.9089 0.8063-1.0246 0.1182
CD40LG TNFSF5, CD154, CD40L TNFSF 0.8194 0.7421-0.9049 0.0000
CD70 TNFSF7, CD27L TNFSF 1.0688 0.9757-1.1708 0.1522
CD80 B7-1, CD28LG1 B7 0.8878 0.7986-0.9869 0.0275
CD86 B7-2, CD28LG2 B7 0.9099 0.8076-1.0252 0.1210
CTLA4 CD152 CD28 0.8772 0.7924-0.9711 0.0116
EDA EDA-A1, EDA-A2 TNFSF 0.9561 0.8727-1.0474 0.3345
EDA2R TNFRSF27, XEDAR TNFRSF 0.9107 0.8387-0.9888 0.0259
EDAR EDA-A1R TNFRSF 1.0425 0.9744-1.1154 0.2275
FAS TNFRSF6, CD95 TNFRSF 0.9501 0.8396-1.0752 0.4176
FASLG TNFSF6, CD95-L TNFSF 0.9083 0.8204-1.0056 0.0641
HHLA2 B7-H5 B7 1.0016 0.9602-1.0448 0.9414
ICOS CD278, CVID1 CD28 0.8970 0.8092-0.9942 0.0384
ICOSLG B7-H2, CD275 B7 0.8427 0.7104-0.9996 0.0495
LTA TNFSF1 TNFSF 0.8918 0.8002-0.9939 0.0385
LTB TNFSF3 TNFSF 0.8771 0.7949-0.9679 0.0091
LTBR TNFRSF3 TNFRSF 1.3077 1.0591-1.6147 0.0126
NGFR TNFRSF16, CD271 TNFRSF 1.0011 0.9123-1.0986 0.9808
PDCD1 PD-1, CD279 CD28 0.9625 0.8693-1.0658 0.4630
PDCD1LG2 PD-L2, B7DC, CD273 B7 0.9691 0.8733-1.0754 0.5544
RELT TNFRSF19L TNFRSF 0.9259 0.7884-1.0873 0.3477
TMIGD2 CD28H CD28 0.9290 0.8279-1.0423 0.2096
TNF TNFSF2, TNFA TNFSF 0.9098 0.8257-1.0024 0.0560
TNFRSF10A TRAILR1, CD261 TNFRSF 1.0582 0.9025-1.2408 0.4858
TNFRSF10B TRAILR2, CD262 TNFRSF 1.0336 0.8482-1.2596 0.7428
TNFRSF10C TRAILR3, CD263 TNFRSF 0.8628 0.7727-0.9634 0.0087
TNFRSF10D TRAILR4, CD264 TNFRSF 1.0799 0.9334-1.2495 0.3015
TNFRSF11A RANK, CD265 TNFRSF 1.1316 0.9925-1.2902 0.0647
TNFRSF11B OPG TNFRSF 1.0088 0.9139-1.1135 0.8619
TNFRSF12A FN14, TWEAKR, CD266 TNFRSF 1.1040 0.9768-1.2477 0.1131
TNFRSF13B TACI, TNFRSF14B, CD267 TNFRSF 0.8682 0.7987-0.9438 0.0009
TNFRSF13C BAFFR, CD268 TNFRSF 0.8788 0.7977-0.9682 0.0090
TNFRSF14 LIGHTR, HVEM, CD270 TNFRSF 0.8253 0.7112-0.9577 0.0114
TNFRSF17 BCMA, TNFRSF13A, CD269 TNFRSF 0.9023 0.8370-0.9727 0.0073
TNFRSF18 GITR, AITR, CD357 TNFRSF 0.9919 0.9060-1.0860 0.8607
TNFRSF19 TROY, TAJ TNFRSF 0.8596 0.7735-0.9553 0.0050
TNFRSF1A TNFR1, CD120A TNFRSF 1.3583 1.0542-1.7500 0.0179
TNFRSF1B TNFR2, CD120B TNFRSF 0.8640 0.7360-1.0142 0.0739
TNFRSF21 DR6, CD358 TNFRSF 1.1041 0.9425-1.2935 0.2201
TNFRSF25 DR3, TNFRSF12 TNFRSF 0.9262 0.8376-1.0241 0.1349
TNFRSF4 OX40, CD134 TNFRSF 0.9510 0.8323-1.0867 0.4607
TNFRSF6B DCR3 TNFRSF 1.1399 1.0481-1.2397 0.0022
TNFRSF8 CD30 TNFRSF 0.9513 0.8343-1.0847 0.4560
TNFRSF9 4-1BB, CD137, ILA TNFRSF 0.9837 0.9007-1.0744 0.7156
TNFSF10 TRAIL, CD253 TNFSF 0.9741 0.8621-1.1007 0.6740
TNFSF11 RANKL, CD254 TNFSF 1.0685 0.9942-1.1484 0.0717
TNFSF12 TWEAK TNFSF 0.7643 0.6331-0.9226 0.0051
TNFSF13 APRIL, CD256 TNFSF 0.7978 0.6847-0.9296 0.0038
TNFSF13B BAFF, CD257 TNFSF 0.9889 0.8846-1.1056 0.8448
TNFSF14 LIGHT, HVEML, CD258 TNFSF 1.0094 0.9061-1.1246 0.8648
TNFSF15 TL1A TNFSF 0.9212 0.8391-1.0113 0.0848
TNFSF18 GITRL TNFSF 0.8992 0.7838-1.0316 0.1296
TNFSF4 OX-40L, CD134L, CD252 TNFSF 1.0323 0.9090-1.1723 0.6246
TNFSF8 CD30L, CD153 TNFSF 0.8864 0.7979-0.9848 0.0247
TNFSF9 4-1BB-L, CD137L TNFSF 1.0888 0.9787-1.2112 0.1177
VTCN1 B7-H4 B7 0.9732 0.9192-1.0304 0.3513

