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I N T R O D U C T I O N

Proton transfer across biological membranes is per-
formed by various types of membrane proteins, including 
pumps, transporters, and channels. Of these, channels 
are the most efficient pathway for ion transfer. The 
voltage-gated proton channel described initially in snail 
neurons (Thomas and Meech, 1982) had activation gating 
at depolarized potentials similar to most of the voltage-
gated cation channels. The proton channel is almost per-
fectly selective for protons. These channels have been 
found in many types of cells, including phagocytes (e.g., 
microglia), osteoclasts, and epithelial cells. Fast proton 
transfer is thought to be a prerequisite to cellular pro-
cesses, such as phagocytosis (Henderson et al., 1987).

The whole cell currents of the voltage-gated proton 
channel exhibit an unusually high temperature depen-
dence (Byerly and Suen, 1989; Kuno et al., 1997; DeCoursey 
and Cherny, 1998). The high Q10s (three to five) of the 
measured currents have been related to temperature 
dependence of proton permeation (DeCoursey and 
Cherny, 1998), which further suggests that protons may 
permeate through the channel with “unusually” high 
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temperature-dependent processes compared with those 
of other types of channels (DeCoursey, 2003). This con-
jecture, however, still remains an open question because 
features of the proton channel have made quantitative 
evaluations of the temperature dependence difficult. 
Among other things, the single-channel conductance of 
the proton channel is of the order of femto Siemens 
(Cherny et al., 2003), so that an evaluation of changes 
in conductance necessitates whole cell recordings. We 
have observed, however, that the proton currents vary in 
amplitudes, even at a fixed temperature (Morihata et al., 
2000a). This phenomenon can be explained by an al-
teration in the number of activatable channels upon 
repeated application of depolarization pulses being com-
patible with the results observed for other types of mem-
brane proteins (Morgan et al., 2003). These features of 
the channel raise concerns as to whether the reported 
temperature dependence actually reflects that of per-
meation through the channel.
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Voltage-gated proton channels are found in many different types of cells, where they facilitate proton movement 
through the membrane. The mechanism of proton permeation through the channel is an issue of long-term inter-
est, but it remains an open question. To address this issue, we examined the temperature dependence of proton 
permeation. Under whole cell recordings, rapid temperature changes within a few milliseconds were imposed. 
This method allowed for the measurement of current amplitudes immediately before and after a temperature 
jump, from which the ratios of these currents (Iratio) were determined. The use of Iratio for evaluating the tempera-
ture dependence minimized the contributions of factors other than permeation. Temperature jumps of various 
degrees (T, 15 to 15°C) were applied over a wide temperature range (4–49°C), and the Q10s for the proton cur-
rents were evaluated from the Iratios. Q10 exhibited a high temperature dependence, varying from 2.2 at 10°C to 1.3 
at 40°C. This implies that processes with different temperature dependencies underlie the observed Q10. A novel 
resistivity pulse method revealed that the access resistance with its low temperature dependence predominated in 
high temperature ranges. The measured temperature dependence of Q10 was decomposed into Q10 of the channel 
and of the access resistances. Finally, the Q10 for proton permeation through the voltage-gated proton channel it-
self was calculated and found to vary from 2.8 at 5°C to 2.2 at 45°C, as expected for an activation enthalpy of 64 kJ/mol. 
The thermodynamic features for proton permeation through proton-selective channels were discussed for the 
underlying mechanism.
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several tens of milliseconds. These predictions, especially 
for the time order of development, were important con-
siderations for experimental design.

To address the proton-transfer process at the molecu-
lar level, the concentration profiles of protons treated 
with a one-dimensional regimen are no longer valid (Berg 
and Purcell, 1977). At the pore entrance, proton fluxes 
converge and proton depletion develops locally when 
the transfer of ions within the pore occurs at a faster rate 
than diffusion toward the pore. This diffusion-limited 
process in the vicinity of the pore and the convergence 
of ion trajectories toward the narrow pore opening lead 
to additional resistance outside the channel pore (ac-
cess resistance [RAR]) (Hille, 1968; Hall, 1975; Läuger, 
1976; Andersen, 1983; Hladky, 1984; Peskoff and Bers, 
1988; Aguilella-Arzo et al., 2005). The theory estimated 
that the development of the access resistance is very fast 
(1010 s; see Appendix) (Crank, 1975) compared with the 
accessible speed of electrophysiological measurements 
(see Appendix).

Each of these proton-specific issues developing out-
side of the channel should contribute somewhat to the 
measured proton currents. We focused on the large dis-
crepancies in time scale for the development of each 
event. The concentration polarization and bulk deple-
tion develop on the order of a second or slower. There-
fore, if we change the temperature of the channel in a 
rapid stepwise manner and measure the changes in pro-
ton current immediately before and after the step, the 
measured current changes are little affected by slowly 
developing events. In the present study, stepwise changes 
in temperature for a cell undergoing whole cell current 
recording were applied within a few milliseconds by the 
pulse method (Ando et al., 2005). This rapid system en-
abled experiments in a wide temperature range and re-
peated applications of temperature changes for a single 
cell under patch clamp. Furthermore, the temperature 
changes were rapid enough to minimize changes in the 
gating status because the voltage-gated proton channel 
exhibits slow activation gating (several tens or hundreds 
of milliseconds).

