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Abstract

Predictive toxicology is concerned with the development of models that are able to predict the toxicity of chemicals.
A reliable prediction of toxic effects of chemicals in living systems is highly desirable in cosmetics, drug design or food
protection to speed up the process of chemical compound discovery while reducing the need for lab tests. There is
an extensive literature associated with the best practice of model generation and data integration but management
and automated identification of relevant models from available collections of models is still an open problem.
Currently, the decision on which model should be used for a new chemical compound is left to users. This paper
intends to initiate the discussion on automated model identification. We present an algorithm, based on Pareto
optimality, which mines model collections and identifies a model that offers a reliable prediction for a new chemical
compound. The performance of this new approach is verified for two endpoints: IGC50 and LogP. The results show a
great potential for automated model identification methods in predictive toxicology.
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Background
Predictive toxicology is concerned with the development
of models that are able to predict the toxicity of chemicals
[1]. These models are continuously built and validated on
large collections of toxicological experimental studies to
discover new biologically active compounds that are more
effective, selective, less toxic, or satisfy various toxicolog-
ical criteria [2,3]. A reliable prediction of toxic effects of
chemicals in living systems is highly desirable in domains
such as: cosmetics, drug design or food safety. This knowl-
edge allows an earlier rejection of those chemicals that
may fail the testing phase and reduces the cost of manu-
facturing chemical compounds in the development stage.
Additionally, the European Commission’s Legislation of
Registration, Evaluation and Authorization of Chemicals
(REACH) [4] allows the registration of chemicals that
were developed using in silico modelling, which facilitates
a reduction in the number of animal tests. These two fac-
tors have contributed to increased interests from research
and business communities in development of toxicologi-
cal modelling systems that are focused on data integration,
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model development and predictions (e.g OpenTox [5],
InkSpot [6] or OCHEM [7]).

Quantitative Structure-Activity Relationship (QSAR)
or Structure-Activity Relationship (SAR) models (both
regression and classification) are the most common
and widely used methods to relate chemical struc-
ture/properties with their biological, chemical or environ-
mental activities [8]. According to the Organisation for
Economic Co-operation and Development (OECD) Prin-
ciples for QSAR Model Validation [9], a model should
be statistically significant and robust, have its application
boundaries defined and be validated by an external dataset
[10,11]. A model applicability domain [12,13] determines
the boundary of the chemical sub-space where the model
makes reliable prediction for a given activity. Applying
models for chemicals from outside of their applicability
domains increases the likelihood of inaccurate prediction.

There is an extensive literature associated with the best
practice of model generation and data integration [14-19]
but management and identification of relevant models
from available collections of models is still an open prob-
lem. In recent years a large number of highly predic-
tive models, having various applicability domains, has
become publicly available. Some of them, tested on a wide
chemical space, have become officially approved tools,
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e.g. KOWWIN (estimates the log octanol-water partition
coefficient) or BCFBAF (estimates fish bioconcentration
factor) built into Estimation Program Interface (EPI) Suite
[20]. There is also a large number of quality models that
are applicable only for a narrow chemical space. Some
of them are annotated according to the OECD princi-
ples and publicly available in databases like JRC QSAR
Models Database [21]. This database includes reports of
model generation, validation and prediction according to
the OECD standards. QSAR Model Reporting Format
(QRMF) and QSAR Prediction Reporting Format (QPRF)
have been developed at the Computational Toxicology
and Modelling lab of the JRC’s Institute to standardise
annotation of model meta-information. Currently, there
is a lot of effort to build the ontologies for QSAR exper-
iments and to provide an interoperable and reproducible
framework for QSAR analyses [22].

Models that are stored in model databases can be reused
to predict toxicity of new chemical compounds. Unfortu-
nately, this involves a manual process of model identifica-
tion. A potential user is required to make a comparison
of model applicability domains and their predictivity for a
given activity in order to decide if the model can make reli-
able predictions for a given chemical compound. Model
comparison is a difficult task since models are gener-
ated using various subsets or various chemical compound
descriptors. Consequently, models can be trained and val-
idated on different datasets. For regression models, the
model performance can be described by the predictive
squared correlation coefficient q2. Since the sizes and
contents of modelling and validation datasets may dif-
fer for various models, the value of q2 is not sufficient
for model comparison [10]. Several model performance
matrices were analysed in the context of model validation
and model selection [14]. They are applied in automated
model development where models are validated by the
same dataset. In the case where two models come from
different sources, model comparison becomes challeng-
ing. This requires predictive models to be validated across
the entire chemical space, which is very difficult as the list
of available chemicals and assays may be limited.

Clearly, there is a need for automated techniques for
mining model repositories. This includes methods for
model quality control, data and model integration, model
comparison and model identification. Our research aims
to address this gap. In this paper, we draw attention to the
importance of existing models’ usage in predictive tox-
icology. We also introduce methods for effective model
identification for a new unseen chemical compound. The
term “model identification“ covers the whole range of
problems related to model selection from a collection
of models (for a given endpoint) developed on various
datasets. In the extreme case, datasets (and specified
applicability domains) for two models can be disjoint.

Model identification is a much harder problem than the
well known model selection problem [23], i.e choos-
ing a model from a set of candidate models with the
same applicability domains. Therefore, various methods
applied in traditional model selection [24-27] cannot be
directly applied to model identification. In contrast to
model selection, model identification cannot take into
account model variables or parameters since some model
variables cannot be easily accessed for new chemical
compounds.

The interesting questions here are whether efficient
model identification is possible based on molecular struc-
tures and models performances, and how good the iden-
tified model can be for a new chemical compound. In
[28], authors defined the framework for automated model
selection and described a simple algorithm for model
selection. The method selects the most predictive model
from the collection of models for a nearest neighbour to
the query chemical compound. Often, the nearest neigh-
bourhood can contain more than one element and model
performances can differ slightly. In this case, it is difficult
to say which model would be the most reliable for a given
chemical compound.