TCGA, The Cancer Genome Atlas; HR, hazard ratio; CI, confidence interval.
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Signature identification and statistical analysis

A univariate Cox proportional hazards regression analysis 
and stepwise Cox proportional hazards regression model 
were used to construct the signature. Then, the CMS was 
constructed using five selected genes (CD40LG, TNFRSF6B, 
TNFSF13, TNFRSF13C, and TNFRSF19) with a linear com-
bination of their expression values. These inputs were 
weighted with the regression coefficients from the stepwise 
Cox regression analyses. The expression details of the five 
selected genes and the corresponding risk scores in differ-
ent public cohorts are displayed in Supplementary Table 2. 
All the patients in different cohorts were divided into high- 
and low-risk groups based on the optimal cutoff point, 
which was determined by the “surv_cutpoint” function of 
the “survminer” R package. The prognostic significance of 
the CMS between the high- and low-risk groups in different 
sets and subgroups were calculated with Kaplan-Meier 
curves and a 2-tailed log-rank test. The Mann-Whitney 
U-test was applied to analyze the between-group differences 
for immune cell fractions and immunotherapy biomarkers. 
Univariate and multivariate Cox regression analyses were 
conducted to clarify the independent prognostic factors. 
P < .05 was considered statistically significant for all statis-
tical methods. STATA software (version 12.0) was used to 
perform the prognostic meta-analysis of CMS and B7-CD 
28 signature. The two overall hazard ratio (HR) values were 
calculated using the random-effects model. R software ver-
sion 3.5.1 (https://www.r-project.org) was used for other 
data analyses.