The next issue to be addressed was to determine the 
contribution of the access resistance to the total resis-
tance. The access resistance grows with a time constant 
of 1010 s and cannot be discriminated by the “rapid” 
temperature change method. Here, we exploited the facts 
that (1) RAR changes with the resistivity of the bulk solu-
tion (Hall, 1975), (2) RAR for the extracellular side can 
be changed by perfusing extracellular solution, and (3) 
changes in RAR leads to changes in Rtotal. Therefore, mea-
suring changes in Rtotal upon perturbation of the extra-
cellular solution would provide estimates of the relative 
contribution of RAR to Rtotal. We applied a resistivity pulse 
method and estimated the ratio of RAR to RCh, the value 
of which was used to decompose the temperature de-
pendence of the proton channel.

To address the permeation issues of proton channels, 
the consideration of the physicochemical principles 
for proton transfer is crucial. In bulk solution, proton 
transfer is characterized by the Grotthuss mechanism 
(de Grotthuss, 1806; Eigen, 1964; Agmon, 1995, 1996, 
1999; Robinson and Stokes, 2002; Swanson et al., 2007) 
and buffered diffusion (Eigen et al., 1964; Keener and 
Sneyd, 1998; Swietach et al., 2003; Zifarelli et al., 2008). 
These additional “proton-specific” factors modify channel 
access resistance, the concentration polarization at the 
cell membrane, and changes in ion concentration in 
the cytosol, factors expected to affect the properties of 
ion permeation through all types of channels. Each is-
sue has been studied separately (DeCoursey and Cherny, 
1996; Gordienko et al., 1996), but the findings have not 
been integrated to produce a picture of the whole process 
of proton permeation. For example, the magnitudes of 
the measured currents may be determined, in part, by 
proton-transfer processes outside the channel molecule, 
and the proton fluxes may cause local concentration 
changes (decreases at the “upstream” membrane–solution 
interface and increases at the “downstream” membrane–
solution interface). These interrelated issues should be 
treated in a systematic manner with quantitative evalua-
tion. To this end, the theoretical basis for the proton-
transfer processes was reviewed to estimate the relative 
contributions of proton-transfer events, which were ex-
ploited for the experimental design.

Experimental strategy
Protons are transferred from the bulk solution to the 
channel entrance through the access region, which in-
duces depletion of protons upstream and accumulation 
downstream in the bulk, in the vicinity of the membrane, 
and at the channel entrance. These events, which de-
velop with spatially different scales, are termed as the 
bulk concentration change, concentration polarization, 
and access resistance. For the proton channels, experi-
ments were performed in the presence of low concen-
trations of protons and high concentrations of buffer. 
The latter was a prerequisite as a resource of the proton 
reservoir, which helps the proton flux to endure under 
the limited supply from the patch pipette. Even if the 
high concentration buffer facilitates proton transfer in 
bulk solutions (Keener and Sneyd, 1998), the persistent 
efflux eventually leads to cytosolic depletion of the pro-
ton concentration (concentration polarization and de-
pletion of the cytosolic concentration) (Gordienko et al., 
1996). Recently, local changes in proton concentration 
were estimated by Zifarelli et al. (2008) using a simula-
tion technique at low buffer concentrations. Following 
their method, we estimated the time courses of the con-
centrations in our highly buffered experimental condi-
tions (see Appendix). The changes of pH at the vicinity 
of the membrane during maximum currents in our ex-
periments were negligible, and their time courses were 
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Double-barreled tube
The double-barreled tubes for the perfusing solutions were made 
of copper pipe (length, 100 mm; diameter, 1 mm) for better heat 
conduction. The surface of the copper pipe was silanized (Silico-
nise L-25; Nacalai Tesque, Inc.). A small Peltier device (5 × 5 mm; 
Miniature Module; Ferrotec Corp.) was mounted on a copper 
plate at the base of each tube. The two Peltier devices were con-
trolled independently by a constant current source (PD18-10A; 
Regulated DC Power Supply; Kenwood). The pipes were insulated 
by tubing (Tygon) and were bundled in parallel with epoxy resin. 
A fine-fused silica tube coated with polyimide (MicroFil; WPI) was 
attached to the tip of the copper pipe to define a small outlet of 
fixed size (inner diameter of the tip, 250 µm). The temperatures 
of the outflow monitored by the ultrafine thermocouple reached 

With all appropriate caveats in mind, the native pro-
ton channel expressed in microglial cells was exam-
ined. We have elucidated the temperature dependence 
of proton permeation through the voltage-gated pro-
ton channel.

M AT E R I A L S  A N D  M E T H O D S

Electrophysiology
Rat microglia (GMI-R1) (Sawada et al., 1998) were cultured in Dul-
becco’s modified Eagle’s medium supplemented with granulocyte/
macrophage colony-stimulating factor, glucose, and insulin. Whole 
cell recordings were performed with an AxoPatch 200B amplifier 
(MDS Analytical Technologies). Currents were filtered at 1 kHz 
and sampled at 5 kHz with DigiData1322A (MDS Analytical Tech-
nologies). The pipette solution contained 120 mM Mes, 65 mM 
NMDG aspartate, 3 mM MgCl2, 1 mM BAPTA, and 1 mM Na2ATP, 
pH 5.5–6.2. The extracellular solution contained 100 mM HEPES, 
75 mM NMDG aspartate, 1 mM CaCl2, 1 mM MgCl2, and 50 µM 
4,4’-diisothiocyanatostilbene-2,2’-disulphonic acid (DIDS). The 
pH (7.3) was adjusted by CsOH. Pipette resistances ranged between 
5 and 15 MΩ.