To answer the above question, in this paper we present
a new method for model identification for regression
models. This method uses Pareto points [29] to define
the nearest Pareto neighbourhood according to two cri-
teria: structural similarity of chemicals and models per-
formances. In the next section a framework for model
identification, Pareto points and their properties are intro-
duced. Having the Pareto nearest neighbourhood defined,
we present two methods for model identification. The
first method averages model performances for all Pareto
neighbours and identifies the one with the smallest error.
The second method identifies a model for which the
Pareto point is the closest (based on Euclidean distance) to
a centroid of all points in the Pareto neighbourhood. We
also demonstrate that model identification improves the
quality of the test set, or unseen chemical compound pre-
diction. Experimental work using IGC50 for Tetrahymena
pyriformis and internal Syngenta LogP datasets show that
our approach provides good results and it is worth being
considered for further research.

Methods
Framework for model identification in predictive
toxicology
There are several chemical compound representations
and thousands of available chemical descriptors [8] used
for predictive model development. In this paper, a chem-
ical space X is a set of chemicals represented by pairs
x = (xd, xf ), where xd ∈ R

K1 represents a vector of
descriptor values, xf ∈ {0, 1}K2 is a fingerprint, and K1 +
K2 is the dimension of the chemical space. Descriptors
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represent various topological, geometrical, physical and
chemical properties of a chemical compound. A finger-
print is a binary vector whose coordinates define the
presence or absence of predefined structural fragments
within a molecule [30]. A fingerprint is also a one dimen-
sional representation of a chemical compound and it
is widely used for chemical similarity search in large
databases [31]. It is also worth noting that a finger-
print is not a unique chemical compound representa-
tion because it encodes only a fragment of a molecule.
There can be two different molecules having the same
fingerprint representation.

A predictive model M is a mapping X → Y , where
Y ⊂ R is the output space. The output space Y might,
for example, represent a particular biological, physical or
chemical activity of a chemical compound.

The input data is represented by the pairs: (xi, yi) ∈
X × Y for i = 1, . . . , n, where xi is an element of the
chemical space and yi is the measured activity of that ele-
ment. There is also a set of m predictive models M =
{M1, . . . , Mm} associated with the activity Y. These mod-
els were generated using various statistical or data mining
techniques and they have different applicability domains
and performances. To identify the most predictive model
from the collection of models M for a new chemical
compound x, we define a partitioning model that splits
the chemical space into disjoint groups and allows an
unambiguous model identification.

A partitioning model M̂ is a mapping X → Y given by
the following formula:

M̂(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M1(x), x ∈ D1,
M2(x), x ∈ D2,
...

...
Mm(x), x ∈ Dm,

where

• D1, . . . , Dm ⊆ X are disjoint,
• ⋃m

i=1 Di = X.

The main hypothesis in predictive modeling is that sim-
ilar chemical compounds have similar properties [32].
Following this hypothesis we build the partitioning model
that it splits the chemical space in groups in order to
maximize the similarity of their chemical compounds and
to minimize the error of a model associated with this
group. It is easy to notice that this is a bi-criteria problem
and the solutions have to represent a trade-off between
optimality of these criteria (the so-called Pareto points).
Pareto optimality is a multi-criteria optimisation tech-
nique widely applied in decision making problems [29].
In QSAR modelling multi-objective (criteria) was used
for feature selection [33] in order to maximize predictive

capacity and to reduce the number of selected descrip-
tors. In this paper we present how Pareto optimality can
be applied in QSAR model identification. In the following
sections we recall the basic definition of the Pareto set and
we propose an algorithm that finds Pareto points in 2D
vector space.

Pareto points and their properties
Let consider a vector v = [ f1, f2, . . . , fK ] in the K–
dimensional space. Let πj(v) = fj denote a j-th coordinate
of vector v and V be a finite set of vectors in R

K .

Definition 1 (Domination). A vector v ∈ R
K is dominated

by a vector w ∈ R
K , which is denoted by v � w, if

πj(v) ≤ πj(w), ∀j= 1, . . . , K . (1)

We say that v is strictly dominated by w (v ≺ w), if v � w
and v 
= w, i.e.

∀j= 1, . . . , K πj(v) ≤ πj(w), ∃j=1,...,K πj(v) < πj(w). (2)

Definition 2 (Comparison). Vectors v, w ∈ R
K are incom-

parable, which we denote by v ∼ w, if neither v � w nor
w � v.

Note that v ∼ w if and only if there exist i, j ∈ {1, . . . , K},
i 
= j, such that

πi(v) < πi(w) and πj(v) > πj(w). (3)

Definition 3 (Pareto set). A set � ⊂ V of minimal vectors
with respect to � is called a Pareto set for V.

Note that � consists of incomparable vectors. We can
define � equivalently by the formula

� = {v ∈ V : ∀w∈V v � w ∨ v ∼ w}. (4)

The above definitions and basic properties of the Pareto
set can be found in [34]. Now, we introduce below some
properties of Pareto sets and Pareto order that are used in
the following sections. First, we introduce the convenient
notation. Let

f min
j := min{πj(v) : v ∈ V }, j = 1, . . . , K , (5)

and

Vj := {v ∈ V : πj(v) = f min
j }, j = 1, . . . , K . (6)

The set Vj consists of all vectors in V with minimal value
on the j-th coordinate.

Lemma 1. Let �j be the set of all minimal vectors in Vj.
Then �j ⊂ �, where � is the Pareto set for V.

Let I� = ⋃
j=1,...,K �j and

f max
j := max{πj(v) : v ∈ I�}, j = 1, . . . , K . (7)
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In particular, I� is a subset of � and it is called an initial
Pareto set. Now we establish the dependence of the condi-
tions for incomparability with vectors in this initial Pareto
set.