Results

The panorama and prognostic significance of 
costimulatory molecule genes in LUAD

A total of 60 costimulatory molecule genes were separated 
from the TCGA LUAD data, which consisted of 13 well- 
defined B7-CD28 family costimulatory molecules,13 and 47 
TNF family costimulatory molecules (Table 1).16 The rela-
tionships of these molecules are shown in Supplementary 
Figure 1. Correlation analysis based on TCGA dataset 

revealed that most of the costimulatory molecules were 
highly relevant to others. Then, 502 LUAD patients with 
60 costimulatory molecule expression data and matched 
complement OS information from the TCGA data were 
used to evaluate the prognostic significance of these candi-
date genes. Univariate cox proportional hazards regression 
analysis was conducted, and the results showed that 23 
genes were significantly associated with OS (P < .05, Table 
1). Among the significant genes, four genes (CD276, LTBR, 
TNFRSF1A and TNFRSF6B) were confirmed as risky fac-
tors with HRs (HR)>1, and 19 genes (CD27, CD28, 
CD40LG, CD80, CTLA4, EDA2R, ICOS, ICOSLG, LTA, 
LTB, TNFRSF10C, TNFRSF13B, TNFRSF13C, TNFRSF14, 
TNFRSF17, TNFRSF19, TNFSF12, TNFSF13 and TNFSF8) 
were confirmed as protective factors with HR<1.

Identification of CMS for prognostication

With the tremendous success in the clinical use of ICIs target-
ing costimulatory factors for lung cancer, we sought to estab-
lish CMS for prognostication. A stepwise Cox proportional 
hazards regression model was then used to filter out the redun-
dant candidate genes and construct a prognostic model. Using 
the prognostic information of the 502 cases and the corre-
sponding expression details of the 23 significant candidate 
genes, the stepwise method finally filtered out the combination 
of the 5 genes. We then developed a risk score formula for 
patients with LUAD based on the gene’s expression levels to 
predict patient survival: risk score = (−0.1075× CD40LG) + 
(0.1418× TNFRSF6B) + (−0.1603× TNFSF13) + 
(−0.1069× TNFRSF13C) + (−0.0803× TNFRSF19). The expres-
sion panel of the five genes, the distribution of risk scores, and 
survival status of each patient are shown in Figure 1(a). Next, 
we classified all the patients in the TCGA cohort into high-risk 
(n = 292) and low-risk groups (n = 210) based on the optimal 
cutoff point (cutoff value = −2.3834). We found that patients in 
the high-risk group showed significantly worse OS (Figure 1 
(b), HR 2.0435, 95% confidence interval (CI) 1.4811–2.8195, 
P < .0001). When we further applied the signature into differ-
ent clinical stages, the results indicated that the formula still 
worked well. Specifically, we observed significant OS time 

Table 2. Clinical characteristics of the enrolled patients.

Characteristics
TCGA 

N=502
GSE11969 

N=90 GSE13213 N=117
GSE19188 

N=40 GSE30219 N=83
GSE31210 

N=226 GSE37745 N=106
GSE41271 

N=180 GSE50081 N=127
Independent 

N=77

Age, year
Mean 65.3 61.0 60.7 – 61.1 59.6 63.0 64.1 68.7 60.0
Gender
Male 231 47 60 25 65 105 46 91 65 39
Female 271 43 57 15 18 121 60 89 62 38
Smoking history
Yes 416 45 61 – – 111 – – 92 46
No 72 45 56 – – 115 – – 23 31
NA 14 0 0 – – 0 – – 12 0
TNM stage
I and II 388 65 92 – 83 226 89 129 127 62
III and Ⅳ 105 25 25 – 0 0 17 51 0 15
NA 9 0 0 – 0 0 0 0 0 0
OS state
Alive 320 50 68 16 40 191 29 111 76 57
Death 182 40 49 24 43 35 77 69 51 20

NA, not available; OS, overall survival.
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between the high- and low-risk groups both for early-stage 
(stage I and II) (Figure 1(c), HR 1.9961, 95% CI 1.3641–2.9210, 
P = .0003) and advanced stage disease (stage III and ) (Figure 
1(d), HR 2.7529, 95% CI 1.6335–4.6394, P < .0001).

To further explore whether the signature-based risk score 
was an independent factor in patients with LUAD, univariate, 
and multivariate Cox regression analyses in the TCGA data-
base were conducted. The results of the multivariate Cox 
regression model confirmed that the risk score was 
a significant factor (HR = 1.7952, 95%CI 1.2254–2.6298, 
P = .0027) independent of age, sex, smoking history, clinical 
stage, and mutation (MUT) status (Table 3).