Estimation of the shift of the reversal potential
The reversal potentials (Vrevs) were estimated from two methods, 
one from the I-V curve and another from current measurements 
at two different membrane potentials. The I-V curves were ob-
tained as follows. Ramp potentials were applied at the end of a 
long depolarization pulse and at the end of a mock 10-ms depo-
larization pulse. Ramp current traces after the long depolariza-
tion pulse were subtracted by those for a mock 10-ms depolarization 
pulse. In the second method, Vrev was estimated from the current 
amplitudes at two different membrane potentials. Proton cur-
rents were elicited by a depolarization pulse to 0 mV (VDepo), and 
then repolarized to 40 mV (VTail). The reversal potentials were 
interpolated from the current amplitudes at the end of the depo-
larization pulse (IDepo) and at the peak of the tail current (ITail) us-
ing the following equation.

	 V
V V

I Irev
Depo Tail

Tail Depo

= −
−

−1 /
	  (1)

Temperature pulse experiments
A rapid temperature pulse system was built with the ultrafast solu-
tion-switching system (LSS-3200; EXFO) equipped with a double-
barreled tube from which solutions of different temperatures 
were perfused (Fig. 1 A). The system (Ando et al., 2005) included 
(1) a piezoelectric device (LSS-3200; EXFO) to shift the outflow, 
(2) a double-barreled tube (the temperatures of the outflows 
were controlled independently), (3) a patch-clamped microglia, 
and (4) an ultrafine thermocouple (ANBE SMT Ltd.). Two solu-
tions of different temperatures flowed at rates of 3–6 µl/s (an in-
jection pump; TE-221; Terumo). A voltage-clamped microglial 
cell was placed in the midst of one of the outflows. The tube was 
shifted by the piezoelectric device, by which the cell was per-
fused with different temperatures. The positions of the tube were 
reversed after 1 s. The movements of the piezoelectric device 
(200 µm) were controlled by pClamp software so as to coincide 
with the voltage command. The driving voltages for the piezoelec-
tric device were started and terminated with a finite slope to 
dampen the mechanical oscillations produced by the movements. 
This method allowed repeated brief applications of both warming 
and cooling jumps.

Figure 1.  Temperature jump experiments. (A) The experimen-
tal setup. (Left) A photograph of the temperature pulse system. 
Solutions with different temperatures flowed from the double-
barreled tube. A voltage-clamped microglial cell was placed close 
to one of the outflows. The piezoelectric device was driven by 
5-V pulses, which were triggered by a program simultaneously 
controlling the membrane potential. (Right) An enlarged pho-
tograph for a patch-clamped cell and an ultrafine thermocouple 
located as close as 15 µm downstream of the cell. (B) Tempera-
ture measurements. (Top) The voltage drive for the piezoelectric 
device. (Middle) Temperature measured by a liquid junction po-
tential using an open-tip electrode under current clamp mode. 
(Bottom) Temperature monitored by an ultrafine thermocouple. 
(C) Temperature measurements during the shift of the outflow 
from the double-barreled tube. Reversals of the shift motion and 
the responses of the thermocouple were recorded. The traces for 
1-s pulses for reverse directions were mirror images of each other, 
indicating that the fast changes of temperature during a pulse 
were detected by the ultrafine thermocouple.
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tivities of the buffered solutions as a function of the sorbitol con-
centration and that of temperature were measured by a conductivity 
meter (DS-8M; HORIBA).

Proton currents were elicited by the depolarization pulses to 
+100 mV, and after reaching the steady state of the activation, 
the cells were exposed to the solution with high resistivity for 
short periods of time (the resistivity pulse method) (Ando et al., 
2005). Current amplitudes immediately before and after a resis-
tivity jump were measured. The ratios of the current amplitudes 
were evaluated as a function of the resistivities of the solutions. 
The relative resistivity of the channel to that of the total resis-
tance was obtained.

All the algebraic calculations were performed using Mathe-
matica (Wolfram Research Inc.), and the graphs were drawn us-
ing Origin (OriginLab Corporation). Data were expressed as 
mean ± SEM.

Online supplemental material
Fig. S1 provides reciprocal relationships of Iratios at the beginning 
and end of a pulse, which supports negligible contribution of the 
concentration polarization to the measured currents. Fig. S2 dem-
onstrates all the experimental data points for temperature depen-
dence in a three-dimensional plot. Fig. S3 shows discrepancies 
in temperature dependence measured by the temperature pulse 
method and by the earlier method measuring the steady-state cur-
rent amplitudes. Figs. S1–S3 and supplemental text are available 
at http://www.jgp.org/cgi/content/full/jgp.200910213/DC1.

the steady state within a minute when the driving currents for the 
Peltier device were changed.

Evaluation of temperature changes
The local temperatures in the vicinity of the cell were monitored 
by an ultrafine thermocouple with a thermometer (BAT-12; Physi-
temp Instruments Inc.). The thermocouple with the tip size of 
26 µm (ANBE SMT Ltd.) was insulated in a glass capillary with the 
fine tip exposed. The thermocouple was calibrated before use 
with a standard thermister.

Time courses of the temperature changes upon the jumps were 
monitored by the changes of the liquid junction potentials (Fig. 1 B, 
middle). An open-tip electrode filled with 3 M KCl was placed 
in the midst of the flow, and the liquid junction potentials were 
measured under the current clamp mode. Positive pressure was 
applied continually to the pipette to prevent the mixing of the so-
lutions. The changes in temperature upon the shift of the flow 
were measured with a time constant of 0.9 ms.