Lemma 2. If a vector v ∈ V is incomparable with all vec-
tors in I�, then there exist at least two indices j ∈ {1, . . . , K}
such that

πj(v) ∈ (f min
j , f max

j ). (8)

The proof of this Lemma 1 and Lemma 2 as well as all
other results in the paper are provided in Appendix 1.

Pareto order in two dimensions
This subsection is devoted to the study of the two-
dimensional case, i.e. K = 2. We shall use the notation
introduced above.
Lemma 3. The set I� has at most two elements.

1. If |I�| = 1, then I� is the Pareto set for V.
2. If |I�| = 2, then a vector v ∈ V is incomparable with

vectors in I� if and only if

∀j=1,2 πj(v) ∈ (f min
j , f max

j ). (9)

As shown in Figure 1 and Figure 2, when I� consists
of two elements w1 and w2, a set of vectors incompara-
ble with I� is given by the rectangle V . Let γ be a vector
incomparable with I�, i.e. γ ∈ V . The introduction of v0
divides the rectangle V into three areas:

• A′ and A′′ is a set of vectors incomparable with
I� ∪ {γ },

• B is a set of vectors smaller then γ ,
• C is a set of vectors bigger then γ .

Figure 1 A space V of incomparable vectors bounded by
coordinates vectors w1,w2 ∈ I�.

Figure 2 A partition of space V when a new vector γ is
introduced.

The above properties of I� and vectors incomparable
with I� allow us to limit the search space V to find Pareto
solutions.

Finding a Pareto set in 2D vector space
In this section, we present an algorithm for finding a
Pareto set in two-dimensional space (see Algorithm 1).
FIND-PARETO-SET(V ) is a recursive algorithm that finds
all Pareto points in the rectangle V defined by two points
in the initial Pareto set I� (see Lemma 1); this rectan-
gle contains all points from V . The algorithm starts from
finding a point γ that does not dominate any other points
in V (line 4). This point splits the area V into four rectan-
gles (see Figure 2). According to Lemma 2 and Lemma 3,
B ∩ V = ∅, C does not contain Pareto points, whereas
points in rectangles A′ and A′′ are incomparable with γ .
The above procedure is recursively repeated for V∩A′ and
V ∩ A′′.

Algorithm 1 FIND-PARETO-SET(V )
1: if V = ∅ then
2: return ∅
3: end if
4: γ ← FIND-PARETO-POINT(V )
5: Q1 = (V {γ }) ∩ (

(−∞, f1(γ )] ×[ f2(γ ), ∞)
)

6: Q2 = (V {γ }) ∩ (
[ f1(γ ), ∞) × (−∞, f2(γ )]

)
7: � = {γ } ∪ FIND-PARETO-SET(Q1) ∪ FIND-

PARETO-SET(Q2)
8: return �

The algorithm sketched above calls FIND-PARETO-
POINT(V̄ ) (see Algorithm 2) to find a Pareto point in the
set V̄ . This procedure works in the pessimistic time O(n2),
where n is a number of elements in V̄ (when all solu-
tions are comparable, i.e., to form a chain it may take n
iterations to find a Pareto point). However, the expected
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running time is much shorter thanks to the random
selection of points.

Algorithm 2 FIND-PARETO-POINT(V̄ )
1: if V̄ = ∅ then
2: return ∅
3: end if
4: select v̂ randomly from V̄
5: while v̂ dominates points from V̄ \ {v̂} do
6: V̄ ← {v ∈ V̄ \ {v̂} : v � v̂}
7: select v̂ randomly from V̄
8: end while
9: return v̂

Model identification in predictive toxicology
Following the similarity hypothesis researchers build
models for groups of chemicals that have a common
molecular fragment or common properties. These models
are more reliable and give better predictions for chemi-
cals that lie in the model applicability domains. Further,
high quality models developed for a small subset of chem-
ical space can be combined in a global model that covers
larger chemical space using various ensemble techniques.
In this section we present how to identify a reliable model
from a collection of already existing models for new before
unseen chemicals.

The chemical space X is a set of chemical compounds
represented by the combination of all possible existing
chemical descriptors, and for a given endpoint there is a
collection of existing models M. For each chemical com-
pound x ∈ X, model predictions Y ′ = {y′

1, . . . , y′
m} for

models from M are known (see Figure 3). To identify a
model for a given query chemical compound q we convert
the set of chemicals from X and their model performances
into a set of pairs (di, eim), where di represents the dis-
tance between q and the i–th chemical compound from
the chemical space. The error eim = |y(xi) − y′

m(xi)|
defines the model performance for the m–th model from
M and for the i–th chemical compound. In a set of such
pairs, one can find models that have a low predictive
power for the most similar chemical compounds whereas
the other gives better predictions. This illustrates the sit-
uation often encountered in multicriterial optimization
problems: there is no solution that outperforms the others
with respect to all criteria. Hence, instead of having one
solution we have a set of solutions that cannot be com-
pared to each other. The above task is a Pareto problem:
one has to balance similarity to existing chemical com-
pounds and correctness of predictions offered by available
models.

The model identification procedure (see Algorithm 3)
can be described as follows: for a query chemical

compound q and a given chemical space – 1) create the set
V of pairs (di, eim), 2) find the Pareto set for V, 3) select
the most suitable model for q. To create a set V we start
from the array T (see Figure 3) that contains a structural
representation of the chemical compound, its measured
activity (for a given endpoint) and predictive performance
of each model from M.