Evaluation of the performance of CMS in different clinical 
subgroups

Sex, age, smoking history, and MUT status were factors that 
influenced the TME, especially the expression of immune 
checkpoints. Consequently, patients from TCGA were then 
divided into different subgroups based on these parameters: 
sex (male or female), age [older (age ≥ 60) or younger 
(age<60)], smoking (smoker or nonsmoker), and MUT status 
[EGFR wide-type (WT), EGFR MUT, KRAS WT, KRAS MUT, 
or EGFR/KRAS WT]. All the patients in different subgroups 
were stratified into high- and low- risk groups based on the risk 

Figure 1. Identification of the CMS in the TCGA dataset. (a) the distribution of risk score, survival status, and the five-gene expression panel. Kaplan-Meier curves were 
conducted to estimate overall survival for the high- and low-risk groups based on the risk score; (b) total patients with LUAD (c) patients with early-stage (stage I and II) 
LUAD. (d) patients with advanced-stage (stage III and Ⅳ) LUAD.

Table 3. Univariable and multivariable Cox regression analysis of the costimulatory molecule-based signature and survival in TCGA dataset.

Univariable analysis Multivariable analysis

Variable HR 95%CI P value HR 95%CI P value

Age
≥60 or <60 1.1575 0.7957-1.6838 0.4445 1.3959 0.9490-2.0533 0.0903
Gender
Male or Female 1.1568 0.8401-1.5928 0.3722 1.0080 0.7183-1.4145 0.9634
Smoking history
Yes or No 1.0374 0.6532-1.6476 0.8763 1.0613 0.6366-1.7692 0.8195
T stage
1, 2, 3 or 4 1.5458 1.2602-1.8961 <0.0001 1.2890 1.0171-1.6336 0.0357
Lymphatic metastasis
Yes or No 2.4053 1.7466-3.3124 <0.0001 1.6992 1.1150-2.5897 0.0137
TNM stage
I, II, III or Ⅳ 1.5587 1.3381-1.8156 <0.0001 1.1711 0.9242-1.4839 0.1912
ERFR status
MUT or WT 1.4658 0.9584-2.2418 0.0777 1.4682 0.9181-2.3480 0.1089
KRAS status
MUT or WT 1.2159 0.8598-1.7195 0.2689 1.2525 0.8706-1.8019 0.2250
Risk score
High or low 2.1058 1.4571-3.0433 0.0001 1.7952 1.2254-2.6298 0.0027

Abbreviations: HR, hazard ratio; CI, confidence interval; WT, wild-type; MUT, mutation.
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score with the same formula. The results showed that all the 
high-risk groups had significantly different OS compared to the 
paired low-risk groups (Supplementary Figures 2 and 
3, P < .05).

Validation of the CMS in nine independent cohorts

To identify whether the CMS derived from the TCGA cohort 
was robust, we first evaluated its performance in eight indepen-
dent public validation cohorts. These consisted of the remaining 
GSE11969, GSE13213, GSE19188, GSE30219, GSE31210, 
GSE37745, GSE41271, and GSE50081 datasets. The CMS strati-
fied all patients from different public cohorts into the high- and 
low-risk groups using the same formula [risk 
score = (−0.1075× CD40LG) + (0.1418× TNFRSF6B) + 
(−0.1603× TNFSF13) + (−0.1069× TNFRSF13C) + 
(−0.0803× TNFRSF19)] with the optimal cutoff points. As 
shown in Figure 2, significant differences between the high- 
and low-risk groups were found in most of the GEO datasets, 
including GSE13213 (cutoff value = −0.2261, HR 2.5990, 95% CI 
1.3539–4.9890, P = .0029), GSE19188 (cutoff value = −0.0061, 
HR 2.4817, 95% CI 1.0571–5.8262, P = .0308), GSE30219 (cutoff 
value = −2.2083, HR 2.2955, 95% CI 1.1495–4.5839, P = .0156), 
GSE31210 (cutoff value = −2.5365, HR 2.2037, 95% CI 1.0960–-
4.4308, P = .0229), GSE41271 (cutoff value = −1.0183, HR 
2.3023, 95% CI 1.4267–3.7153, P = .0004) and GSE50081 (cutoff 
value = −2.1254, HR 2.2958, 95% CI 1.2393–4.2530, P = .0066). 
Meanwhile, in the GSE11969 (cutoff value = 0.0607) and 
GSE37745 (cutoff value = −2.1263) datasets, the signature 