The responses of the ultrafine thermocouple were evaluated 
under the temperature jump experiments. Output of the thermo-
couple is shown (Fig. 1 B, bottom trace), which was fitted by a sin-
gle-exponential function with the time constant of 70 ms. After 
a pulse, the temperature returned to the prepulse level within the 
error of 0.5%. To see whether the temperature signal from the 
thermocouple reached the steady state during a 1-s pulse, the sen-
sor tip was placed in the outflows for minutes and the signal levels 
before and during a pulse were compared (Fig. 1 C, red trace). 
Conversely, the sensor tip was placed in the high temperature out-
flow for minutes and the temperature outflow was jumped to the 
low temperature for a second (Fig. 1 C, black trace). The re-
sponses to the shifts of the outflows in the opposite direction 
looked like mirror images of each other, indicating that the tem-
peratures during the short jumps reached the steady-state values 
and were maintained there.

In addition to the changes in current amplitudes at different 
temperatures, the driving forces may be affected by several 
physicochemical factors. The temperature dependence of the 
Nernst potential and intracellular and extracellular pH changes 
by altered pKa values for buffers were evaluated (see Appendix 
in detail). These factors develop instantaneously, but the theo-
retical prediction indicates that the contributions of these fac-
tors are negligible.

Evaluation of temperature dependence
The temperature coefficient for a 10° change in temperature, Q10, 
is defined from current ratios as Iratio(T)10/T, where Iratio(T) is 
the temperature coefficient for an arbitrary temperature interval 
T. Q10 as a function of the measured temperature was evaluated 
in several different ways. For the jump vector plot, a slope for 
each temperature jump vector was calculated. Q10 of the conduc-
tivity for the buffered solution was analyzed by the following 
method. Temperature-dependent conductivity was plotted and a 
slope was calculated by a linear fit of five neighboring data points. 
Slopes were obtained successively as the data points for evaluation 
were shifted. These slopes gave Q10 values at mean temperatures 
of five data points.

Resistivity pulse experiments
To estimate the access resistance, resistivity pulse experiments 
were performed in which the extracellular solution was changed 
to a solution with higher resistivity by use of a high concentration 
of sorbitol (Stojilkovic et al., 2003). The solution composition was 
100 mM Mes, 105 mM NMDG, 90 mM aspartate, 1 mM CaCl2,  
1 mM MgCl2, 50 µM DIDS, and 0.14–2 M sorbitol. The pH of the 
solutions was adjusted to 5.5 by CsOH, such that the pH of the ex-
tracellular and intracellular solution was symmetrical. The pipette 
solution was the same as in the previous experiments. The resis-

Figure 2.  Proton channel currents. (A) Whole cell proton cur-
rents from a microglial cell. Voltage-dependent activation of the 
proton currents are shown. Currents were elicited by pulses from 
100 to 40 mV. Inset represents the voltage protocol. (B) Block 
of the proton currents by 100 µM of extracellular Zn2+. (C) Steady-
state gating curves (G-V curve) of proton channel and its tem-
perature dependence. The current amplitudes at the peak of the 
tail currents were plotted as a function of preceding voltages and 
were normalized. G-V curves were obtained from six cells at 24 
and 34°C. The curves were fitted by the Boltzmann function. The 
V1/2 values were 32.2 and 30.2 mV for 24 and 34°C. Inset shows 
a representative current trace for depolarizing pulse to +40 mV, 
followed by repolarization to 0 mV. The arrow indicates the peak 
of tail current.



� Kuno et al. 195

notably toward the positive direction for longer depolar-
izations. Because the bath concentrations of protons were 
held constant by continual perfusion, the positive shifts 
of Vrev indicate decreases in the intracellular concentra-
tions of protons.

The proton currents sometimes decayed gradually af-
ter reaching the peak level of activation (Fig. 3 C). This 
is called current droop. In parallel to the current droop, 
Vrev shifted slowly within the time range of seconds 
(Fig. 3 D, ; 24°C). When the temperature was raised 
to 34°C, the degrees and speeds of the Vrev shift were 
dramatically enhanced (Fig. 3 D, ), although the time 
range was still of the order of seconds.

Evaluation of the temperature pulse method
Temperature dependence of proton currents was exam-
ined by measuring the immediate changes in current 
amplitude upon temperature jumps (see Materials and 
methods). To verify that the fast temperature changes 
were sensed by the channels in cell membrane, the time 
courses of whole cell currents upon a temperature pulse 
were examined. The thermocouple signals displayed re-
producible changes for the repetitive temperature pulses 
(Fig. 4, middle). When a pulse was applied early during 
the gating activation, a small jump of the current was 
followed by accelerated gating activation during the 
pulse (Fig. 4, bottom, red arrows). As the onset of the 
temperature pulse on top of the depolarization pulse 
was delayed, the instantaneous changes in the current 
traces predominated, and these were followed by residual 
activation. These observations, of the current jumps su-
perimposed on temperature jumps and accelerated acti-
vation gating during a temperature pulse, were consistent 

R E S U LT S

Proton channels of microglial cells
Proton currents were recorded from microglial cells in 
the whole cell voltage-clamped configuration. In the asym-
metric pH condition (pHi/pHo, 5.5/7.3), depolarizing 
pulses elicited a slowly activating outward current, the 
time course of which was accelerated with further depo-
larization (Fig. 2 A) (Morihata et al., 2000b). This current 
was inhibited by a proton channel blocker, Zn2+ (Mahaut-
Smith, 1989), indicating negligible contributions from 
other endogenous channels (Fig. 2 B).

To examine the temperature dependence of the 
steady-state gating, depolarizing pulses to various mem-
brane potentials were applied and the tail currents at 0 mV 
were recorded (see Fig. 4 C, inset). The normalized peak 
amplitudes of the tail currents as a function of the de-
polarizing potentials were plotted (G-V curve; Fig. 2 C). 
The two curves at different temperatures overlapped; 
thus, the steady-state gating of the proton channel was 
not temperature dependent.