Algorithm 3 MODEL-IDENTIFY(T , q)
1: V ← INIT(T,q)
2: � ← FIND-PARETO-SET(V )
3: if |�| = 1 then
4: return modelId of the sole element of �

5: else
6: return FIND-MODEL-ID(�)
7: end if

After executing MODEL-IDENTIFY(T , q), in line 1, the
array T is converted into a list of vectors V using proce-
dure INIT(T , q) (see Algorithm 4). Every vector vi ∈ V
is defined as a pair of the distance between q and the
i-th chemical compound from T, and the error of the
j-th model from M for the compound i. The distance
dqi = 1 − STqi is calculated using Tanimoto coefficient
ST, which is the most frequently used similarity mea-
sure in chemoinformatics [35]. This coefficient works with
fingerprints (binary representation of molecules) and is
defined as a ratio between the number of bits set on the
same position in two fingerprints and the sum of bits set
on different positions. The model error eij is defined as a
distance between the true activity for compound i and the
value computed by model j. We treat V as a set of all pos-
sible solutions for model identification for a given query
molecule q and known chemical sub-space.

Algorithm 4 INIT(T , q)
1: V ← ∅
2: for i = 0 to rows(T) do
3: for j = 0 to models(T) do
4: calculate the distance dqi and error eij
5: V = V ∪ {(dqi, eij)}
6: end for
7: end for
8: return V

In line 2 of MODEL-IDENTIFY(T , q), we call FIND-
PARETO-SET(V ) to find the set of all Pareto points � in V.
Then, we analyse points in � in order to choose the most
predictive model for q. In the case when |�| = 1, there
is only one candidate, so the choice is trivial. This case
is comparable to the algorithm proposed in [28] which
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Figure 3 Collection of models for the IGC50 prediction for Tetrahymena pyriformis. The first three columns include chemical compound
representation. The fourth column represents the measured value of IGC50. The presentation of model predictions starts from the fifth column.

selects the most predictive model for the most similar
chemical compound of q. In the case when � consists of
many Pareto points, the model identification becomes a
difficult task: the Tanimoto similarity coefficient (as well
as other fingerprint similarity measures) between chemi-
cal compounds may not be correlated enough with their
activity partially contradicting the similarity hypothesis
[32] (see the end of this section for a detailed example).
To identify a model using Pareto points, first we define
n-Pareto Neighbourhood as follows:

Definition 4. n-Pareto Neighbourhood is a set with at
most n - Pareto points from � which are at distance less
than τ from the element q where τ > 0 and n > 0.

The threshold τ is selected by experiment and depends
on the chemical similarity within a given chemical space.

Having defined the Pareto neighbourhood for a given
chemical compound q, we provide two methods for model
identification. The first one is called n-Average Pareto (see
Algorithm 5). The threshold τ provides means for remov-
ing those chemical compounds which are dissimilar to
the query compound q but their activity is very well pre-
dicted by some model. Next, the model average model
errors for the chemicals represented by Pareto points and
then the model with the smallest average error is selected.
We call this method n-Average Pareto Model Identifica-
tion (n-APMI). The usage of Pareto neighbourhood in
comparison with the standard nearest neighbourhood is
that this method is more sensitive on model performances
and allows for the rejections of the similar chemical com-
pounds on which models perform badly.

The second method is called n-Centroid Pareto (see
Algorithm 6). For all Pareto points from the n-Pareto
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Algorithm 5 Average Pareto
FIND-MODEL-ID(�, T , n, τ )

1: n-PN ← n-Pareto neighbourhood for a given n and
the threshold τ

2: X′ ← all chemical compounds linked to points in n-
PN (use T to accomplish this task)

3: compute for each model average error on chemical
compounds from X′

4: return Id of the model with smallest average error

Neighbourhood the centroid Pareto point c is calculated
according to formula:

c = (dc, ec) = (∑
p∈n−PN dp

|n − PN | ,
∑

p∈n−PN ep

|n − PN |
)
, (10)

where dc is the average of distances and ec is the average of
model errors for all Pareto points from the neighbourhood
(n − PN). In the next step the Euclidean distance between
Pareto points and the centroid is computed. The model
that is associated with the Pareto point for which the
Euclidean distance to the centroid is minimal, is selected.
We call this method n-Centroid Pareto Model Identifica-
tion (n-CPMI). According to the definition, both n-APMI
and n-CPMI are partitioning models that splits chemical
space into disjoin groups and allow unambiguous model
identification.

Algorithm 6 Centroid Pareto
FIND-MODEL-ID(�, T , n, τ )

1: n-PN ← n-Pareto neighbourhood for a given n and
the threshold τ

2: for all points from n-PN calculate the centroid c
3: for each point from n-PN calculate the Euclidean

distance to the centroid
4: return Id of the model having the Pareto point with

the smallest distance to the centroid.

We mentioned above that similar chemical compounds
might have very different measurements of activity. To
demonstrate this, we analysed the TETRATOX [36]
dataset which contains growth inhibition concentration
(IGC50) for Tetrahymena pyriformis. Chemical com-
pounds were compared in pairs. Their Tanimoto similar-
ity coefficient and differences in measured activity were
collected. Summarised results are displayed in Table 1.
Column headers hold differences in the measured activ-
ity between two chemicals, while row headers describe
molecule similarity threshold. The single cell of this array
represents a number of pairs of chemical compounds for
which the distance is smaller than the row identifier and

the difference in the activity is smaller than the column
identifier.

The TETRATOX dataset contains over one thousand
chemical compounds and the biggest difference between
measured values of IGC50 is equal to 5.3. Notice that
the number of pairs of chemicals that are similar, based
on both the fingerprint similarity and the activity, is very
small. There is only one pair of chemical compounds
that have the same activity and maximal similarity (1-
row, 1 column). On the other hand, there are many
chemicals which are similar fingerprint-wise but have
different activities. This makes the model identification
challenging.

In the next section we present results of the experiments
that were carried out in order to demonstrate how model
identification works.