showed a borderline difference between the high- and low-risk 
groups with P values of 0.1015 and 0.1192, respectively (Figure 2 
(a and f)). The different performance of CMS in different data-
sets may be caused by the different race or the high spatial 
heterogeneity of the immune microenvironment.

To further measure whether the signature could be used in 
clinical practice, we validated the signature in an independent 
cohort that contained 77 frozen tissue samples with qRT-PCR 
data. By using the same model [risk score = (−0.1075× CD40LG) 
+ (0.1418× TNFRSF6B) + (−0.1603× TNFSF13) + 
(−0.1069× TNFRSF13C) + (−0.0803× TNFRSF19)] and the opti-
mal cutoff point (cutoff value = −0.1300), patients were classified 
into high- (n = 32) and low-risk groups (n = 45). As expected, 
a significant difference in mortality was found between these two 
groups (Figure 2(i), HR 2.9189, 95% CI 1.1622–7.3309, 
P = .0169).

Compare the CMS with the previous model

Prior to the creation of our signature, Shanbo Zheng et al. 
constructed a signature for LUAD based on the costimulatory 
molecules from the B7-CD28 family (B7-CD28 signature) with 
a risk score of 0.3313× CD276 – 0.1559× CD28.31 We then 
comprehensively assessed the prognostic significance of our 
CMS and the B7-CD28 signature by examining public datasets 
and conducting prognostic meta-analyses based on the nine 
groups (n = 1472) of the two different signature groups. As 
shown in Figure 3(a), our CMS performed very well in the 
different cohorts, producing HRs larger than 1. On the 

Figure 2. The association between CMS and overall survival in nine different validation cohorts. Kaplan-Meier curves were created to estimate overall survival for in 
high- and low-risk groups based on the risk score. (a) GSE11969 (range from −0.0685 to 0.2331); (b) GSE13213 (range from −0.7562 to 0.5577); (c) GSE19188 (range from 
−0.2603 to 0.3283); (d) GSE30219 (range from −2.5093 to −1.5032); (e) GSE31210 (range from −2.9149 to −1.5841); (f) GSE37745 (range from −2.5732 to −1.6179);  
(g) GSE41271 (range from −1.8310 to −0.0865); (h) GSE50081 (range from −2.4230 to −1.4792); (i) an independent cohort with qPCR data.
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contrary, the B7-CD28 signature was not that stable in different 
cohorts and some of the HRs were smaller than 1 (Figure 3(b)). 
More importantly, the meta-analysis combined HR of our 
CMS was far larger than that of the B7-CD28 signature. 
These findings indicate that our signature was superior to the 
previous model.

CMS related biological processes and pathways

The consistent prognostic performance of the CMS was con-
firmed in 10 different cohorts. This prompted us to investigate 
the biological features of patients with different risk scores. We 
first filtered out 2771 low-expression genes (genes where half or 
more than half of the values were 0) and then extracted the 
genes that strongly correlated with risk score (Pearson |R| > 
0.45, P < .0001) from the remaining 17759 genes in TCGA 
dataset. Collectively, 14 positively related genes and 399 nega-
tively related genes were screened out (Figure 4(a)). Then, these 
selected genes were chosen for GO and KEGG analyses through 

use of the online DAVID tool (https://david.ncifcrf.gov). The 
results revealed that signature-related genes were more 
involved in the biological process of the immune response, 
especially B cell and T cell-related immune response (Figure 4 
(b)). KEGG analysis further confirmed that these genes were 
closely related to immune-specific pathways (Figure 4(c)).