Cytosolic protons are depleted slowly
Before studying the temperature dependence of proton 
permeation through the channel, factors affecting the 
driving force upon temperature change were examined. 
Proton effluxes should deplete cytosolic protons (cyto-
solic depletion), and the degree of the depletion and its 
time course were evaluated. Proton effluxes were elic-
ited by repeated application of depolarizing pulses that 
were prolonged successively (Fig. 3 A). A ramp potential 
was applied at the end of a depolarization pulse to give 
I-V curves (Fig. 3 B). The reversal potentials (Vrevs) shifted 

Figure 3.  Changes in the intracellular pH after pro-
ton flux. (A) Current traces for depolarization pulses,  
followed by the ramp potential from 100 to 100 mV.  
(B) The I-V curves for depolarization pulses of different du-
rations. The Vrev is indicated by arrows, and the number 
represents current traces shown in A. Vrev shifted toward 
the depolarization potential as the depolarization pulse 
was prolonged. (C) Current traces with droop. As the 
depolarization pulses were prolonged, current ampli-
tudes reached nearly steady state and slightly decayed. 
The tail currents were measured at 40 mV. Current 
amplitudes at the end of the depolarization pulse (Iend) 
and those at the peak of tail currents (Itail) are indicated 
by arrows. (D) Time courses of the shifts for Vrev. Vrevs 
were estimated from a current ratio (Itail/Iend). Shift of 
Vrev for the higher temperature was accelerated.
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the temperature pulses overlapped onto the distribution 
of the slowest components of the activation time con-
stants. The Q10 for the activation time constant measured 
under the pulse method was similar to that measured when 
the entire bath was temperature controlled (5.6 ± 0.5; 
n = 33). These data indicate that the temperatures applied 
to the channel molecules on the cell were monitored 
successfully by the thermocouple adjacent to the cell.

Temperature pulse experiments under various conditions
Temperature pulses applied during the steady state of 
gating activation produced clear stepwise changes in the 
currents upon both the onset and termination of the 
pulses (Fig. 6 A). Upon the return to the prepulse tem-
perature, the amplitudes of the currents reverted to those 
before the pulse, confirming that the open-state proba-
bility had not been changed during a pulse. Pulses with 
various magnitudes of T either warming or cooling 
were applied at various temperatures (pre-jump temper-
ature; Fig. 6 A, a, c, and f, and b, d, and e). At low tem-
peratures (Fig. 6 A, e and f), long (>8 s) depolarization 
pulses were required for the gating activation to reach 
the steady state. At 100 mV, which is outside of the acti-
vation range for the gating, temperature jumps produced 
negligible changes in current amplitude (Fig. 6 B).

The ratio of current amplitudes, Iratio, as an index  
for temperature dependence
To evaluate the temperature dependence of current 
amplitudes immediately before and after a temperature 

with the expected responses to stepwise changes in tem-
perature, and suggest that the cellular temperature un-
der whole cell recordings changed rapidly.

During a temperature pulse, the temperature sensed 
by the channel molecule in situ was evaluated. Because 
the gating of proton channels exhibits a high sensitivity 
to temperature (Byerly and Suen, 1989; Kuno et al., 
1997; DeCoursey and Cherny, 1998), the accelerated gat-
ing kinetics upon heating pulses were used for the evalu-
ation. First, the activation time courses of proton currents 
at a steady-state bath temperature, elicited by depolariz-
ing pulses to 0 mV, were fitted with a triple-exponential 
function, and the time constants were plotted as a func-
tion of temperatures measured in the vicinity of the cell 
(Fig. 5, filled symbols). Then, the warming temperature 
pulses were applied during the gating activation. When 
the temperature pulses were applied after faster acti-
vation components were nearly completed, the acceler-
ated time courses for the residual activation during 
temperature pulses were fitted by a single-exponential 
function. These time constants (Fig. 5, open symbols) 
were superimposed on the plot of time constants observed 
at the steady-state bath temperature. The data points from 

Figure 4.  Current responses to temperature pulses. A patch-
clamped cell at an intracellular pH of 5.5 was placed in the midst 
of a laminar outflow, and an ultrafine thermocouple was located 
downstream of the cell within 15 µm. Proton currents were elic-
ited by depolarizing pulses to 0 mV (top; pulse duration was 4 s), 
during which a temperature pulse of 1 s (from 24 to 32°C; T 
= 8°C) was applied at different phases of the gating activation. 
The pulse command indicates the driving voltages to the piezo-
electric device. The thermocouple signals displayed reproducible 
changes for the repetitive temperature pulses. Ensemble current 
traces with responses to temperature pulses elicited at different 
timings of the activation are superimposed.

Figure 5.  Temperature-dependent time constants for the activa-
tion gating. The activating currents at 0 mV were fitted by a triple-
exponential function. Temperature pulses were applied after the 
faster activation phases were nearly completed. Current traces 
during temperature pulses were fitted with a single exponential. 
Three time constants at various temperatures (filled symbols) and 
the time constant during the pulse (open symbols) are shown. 
The data were obtained from a single cell.
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jump, the current amplitudes for each jump were plot-
ted as a function of pre-jump and jump temperatures, 
and the points were connected to draw a vector (jump 
vector; Fig. 7 A). The direction of the vectors indicates 
whether the pulse was cooling (down) or warming (up). 
Plots of the vectors from six different cells over a wide 
range of temperatures with variably sized Ts and direc-
tions (warming or cooling) showed a general trend of 
vector flow.

Jump vectors were examined for different membrane 
potentials (Fig. 7 B). Temperature jumps of a fixed T 
(from 16.7 to 12.7°C) were applied during variable depo-
larizing steps. Each column of arrows represents jump 
vectors from a cell. The slopes of the vectors on the loga-
rithmic scale were almost identical, even though the 
current amplitudes at different membrane potentials dif-
fered considerably.