Experimental results
Two experiments were proposed in order to demonstrate
the advantages of model identification for predictive toxi-
cology. Each experiment has two phases. In the first phase
we treated model identification as a classification prob-
lem to study the performances of proposed methods in
comparison with the other classification algorithms. We
defined an “oracle model” that associates each chemical
compound from a given chemical space with the most pre-
dictive model from the collection of existing models and
we used this model to validate our methods. In the sec-
ond phase, for each chemical compound we applied an
identified model to predict the growth inhibition concen-
tration (IGC50) in the first experiment and Partition coef-
ficient (LogP) in the second. Finally, we compared these
results with the original model performances applied to
the whole chemical space.

IGC50 Prediction for Tetrahymena Pyriformis
A dataset (Tetrahymena Pyriformis Toxicity - TPT) of
1129 chemicals was obtained from the INCHEMICOTOX
webpage [37]. This dataset is compiled of toxicity data for
the unicellular ciliated protozoa Tetrahymena pyriformis
(see [38]) and was published in [39]. The measure of toxi-
city is 50% growth inhibition concentration (IGC50). Two
QSAR regression models were obtained from INCHEMI-
COTOX. These models are also reported in the JRC QSAR
Models Database. The first, non polar narcosis (NPN)
QSAR [40], was originally trained on 87 chemicals iden-
tified as non polar narcotics with q2 = 0.95. The linear
regression model was defined as follows:

log(1/IGC50) = 0.83 log P − 2.07,

where log P is the octanol-water partition coefficient.
The second, polar narcosis (PN) QSAR model [41] for
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Table 1 Analysis of chemical compound similarities in order to highlight the difference of the chemical activity for the
TETRATOX dataset

fsim/diffactiv 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0 1 2 2 2 2 2 2 2

0.1 3 13 27 44 51 62 70 79

0.2 6 112 220 335 431 512 585 655

0.3 16 318 617 933 1213 1474 1719 1928

0.4 32 720 1402 2081 2701 3297 3840 4328

0.5 66 1380 2726 4042 5227 6437 7536 8547

fsim/diffactiv 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0 2 2 2 2 2 2 2 2

0.1 84 90 93 96 99 103 104 104

0.2 700 753 782 801 827 842 849 858

0.3 2106 2278 2412 2507 2621 2715 2784 2821

0.4 4763 5160 5526 5837 6119 6360 6575 6724

0.5 9481 10362 11167 11840 12488 13082 13589 14004

Tetrahymena pyriformis, was trained on 138 polar nar-
cotics chemicals with q2 = 0.75 and defined as follows:

log(1/IGC50) = 0.62 log P − 1.00.

Training datasets for both models were obtained from JRC
QSAR Models Database. These datasets were compared
with the Tetrahymena pyriformis dataset and 204 (136
from the PN model and 68 from the NPN models) train-
ing chemicals were present in the TPT dataset. We did
not perform any data curation for this dataset. The above
described models were implemented for the log P value
calculated using the cdk library [42] and used to predict
toxicity for the TPT datasets.

First, we considered the model identification problem
as a classification problem to predict which model will be
the most reliable for a given chemical compound. Hav-
ing a dataset of the predicted IGC50 for both models
and the measured value, we used a priori information
(“oracle model“) about the best selected model for each
chemical compound and we applied various classification
methods. To simulate the model identification for before
unseen chemical compounds the leave-one-out (LOO)
method was used. This methods takes out one chemical
compound from the dataset and uses others chemicals to
predict which model would be the most reliable for it. This
procedure were repeated for all chemicals in the dataset.

Table 2 includes results from the comparison of n-
CPMI and n-APMI proposed in this paper with the DMS
(Double Min Score algorithm) [28] and with the standard
classification algorithms such as: NaiveBayes, BayesNet
decision trees (PART and J48), nearest neighbour (IBK) or
support vector machine (SMO) implemented in WEKA

[43]. These classifiers were initialised by the default
parameter settings. The dataset, used to generate these
classification models, consisted of chemicals represented
by binary descriptors (1024 - bit fingerprints calculated
using cdk library) and the model errors. We compared all
classifiers according to a number of the correctly classi-
fied chemicals and the classifiers accuracies. The 3-APMI
methods gives the highest number of correctly classified
elements and relatively low numbers for false positive and
false negative - especially comparing this method to the

Table 2 Comparison of classification algorithms according
to a number of correctly classified elements, false positive,
false negative and the classifiers accuracies

Method Correct class False
positive

False
negative

Accuracy

SMO 899 122 (10.8%) 106 (9.4%) 0.80

Part 904 123 (10.9%) 101 (8.9%) 0.80

NaiveBayes 845 191 (19%) 90 (7.9%) 0.75

J48 905 123 (10.9%) 100 (8.9%) 0.80

IBK(1) 905 121 (10.7%) 102 (9%) 0.80

IBK(3) 901 133 (11.7%) 94 (8.3%) 0.79

IBK(5) 889 149 (13.2%) 93(8.2%) 0.78

BayesNet 756 264 (23%) 108 (9.5%) 0.67

DMS 901 115 (10.1%) 112 (9.9%) 0.79

3-CPMI 902 136 (12%) 90 (7.9%) 0.79

5-CPMI 897 137 (12%) 94 (8.3%) 0.79

10-CPMI 863 168 (14.8%) 97 (8.5%) 0.76

3-APMI 918 99 (8.7%) 111(9.8%) 0.81

5-APMI 891 115 (10%) 122 (10.8%) 0.78

The polar narcosis model label was defined as the positive class.
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IBK(3). The 3-APMI uses the 3-Pareto neighbourhood
where as IBK(3) uses the 3-nearest neighbourhood for
classification. This shows that the model identification
using Pareto points is as good as or can be better than the
other well know classification algorithms.

The decision on model identification relies on the dis-
tance to the Pareto points. Figures 4 and 5 show misclas-
sification examples for the 3-APMI method. On Figure 5
for 3-Phenyl-1-propanol the NPN model was identi-
fied. Its Pareto neighbourhood included three chem-
icals: 4-Chloro-3-methylphenol, Methylbenzene and 4-
Dimethylbenzene with the distances and models errors
shown in Table 3. The 3-APMI model averages model
errors for all Pareto points in this neighbourhood and
selects the one with the smallest average, in this case
the NPN model. One can notice that the best model
for this Pareto neighbourhood is the NPN model for 4-
Dimethylbenzene whereas this chemical compound is not
the most similar to the query chemical compound.