CMS-related immune cell infiltration and inflammatory 
activities

To further increase our understating of the CMS-related immune 
landscape, we first explored the relationship between CMS and 
immune cell infiltration. The estimated fractions of different 
immune cells in the TME of LUAD were calculated by 
CIBERSORT, in combination with the LM22. The results demon-
strated that the panorama of immune cells between high- and low- 
risk patients were dramatically different (Figure 5(a)). In particu-
lar, high-risk patients showed a significantly higher proportion of 
activated NK cells, activated dendritic cells (DCs), neutrophils, 

Figure 4. CMS-related biological pathways. (a) the most related genes of TNF family-based signature in patients with LUAD (Pearson |R| > 0.45, P < .0001). (b and c) GO 
and KEGG analyses of the related genes.

Figure 3. Compare CMS with previous costimulatory molecules signature. (a) a meta-analysis was performed using the prognostic results of CMS in nine public datasets. 
(b) a meta-analysis was performed using the prognostic results of the B7-CD28 signature in nine public datasets.
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macrophages M0, resting DCs, and regulator T cells (Tregs) 
(Figure 5(b and c)). On the contrary, low-risk patients featured 
a high proportion of memory B cells, resting CD4 memory T cells, 
and gamma delta T cells (Figure 5(b and c)).

Next, to increase our understanding of CMS-related inflam-
matory activities, we assessed the relationship between CMS and 
seven clusters of metagenes. These consisted of 104 genes and 
represented different inflammation and immune response.32 

The expression details of the collected genes and risk scores 
were displayed in Figure 5(d). Then, to explore the correlation 
between CMS and the entire metagenes of every cluster, the 
expression of corresponding gene clusters was calculated by 
Gene Sets Variation Analysis (GSVA).33 Finally, the correlations 
were portrayed according to Pearson r-values between risk 
scores and metagenes (Figure 5(e)). The results revealed that 
CMS was negatively associated with HCK, LCK, MHC-I, and 
MHC-II. This indicated that patients with high CMS scores were 
characterized by an immune-suppressive state.

Association of CMS and immunotherapy response in 
patients with LUAD

Presently, immunotherapy is considered a first-line treatment 
for patients with LUAD. Costimulatory molecules are major 
candidates for immunotherapy. Therefore, we further assessed 
the association of CMS and immunotherapy response through 
analyzing the correlation of CMS and widely recognized 
immunotherapy biomarkers.30 Totally, we enrolled eight 
indices, including TMB, the number of neoantigens, the 

number of clonal neoantigens, the number of subclonal neoan-
tigens, the protein level of PD-L1, the TIDE score, the T cell 
dysfunction score, and the T cell exclusion score, to get 
a comprehensive evaluation. The results, as depicted in 
Figure 6, illustrated that high-risk patients were distinguished 
by a high level of TMB, neoantigens, protein level of the PD-L1 
and T cell exclusion scores, and low level of the TIDE and T cell 
dysfunction scores. These results indicate that CMS-based 
high-risk patients may benefit from immunotherapy, especially 
ICIs.

Discussion

There is plenty of evidence pointing out that the immunosup-
pressive TME exhausts T cells and renders them anergic. This 
subsequently enables tumor cells to evade host immune- 
mediated elimination.34 Costimulatory molecules, especially 
the immune checkpoints, expressed on cancer cells or tumor- 
infiltrating lymphocytes play vital roles in regulating the anti- 
tumor immune response. Further, the blocking antibody tar-
geting PD-L1/PD-1 has directly prolonged survival in patients 
with metastatic cancer.35,36 Presently, the costimulatory mole-
cules mainly consist of two major families: the B7-CD28 family 
and the TNF family.37 In this study, we simultaneously 
detected the expression pattern and clinical significance of 60 
costimulatory molecules in patients with LUAD. Based on the 
significant genes, we developed a novel survival prediction 
model (CMS) based on the expression of five costimulatory 
molecular features in the TCGA dataset. The CMS score was 