The ratios of the current amplitudes were calculated 
from the vectors (current ratio; Iratio = Ijump/Ipre-jump) 
and were plotted at different membrane potentials 
(Fig. 7 C), where the Ts were set differently for cells. 
The Iratios were distributed nearly horizontally, indicat-
ing that the Iratio was not affected by the current 
amplitudes.

Temperature dependence of Q10 over a wide  
temperature range
A plot of the values of Iratios as a function of Ts shows 
nearly linear relationships. Iratios were measured from 
many cells over a wide range of pre-jump temperatures 
(4–49°C) and Ts (±15°C) (see three-dimensional plot 
in Fig. S2). Iratio–T relationships are shown for differ-
ent ranges of pre-jump temperatures (Fig. 8). Linear re-
lationships hold at relatively narrow ranges of pre-jump 

Figure 6.  Responses of the proton currents to temperature pulses 
(pHi/pHo, 5.5/7.3). (A) Proton currents were elicited by depolar-
izing steps to 0 mV (inset; the voltage command with the holding 
potential of 80 mV). Temperature pulses (blue lines; duration, 
1 s) were applied during the steady state of the gating activation. 
Current amplitudes were measured immediately before and af-
ter the onset (red arrows) and termination (blue arrows) of the 
pulses. The depolarizing pulses were followed by hyperpolarizing 
ramps (20 ms), and the outward tail currents were not obvious in 
these traces. (B) Temperature pulses were applied at the hyperpo-
larizing potential of 100 mV.

Figure 7.  The jump vector plot and 
current ratios. (A) The jump vector plot 
over a wide temperature range (pHi/
pHo, 5.5/7.3). Current amplitudes im-
mediately before and after a tempera-
ture jump (arrow heads) were plotted 
for pre-jump (tail of arrows) and jump 
(head of arrows) temperatures. Arrows 
were obtained from six different cells. 
Each colored arrow represents data 
from a single cell. A depolarization 
pulse of 0 mV was applied. Note that 
the axis for the current amplitude is 
logarithmic. (B) The jump vector plots 
at different membrane potentials rang-
ing from 25 to +75 mV. Arrows from 
different membrane potentials in two 
different cells (left column, cool-down 
jump; right column, heat-up jump) are 
shown. (C) Iratios at different membrane 
potentials. A set of Iratios from nine cells 
is shown. For each cell T was fixed.

http://www.jgp.org/cgi/content/full/jgp.200910213/DC1
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where H ‡ represents the activation enthalpy. This 
equation demonstrates that Q10 value changes at differ-
ent temperatures, the extent of which can be estimated. 
The changes of Q10 at constant H ‡ values are shown 
in Fig. 10 (dotted lines, iso-enthalpy lines). As expected, 
the experimentally obtained Q10s did not align on the 

temperatures. The slope is a measure of temperature 
dependence of proton currents, and the Q10 value was 
calculated (see Materials and methods). Fig. 8 demon-
strates that the Q10 value decreased significantly over a 
measured temperature range. A similar relation was ob-
served at pH 6.2 (not depicted).

To obtain thermodynamic clues for this phenome-
non, the jump vector data were expressed as an Arrhe-
nius plot, in which pairs of current amplitudes for each 
temperature jump were plotted against 1/T (T, the ab-
solute temperature; Fig. 9). The slopes of the arrows be-
came steeper as the temperature was decreased (toward 
the right of the horizontal axis) and, overall, the arrows 
indicate a trend that is curved (convex). A curved Arrhe-
nius plot is generally considered to indicate the presence 
of multiple processes with different underlying natures 
(Gutfreund, 1995; Fersht, 1999).

To quantify the temperature dependence, the mean 
Q10 values were plotted as a function of temperature 
(Fig. 10). The Q10 value of 2.2 at 10°C decreased mono-
tonically as the temperature was increased and reached 
1.3 at 40°C. The strong temperature dependence of the 
Q10 values has not been reported in earlier studies, at 
least for the permeation of channels.

The rate theory (Kramers, 1940) was applied to ex-
press proton permeation at different temperatures with 
thermodynamic parameters (see Eq. A1). Q10 as a func-
tion of T can be expressed as

	 Q T Exp
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RT T10 210
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Figure 8.  Temperature de-
pendencies of Iratios. Iratio as a 
function of T for different 
pre-jump temperatures. The 
data points were fitted by a 
linear function, and the Q10 
values were obtained from the  
slopes. Solid lines were fitted 
to the data with the absolute 
T value <5°, and the broken 
lines are the extrapolations. 
Q10 values were 1.98 < 15°C, 
1.79 for 15 ≤ T < 25°C, 1.60 
for 25 ≤ T < 30°C, 1.46 for 30 ≤ 
T < 35°C, and 1.32 > 35°C.

Figure 9.  An Arrhenius plot for the proton permeation process 
through the voltage-gated proton channel. Each arrow represents 
data for the onset of a temperature pulse.
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and after a resistivity jump were measured. In these ex-
periments, solutions on both sides of the membrane were 
set symmetrically (pH, 5.5); hence, RARs on the intracel-
lular and extracellular sides were assumed to be identical.