To demonstrate a correct classification example, we
selected Benzylamine that was associated correctly with
the PN model. Its Pareto neighbourhood included
two chemicals: 2-Chloroaniline and (+/-)-1,2-Diphenyl-2-
propanol with distances and model performances shown
in Table 4 (notice that according to Definition 4, the three
Pareto neighbourhood consists of at most three Pareto
points). These distances to the query chemical compound
are small and for both chemicals the PN model gives the
most reliable prediction. The 3-APMI identifies the PN
model that has the minimal average error for all Pareto
neighbours.

Figure 4 Chemical compounds wrongly associated with the PN
model by 3-APMI.

Figure 5 Chemical compounds wrongly associated with the NPN
model by 3-APMI.

Additionally, from the entire TPT dataset, chemicals
included in the original training datasets for both mod-
els were selected. We identified 4 out of 68 chemicals that
were used to train the NPN model but the oracle model
associated them with the PN model (see Figure 6). The
same analysis were repeated for the training dataset of the
PN model and we identified 9 out of 136 chemicals that
were associated with the NPN model by the oracle model
(see Figure 7).

To predict IGC50 for the TPT dataset we used the
identified model for each chemical compound in this
dataset. The results obtained for the entire dataset are
shown in Table 5. The statistics used are: R2 - correlation
coefficient for the observed and predicted values, RSE -
root-squared error, Q2 - predictive squared correlation
coefficient, MAE - mean absolute error and RMSE - root
mean square error. The “oracle model” has the knowledge

Table 3 Model performances and distance comparison of
the 3-Pareto neighbourhood of the 3-Phenyl-1-propanol

Name Distance PN NPN

Methylbenzene 0.33 0.37 0.28

4-Dimethylbenzene 0.36 0.54 0.08

4-Chloro-3-methylphenol 0.30 0.61 1.14
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Table 4 Model performances and distance comparison of
the 3-Pareto neighbourhood of the Benzylamine

Name Distance PN NPN

2-Chloroaniline 0.08 0.30 0.38

(+/-)-1,2-Diphenyl-2-propanol 0.11 0.041 0.59

of the best model for each chemical compound. Its pre-
dictivity is low because we used only two existing models
from JRC QSAR database that were designed based on
mode-of-action (polar/non polar narcosis) for chemicals
from TPT.

The 3-APMI method provides the best prediction
among “non-oracle models”. The first two rows present

prediction statistics for PN and NPN models. They are
lower than for all other models. Notice, however, that their
R2 and RSE statistics are identical. This is due to the fact
that both models are affine functions of one and the same
explanatory variable. An affine function can, therefore,
transform one model into another. This is what happens
when regression is applied to compute R2 and RSE. Notice
that other two measures of Q2 and predictive errors are
different for these models.

As another example, we considered only a small sub-
set of the whole initial TPT dataset that contains only
376 chemical compounds. This dataset includes all train-
ing chemicals used in PN and NPN models plus over 100
additional chemicals from the TPT dataset. We included
chemicals for which the absolute error of the oracle model

Figure 6 Chemical compounds that were originally used to train the NPN model but associated with the PN model by the oracle.
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Figure 7 Chemical compounds that were originally used to train the PN model but associated with the NPN model by the oracle.
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Table 5 Analysis of model prediction accuracies for IGC50
for Tetrahymena pyriformis

Method Name R2 RSE Q2 MAE RMSE

NPN 0.58 0.66 0.15 0.69 0.94

PN 0.58 0.66 0.58 0.50 0.66

DMS 0.68 0.56 0.62 0.43 0.62

3-CPMI 0.67 0.58 0.60 0.43 0.63

5-CPMI 0.66 0.59 0.59 0.44 0.65

10-CPMI 0.65 0.60 0.57 0.44 0.66

3-APMI 0.69 0.56 0.65 0.41 0.60

5-APMI 0.68 0.57 0.62 0.42 0.62

Oracle 0.75 0.50 0.71 0.35 0.54

is less than 0.4 and they are in the applicability domain of
both models. The value of log P ∈ [ −0.5, 6.2] and the toxi-
city value is in the range [ −2.5, 3.05]. Again we compared
various classifiers that were used for model identification
(see Table 6).

In this case, the best method is 3-CPMI that from the
3-Pareto neighbourhood selects model for which Pareto
point is the closest to the neighbourhood centroid. This
method gives better results if compared with the DMS
method that selects the model with the smallest error
for the nearest neighbour. Tables 7 and 8 show the list
of chemicals that were wrongly classified by the 3-CPMI
algorithm. Comparing the regression models for IGC50

Table 6 Comparison of classification algorithms according
to a number of correctly classified elements, false positive,
false negative and the classifiers accuracies

Method Correct class False
positive

False
negative

Accuracy

SMO 296 47(12%) 33(8.7%) 0.787

Part 303 34(9%) 39(10.3%) 0.805

NaiveBayes 281 67(17%) 28(7.4%) 0.747

J48 296 44(11.7%) 36(9.5%) 0.787

IBK(1) 307 42(11.1%) 27(7.1%) 0.816

IBK(3) 300 42(11.1%) 34(9%) 0.797

IBK(5) 299 46(12.2%) 31(8.2%) 0.795

BayesNet 273 76(20.1%) 27(7.1%) 0.726

DMS 297 48(12.7%) 31(8.2%) 0.719

3-CPMI 316 29 (7.7%) 31(8.2%) 0.844

5-CPMI 305 33(8.7%) 38(10.1%) 0.811

10-CPMI 288 41(10.9%) 47(12.5 %) 0.766

3-APMI 306 33(8.7%) 37(9.8%) 0.813

5-APMI 300 41(10.9%) 35(9.3%) 0.797

The polar narcosis model label was defined as the positive class.