Figure 5. CMS-related immune cell infiltration and inflammatory activities. (a) the relative proportion of immune cell expression in high- and low-risk patients. (b and c) 
differentially expression immune cells in high- and low-risk patients. (d) the details of seven inflammatory metagenes and risk score. (e) correlogram of risk score, and 
inflammatory metagenes. *, **, ***, and **** represent P < .05, P < .01, P < .001 and P < .0001, respectively.
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found as an independent risk factor for patients with LUAD. 
Furthermore, the CMS was well validated in eight different 
public GEO datasets and 77 cases from frozen tissues with 
qRT-PCR data. Interestingly, through prognostic meta- 
analysis, we proved that our CMS had better prognostic value 
than the previous costimulatory molecule-related signature. 
We also explored the immune panorama – including immune 
cell distribution and inflammatory activities – in CMS high- 
and low-risk patients. Additionally, we found that the CMS 
score was positively related to different immunotherapy bio-
markers. To our knowledge, this is the first and most compre-
hensive study to date to describe the prognostic and 
immunotherapy response prediction value of a CMS in 
patients with LUAD.

To get the whole picture of costimulatory molecule expres-
sion in patients with LUAD, we collected the 13 members 
from the B7-CD28 family and the 47 members from the TNF 
family into our analysis.13,16 After the univariate Cox propor-
tional hazards regression analysis and stepwise Cox propor-
tional hazards regression model, we found that all five 
selected genes (CD40LG, TNFRSF6B, TNFSF13, 
TNFRSF13C, and TNFRSF19) belonged to the TNF family. 
This indicated that costimulatory signals and pathways in the 
TNF family had a more important prognostic value than 
those in the B7-CD28 family in patients with LUAD. 
CD40LG – also known as CD40L, TNFSF5, or CD154 – is 
a membrane-bound protein belonging to the TNFSF family. 
CD40LG has been a therapy target in cancer treatment 
because of its ability to trigger Th1-type immune 
responses.38 The expression and prognostic states of the 
CD40LG-CD40 axis was previously reported in lung 
cancer.39 TNFRSF6B, a soluble decoy receptor, is also 
known as Decoy receptor 3 (DcR3), belongs to the TNFRSF 
family.40 TNFRSF6B inhibits apoptosis and promotes angio-
genesis through binding with FASL, LIGHT, and TL1A.41,42 

Moreover, studies found that DcR3 is a potential immu-
notherapy target for cancer treatment.43 TNFSF13, also 
known as APRIL and CD256, is a proliferation-inducing 
ligand that plays an important role in B cell development.44 

The clinical significance of TNFSF13 in several cancers was 
previously revealed and included NSCLC,45 breast cancer,46 

B-cell chronic lymphocytic leukemia,47 and other tumor 
types. TNFRSF13C (BAFFR or CD268), a receptor of BAFF, 
is a crucial regulatory factor in B cell proliferation, develop-
ment, and maturation.48 Hong Qin et al. reported that a novel 
anti-BAFFR antibody may be a promising strategy for drug- 
resistant B-cell malignancies.49 TNFRSF19, also known as 
TROY or TAJ, is a member of the TNFRSF family and 
demonstrates complex and pleiotropic functions in different 
cellular contexts.50 Present evidence displayed that 
TNFRSF19 acted as a tumor suppressor in patients with 
lung cancer.51 Although the expression details of these five 
members in various cancer types have been described, the 
combination and functions of these molecules still warrants 
further exploration.

To verify the robustness of CMS, we reproduce the model in 
nine different cohorts, and the significance of CMS was finally 
confirmed by prognosis meta-analysis. It is worth mentioning 
that the number of validation cohorts in our research was 
larger than that of any other studies in the LUAD population. 
This made our signature more reliable and clinically feasible. 
Before our study, a signature based on the expression of costi-
mulatory molecules from the B7-CD28 family was 
constructed.31 Through meta-analysis, we obtained two crucial 
conclusions: the CMS signature had prognostic significance 
across these public datasets, although some of the P-values 
were not statistically significant and our CMS model demon-
strated an advantage over the reported B7-CD28 model. These 
conclusions are consistent with our finding that the TNF 
family has a more important prognostic value for patients 
with LUAD.