The current trace demonstrated, surprisingly, large 
decreases in amplitudes upon exposure to a high resis-
tivity solution, suggesting a large contribution of the 
access resistance. The current ratios were plotted as a func-
tion of the relative resistivities of the solutions (Fig. 11 B). 
Proton currents decreased gradually as the resistivity 
of the external solution was increased. The RCh/RARs 
were obtained through fitting the current ratio of  
Eq. A11 to the data. The value of RCh/RAR was 3.8 and that 
of RCh/Rtotal was 0.66 at 23°C. A notable contribution of 
RAR to Rtotal suggests that the observed Q10 values do not 
solely represent temperature dependence of the chan-
nel per se, but represent a weighted average for those of 
the channel and the access resistance. Therefore, we re-
define here the observed Q10 as the apparent Q10 (Q10

app). 
It should be noted that RCh/RAR is not constant over the 
temperature range because the temperature dependen-
cies of the channel and access resistances differ. Then it 
is likely that the strong temperature dependence of Q10

app 
is produced by the relative contribution of Q10 for the 

iso-enthalpy lines, but cut across them. What is the 
underlying mechanism for the strong temperature de-
pendence of Q10? Multiple processes with different ther-
modynamic natures are involved in the measured currents. 
From the theoretical prediction, one possible candidate 
underlying the observations is the access resistance that 
develops instantaneously (<1010 s; see Experimental 
strategy and Appendix), and hence its contribution to 
the measured current even with the rapid temperature 
change cannot be eliminated.

Estimation of the access resistance
Direct measurements of the access resistance (RAR) are 
impossible, but the relative contribution of RAR to the 
measured current (or Rtotal) can be estimated. Hall’s 
equation indicates that RAR changes with the resistivity of 
the bathing solution (see Eq. A7). Therefore, if a cell is 
perfused with a different resistivity solution, changes in 
the external RAR lead to changes in Rtotal. Analyses of an 
equivalent electrical circuit having RCh (the channel resis-
tance) and RAR in series (see Appendix) demonstrated 
that the ratio of Rtotal in two different resistivity solutions 
gives the ratio of RAR and RCh (see Eq. A8). Here, an ex-
perimental method for evaluating RAR/RCh was developed 
(the resistivity pulse method [R pulse method]). Proton 
currents were elicited by depolarization pulses to 
+100 mV. After reaching steady-state activation, the cells 
were exposed to the high resistivity solution for a short 
period of time (250 ms; Fig. 11 A; see Materials and meth-
ods) (Ando et al., 2005), and current amplitudes before 

Figure 10.  Temperature dependence of Q10 values. Q10 values 
were calculated from the data of temperature jump experiments. 
A set of dotted lines indicates temperature-dependent Q10 values 
for fixed activation enthalpy (iso-enthalpy line). Figure 11.  Estimation of the access resistance. (A) Current traces 

for the resistivity pulse experiments. The pHs were symmetrical 
(pH, 5.5), and the temperature was 23°C. A patch-clamped cell 
was exposed briefly to a solution containing 2 M sorbitol. The 
current amplitudes were measured immediately before and after 
a jump. (B) Current ratios as a function of the relative resistivity 
of the solutions.  is the resistivity of the bathing solution, and  
is the resistivity of the pulse solution. The data were fitted by Eq. 
A10. The ratio of the resistances (RAR/RCh) was 0.25.
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D I S C U S S I O N

The temperature dependencies of proton permeation 
through the voltage-gated proton channel per se (Q10

Ch) 
are masked by many layers of phenomena, and the aim 
of this study was to isolate Q10

Ch. By applying temperature 
pulse methods, the overlying factors, such as the changes 
in the number of active channels and the driving forces 
of proton permeation, were successfully excluded. The 
measured Q10, however, exhibited unexpectedly high 
temperature dependence, which cannot be accounted 
for by a simple physical process (hence named Q10

app). 
We suspected that Q10

app represents a mixture of multi-
ple processes with different temperature dependencies. 
The novel resistivity pulse experiments allowed the quan-
titative evaluation of the access resistance (RAR) and re-
vealed significant contribution of RAR. Finally, we extracted 
Q10

Ch, attained for the first time, and the value was 2.5 
at room temperature and the activation enthalpy was 
64 kJ/mol. These thermodynamic features will be dis-
cussed for the underlying mechanisms of proton per-
meation through the voltage-gated proton channel.

Verification of the temperature pulse method
The T pulse method is characterized by its rapid change 
of temperature, which minimizes the contributions of 
the slowly developing events, i.e., proton depletion and 
concentration polarization. The validity of the T pulse 
method was demonstrated in various ways, as follows. 
The stepwise changes in temperature were confirmed 
by the rectangular shapes of the measured liquid junc-
tion potentials (Fig. 1 B) and of the proton currents 
themselves (Figs. 8–10). Throughout the experiment, 
the temperature in the vicinity of the cell was monitored 

access resistance (Q10
AR) and for the channel (Q10

Ch), which 
varies as the temperature changes.

The Q10
Ch was decomposed from Q10

app by the series re-
sistance model (see Appendix). Each resistance (RCh and 
RAR) can be characterized by its own thermodynamic pa-
rameters, such as the activation enthalpy and entropy. An 
equation was derived for the temperature dependence of 
the Q10

app values as a function of the thermodynamic  
parameters for the channel and access resistance (see 
Eq. A14). In this equation, temperature dependence of 
RAR (Q10

AR) can be represented by of the buffer solution 
(Hall’s equation) (Hall, 1975), which was evaluated by 
measuring the conductivity of the buffered solution at 
different temperatures (Fig. 12 A). The Q10

AR value was 
1.2 at 25°C and decreased slightly at higher temperatures 
(Fig. 12 B). If the thermodynamic parameters for the 
channel, in addition to the access resistance, would be 
given, the series resistance model would provide temper-
ature dependencies of observable currents and Q10

app.
Conversely, now that data for temperature dependency 

of Q10
app and the thermodynamic parameters of the ac-

cess resistance are available (data points in Fig. 12 B), ther-
modynamic parameters for the channel were obtained 
through optimizing the parameter as to fit the calcu-
lated Q10

app line to the Q10
app data. The blue line in Fig. 12 

shows the estimate for the temperature dependence of 
Q10

Ch (an iso-enthalpy line). In this figure, strong tem-
perature dependence of Q10

app was decomposed into 
Q10

AR and Q10
Ch. Finally, the activation enthalpy (H ‡) 

for proton permeation through the channel per se was 
determined to be 64 kJ/mol. (Similar values of thermo-
dynamic parameters for the channel [or Q10

Ch] were 
obtained through fitting procedures using data of Iratios 
at different temperatures and Ts; Fig. S2).