Table 7 Chemical structures wrongly associated with the
PN model by 3-CPMI

CAS Smiles

4097498 CC(C)(C)C1=CC(=C(C(=C1)[N+](=O)[O-])O)[N+](=O)[O-]

6920225 CCCCC(O)CO

928972 CCC=CCCO

10031875 CCC(CC)COC(=O)C

112141 C(C)(=O)OCCCCCCCC

105668 C(CCC)(=O)OCCC

624544 O(C(CC)=O)CCCCC

123660 C(CCCCC)(=O)OCC

123159 CCCC(C=O)C

2987168 CC(C)(CC=O)C

96480 O=C1CCCO1

19686738 CC(CBr)O

4620706 C(NCCO)(C)(C)C

111864 CCCCCCCCN

597977 C(N=C=S)(C)(C)CC

17112822 c1c2c(CN=C=S)cccc2ccc1

1138529 CC(C)(C)C1=CC(=CC(=C1)O)C(C)(C)C

142303 C(#CC(C)(C)O)C(C)(C)O

31333138 CCCCCC#CCCO

107879 CC(CCC)=O

2067336 OC(CCCCBr)=O

91156 N#Cc1c(C#N)cccc1

2065238 c1(ccccc1)OCC(OC)=O

613978 N(CC)(C)c1ccccc1

586787 [N+](c1ccc(cc1)Br)(=O)[O-]

91667 c1(N(CC)CC)ccccc1

38713563 O(CCCCCCCCC)C(=O)c1ccc(O)cc1

622468 C(Oc1ccccc1)(=O)N

93914 C(CC(=O)C)(=O)c1ccccc1

2216946 C(#Cc1ccccc1)C(=O)OCC

(see Table 9), 3-CMPI method provides better prediction
than DMS, PN and NPN models.

The above examples show the great potential of the
model identification methods. We demonstrated that the
method based on pre-defined rules (such as maximal
similarity for chemicals and minimal error for a model
assigned with them) can be compared with the standard
machine learning algorithms for the classification prob-
lem. Model identification can be considered as an ensem-
ble technique to build high predictive consensus models
in predictive toxicology.
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Table 8 Chemical structures wrongly associated with the
NPN model by 3-CPMI

CAS Smiles

29338496 CC(C(C1=CC=CC=C1)C2=CC=CC=C2)O

100447 C1=CC=C(C=C1)CCl

1823912 CC(C#N)C1=CC=CC=C1

103695 CCNC1=CC=CC=C1

112538 C(CCCCCCCCCCC)O

1119864 C(CCCCCC)CC(CO)O

628637 C(C)(=O)OCCCCC

108225 O(C(=C)C)C(=O)C

94042 C(C(OC=C)=O)(CCCC)CC

1932929 C(CC)(=O)OCC#C

1732098 O(C(CCCCCCC(OC)=O)=O)C

110623 C(CCCC)=O

36536466 O=C1CC(C)O1

6261229 CCC#CCO

4753597 O(CCCCBr)C(C)=O

20965279 N#CCCCCCCBr

1577180 OC(=O)CC=CCC

111160 C(CCCCCC(=O)O)(=O)O

535137 C(C(C)Cl)(=O)OCC

600000 CCOC(=O)C(C)(C)Br

23165448 c1ccc(CCCC)cc1N=C=S

1565759 CCC(C)(C1=CC=CC=C1)O

529191 CC1=CC=CC=C1C#N

141286 C(CCCCC(OCC)=O)(OCC)=O

106796 C(CCCCCCCCC(OC)=O)(OC)=O

123728 C(CCC)=O

22819916 N#CCCCCCCCl

109524 C(CCCC)(=O)O

2627272 c1ccccc1CCCN=C=S

609938 c1(c(c([N+](=O)[O-])cc(c1)C)O)[N+](=O)[O-]

3012371 C(#N)SCc1ccccc1

LogP prediction for in-house Syngenta dataset
For the second experiment we considered the estima-
tion of the LogP for an internal Syngenta dataset. The
octanol/water Partition coefficient (LogP) is a measure of
the lipophilicity of chemical compounds and is an impor-
tant descriptive parameter in bio-studies [8]. Currently,
there are various methods for estimating this coefficient:
fragmental methods (CLOGP, KOWWIN), atom con-
tribution methods (TSAR, XLOGP), topological indices
(MLOGP), molecular properties (BLOGP).

The initial dataset contains about 9000 chemical com-
pounds and their measured LogP value in Syngenta’s
laboratories. The measured value of LogP is in the

Table 9 Analysis of model prediction accuracies for IGC50
for the reduced TPT dataset

Method name R2 RSE Q2 MAE RMSE

NPN 0.84 0.37 0.60 0.44 0.57

PN 0.84 0.37 0.75 0.33 0.46

DMS 0.89 0.30 0.88 0.20 0.32

3-CPMI 0.92 0.25 0.91 0.16 0.26

5-CPMI 0.90 0.28 0.89 0.18 0.29

10-CPMI 0.88 0.32 0.86 0.21 0.33

3-APMI 0.91 0.27 0.90 0.18 0.29

5-APMI 0.90 0.28 0.89 0.19 0.30

Oracle 0.98 0.10 0.98 0.09 0.11

range [ −5.08, 8.65] (see Figures 8 and 9). There was no
additional data curation than the curation provided by
Syngenta researchers. Three models to predict LogP:
CLOGP developed in Syngenta, KOWWIN in EPI Suite
and MLOGP in Dragon were applied for this dataset. We
randomly selected 1000 chemicals (out of 9000) and used
the remaining 8000 chemicals as the chemical space of the
partitioning model. We used the 3-APMI method as it was
the best method in the first experiment. We compared the
performance of these four models on 1000 selected chem-
icals (see Table 10). We repeated the same experiment
with 2000 randomly selected chemicals. Additionally,
we selected from the initial dataset those chemical com-
pounds for which oracle model has absolute error > 0.7.
We obtained a set of 2333 chemical compounds.