Through analysis, the most related genes of CMS, the 
potential mechanisms of CMS in LUAD was proved to be 
closely associated with the immune-related process. Hence, 
the details of CMS-specific immune profiles were further 
analyzed. We found that there were higher proportions of 
DCs, NKs, and Tregs in CMS high-risk patients TME. 
Simultaneously, inflammatory metagene analysis revealed 

Figure 6. The expression pattern of immunotherapy response makers in high- and low-risk groups. The distribution of TMB (a), number of neoantigens (b), number of 
clonal neoantigens (c), number of subclonal neoantigens (d), protein level of PD-L1 (e), TIDE score (f), T cell dysfunction score (g) and T cell exclusion score (h) in high- 
and low-risk groups. *, **, ***, and **** represent P < .05, P < .01, P < .001 and P < .0001, respectively.
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that CMS score was negatively related to monocyte/myeloid 
lineage- and T cell-specific functions (HCK and LCK). What’s 
more, CMS score was also found negatively related to the 
antigen-presenting process of T cells (MHC-I and MHC-II) 
in LUAD. Thus, CMS high-risk patients appear to exhibit 
a high immune cell infiltration microenvironment while in 
an immune-suppressive state.

Interestingly, this research highlighted the potential role 
of CMS in predicting the response to immunotherapy in 
patients with LUAD. Because the immune checkpoint tar-
gets (PD-L1 and PD-1) are costimulatory molecules, CMS 
may have the ability to predict the response to ICIs-based 
immunotherapy. Due to the lack of details regarding 
mRNA expression in cases with immunotherapy, we had 
to evaluate the relationship indirectly. We collected TMB, 
the number of neoantigens, the protein level of PD-L1, and 
the TIDE scores. TMB is one of the classic biomarkers for 
immunotherapy response, and neoantigen burden is always 
increased by TMB. This will be useful for T cell 
recognition.52,53 The PD-L1 expression level was another 
well-known biomarker for ICIs in lung cancer.54 The 
TIDE score is a newly-developed method for immunother-
apy response prediction, and considered a more accurate 
biomarker than TMB or PD-L1 expression.30 Collectively, 
high-risk patients exhibited high TMB and PD-L1 expres-
sion. From a mechanical standpoint, this resonated with the 
results of the immune profile analysis. By comparing the 
CMS scores with these different verified biomarkers, we 
preliminarily speculate that CMS high-risk patients may 
be suitable for immunotherapy. These findings give us 
additional confidence that the CMS scores may act as 
a novel predictive biomarker for immunotherapy response.

There are some limitations to this study that warrant con-
sideration. Firstly, although we tried our best to include as 
many independent datasets as possible for validation, this 
study was retrospective. Secondly, the CMS-specific immune 
landscape was realized through bioinformatic methods with 
RNA-seq data. This analysis may have been influenced by 
noise. Thirdly, because the mRNA expression data from 
patients with immunotherapy was not available, the predic-
tion ability of CMS for immunotherapy response was esti-
mated indirectly. Future prospective studies could affirm the 
complete prediction ability and a molecular picture of the 
CMS signature.

Conclusions

Here, we have performed a first costimulatory molecule land-
scape analysis in patients with LUAD. We built a reliable, 
clinically feasible prognostic signature named CMS and iden-
tified the potential underlying immune-related mechanisms of 
this signature. Importantly, the CMS was tightly related to well 
validated immunotherapy biomarkers. Thus, the CMS could be 
a clinically useful tool for prognostic management and predict-
ing immunotherapy response in patients with LUAD. Future 
validation of the predictive capability of this formula will be 

helpful for patients seeking counseling and individualized 
treatment.
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