Table 10 displays the accuracy of model predictions. The
3-APMI is generally at least as good as the best model
(CLOGP). In the case of randomly selected chemicals

Figure 8 Syngenta measured LogP dataset.
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Figure 9 Summary of Syngenta measured LogP dataset.

CLOGP was hard to beat, although for 2000 randomly
selected chemicals one can clearly see the benefit of using
3-APMI (higher Q2 and lower MAE). The biggest gain is,
however, observed for those chemicals whose activity is
difficult to predict (the last experiment). This shows that
partitioning model (3-APMI) can be a powerful knowl-
edge extraction tool.

All methods proposed in the paper were implemented in
R [44]. The log P value, fingerprints and Tanimoto similar-
ity were calculated using the RCDK [45] library. A number
of tests were run to define the threshold τ . It is impor-
tant to notice that the n-Pareto neighbourhood defines

Table 10 Analysis of model prediction accuracies for a
LogP estimation

nr chemicals Mod.Name Q2 MAE RMSE

CLOGP 0.83 0.38 0.74

1000 MLOGP 0.57 0.84 1.19

KOWWIN 0.79 0.47 0.83

3-APMI 0.84 0.38 0.74

CLOGP 0.76 0.41 0.78

2000 MLOGP 0.44 0.85 1.2

KOWWIN 0.69 0.50 0.88

3-APMI 0.78 0.39 0.72

CLOGP 0.37 1.21 1.54

2333 MLOGP 0.39 1.13 1.52

KOWWIN 0.41 1.01 1.49

3-APMI 0.64 0.80 1.16

the set of at most n-Pareto points. Therefore, for the 3-
Pareto neighbourhood we found chemicals that have 1, 2,
or 3 Pareto neighbours for τ = 0.4 for the entire TPT
dataset. For the 5-Pareto neighbourhood τ = 0.7 and
for the 10-Pareto neighbourhood we considered all Pareto
neighbours. This shows that a size of the Pareto neigh-
bourhood depends on a size of the available chemical
space and may vary for different endpoints. Also, looking
at the results for APMI and CPMI one can notice that it
is not worth considering all Pareto points, and that the
size of the Pareto neighbourhood depends on chemical
compound similarities.

Conclusion
In this paper, we draw attention to advantages of model
reusage in predictive toxicology. Since the amount of
experimental data and the number of predictive models
are growing every day, it is crucial to develop automated
methods for mining models in repositories. The most
demanding task is to find a model for a new chemi-
cal compound from a collection of models for a given
endpoint.

In this paper, we proposed two methods (APMI and
CPMI) that identify the suitable model for a query chem-
ical compound based on the model performances in its
Pareto neighbourhood. These algorithms are based on
our simple yet effective method for finding the Pareto set
in 2D space. The experimental results demonstrate the
advantage of our approach and indicate that automated
model identification is a promising research direction
with many practical applications. Our approach is mainly
focused on regression models and in the future we plan
to extend it to classification models, including the anal-
ysis of model variables in chemical space partitioning.
An additional interesting direction could address the esti-
mation of identified model reliability for a new chemical
compound.

Appendix 1 Proofs
Proof (Lemma 1). We prove this lemma by contradic-

tion. Let’s j ∈ {1, . . . , K} and choose v ∈ �j. Assume that
v /∈ �, which is equivalent to saying that there exists w ∈ V
that is strictly dominated by v, i.e. w ≺ v. This means that
πj(w) = πj(v) and w ∈ Vj. By the definition of �j we
know that v is a minimal vector in Vj, so v � w, which
contradicts w ≺ v.

Proof (Lemma 2). Let v ∈ V . First notice that πj(v) ≥
f min
j , j = 1, . . . , K . If πj(v) /∈ (f min

j , f max
j ) for all j then

πj(v) ≥ f max
j for all j and w � v for w ∈ I�. If there exists

exactly one j ∈ {1, . . . , K} such that πj(v) ∈ (f min
j , f max

j ),
then for each index l 
= j we have πl(v) ≥ f max

l and there
exists a vector w ∈ �j such that w � v. Therefore, if v is
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incomparable with vectors in I�, none of the above cases
can take place, and the proof is completed.

Proof (Lemma 3). Notice first that each �j, j = 1, 2, con-
sists of one element, because the Pareto order � induces
a linear order on the sets Vj. Therefore, I� consists of
at most two elements. Assume that I� has one element,
which we denote by w. From the construction of I� we
have:

π1(w) = f min
1 , π2(w) = f min

2 .

Consequently, w is dominated by every vector of V, so it is
the only minimal vector in V.

Assume now that I� consists of two vectors: w1 and w2.
(⇒) After renumbering, �1 = {w1} and �2 = {w2}.

Hence, we obtain from equations (5)-(7)

f min
1 = π1(w1), f max

1 = π1(w2),
f min
2 = π2(w2), f max

2 = π2(w1).

Due to (3) the set of vectors v ∈ V incomparable with
I� satisfies (9).

(⇐) Let v ∈ V for which inclusion (9) holds, then
using renumbering of set �j, j = 1, 2, from the above
implication, we obtain:

π1(v) > f min
1 = π1(w1), π1(v) < f max

1 = π1(w2),
π2(v) < f max

2 = π2(w1), π2(v) > f min
2 = π2(w2).

According to the Definition 2 and formula (3) we obtain
v ∼ w1 and v ∼ w2. Since I� = {w1, w2}, then v is
incomparable with the vectors w1 and w2.
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