Figure 12.  Decomposition of apparent Q10 (Q10
app).  

(A) Measured conductance () for the Mes-buffered solution 
represented as the Arrhenius plot. The H ‡ value was 14.0 
kJ/mol, and the preexponential factor was 556.7. (B) Tem-
perature dependencies of Q10

AR (green symbols and line), 
Q10

Ch (blue), and Q10
app (red symbols and line) values. 

Q10
ARs were calculated from the data for A (see Materials 

and methods). A H ‡ value of 12.5 kJ/mol was obtained  
by fitting to the Q10

AR values. S ‡ was set to zero. Using H ‡ 
and S ‡ values for the access resistance, the values of H ‡ 
and S ‡ for the channel were estimated through fitting 
Eq. A10 to Q10

app data. H ‡, S ‡, and C for the channel  
were 63.7 kJ/mol, 8.49 J/mol/T, and 0.0115. Q10

Ch  
(blue line) was drawn using the above fitted parameters. 
(C) Temperature dependencies of conductances for ac-
cess resistance (green), channel (blue), and total (red) 
values. Conductances were calculated using the thermo-
dynamic parameters.
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traverses from Q10
Ch to Q10

AR through the measured tem-
perature range. The activation enthalpy for proton 
permeation through the channel was finally extracted. 
(These thermodynamic parameters were also obtained 
from direct fit to the Iratio data; Fig. S2.) The Q10

Ch value 
was 2.5 at room temperature, and the H ‡ value was 64 
kJ/mol.

Before discussing the implication of the activation en-
thalpy for the proton permeation, the physiological rel-
evance of Q10

app will be discussed.

The Q10
app under physiological conditions

The Q10
app values obtained here were smaller than the Q10 

of earlier reports (5.3 ≤ 20°C and 2.8 > 20°C) (DeCoursey 
and Cherny, 1998), which might be overestimates be-
cause they included the contribution of changes in the 
numbers of activatable channels at different tempera-
tures (Fig. S3). In Fig. 12 C, the temperature-dependent 
conductance was decomposed into the conductance for 
the channel (blue line) and that for the access resistance 
(green line). This figure was drawn using the thermody-
namic parameters, demonstrating the relative contribu-
tions. The temperature-dependent conductances of the 
channel and the access resistance form asymptotes for 
the observed conductance (Fig. 12 C, red line). These 
parameters gave the ratio RCh/Rtotal as 0.46 at 23°C, which 
is in rough agreement with the ratio predicted from the 
R pulse method. Because the temperature dependence 
of the channel conductance is much higher than that of 
access resistance, the channel conductance overwhelmed 
that of the access resistance and the whole process be-
came diffusion limited above the crossing point of 
30°C. In physiological conditions, in which the buffer 
concentrations are much lower than in the present ex-
perimental conditions, the temperature dependence of 
the voltage-gated proton channel, Q10

app, is apparently gov-
erned by diffusion-limited processes and is almost indis-
tinguishable from those of other types of ion channels.

Mechanisms for proton-selective permeation
The temperature dependence of proton permeation 
has been studied systematically only for the gramicidin 
A (gA) channel, which is proton conducting, but not 
proton selective (Andersen, 1984; Heinemann and 
Sigworth, 1989; Oiki et al., 1995; Koeppe and Anderson, 
1996). Over a wide temperature range (Chernyshev and 
Cukierman, 2002), the Q10 values were nearly constant 
(Cukierman, 2000) and the H ‡ values for proton per-
meation through most gA channels were 10–20 kJ/mol 
(Bamberg and Läuger, 1974; Akeson and Deamer, 1991; 
Chernyshev and Cukierman, 2002). These values are simi-
lar to those for proton diffusion in an aqueous solution, 
in which the Grotthuss mechanism predominates (Eigen, 
1964; Agmon, 1995; Day et al., 2000; Limbach et al., 
2006), and are in general agreement with the activation 
enthalpy for the buffered diffusion (Fig. 12 A). However, 

with an ultrafine thermocouple (Fig. 1), which demon-
strated that ambient temperature of the channels in situ 
(on the plasma membrane) was well controlled by the 
pulse method (see Fig. 7). These results indicate that 
the temperature pulse method readily provides variable 
up-and-down temperature jumps to whole cell clamped 
cells within a few milliseconds in a reproducible and ac-
curate manner.

The Iratio introduced here as a robust measure of tem-
perature dependence served for calculating Q10

app. 
Q10

apps were evaluated under various experimental 
conditions: at different intracellular pHs, at different 
membrane potentials (Fig. 7), and in the presence and 
absence of droop.

Q10 for proton permeation per se extracted  
from the temperature-dependent Q10

app

A key finding of the present study was that the Q10
app val-

ues changed significantly over a wide temperature range 
(Fig. 10). Generally, the Q10 value should change some-
what. In fact, simple physical processes, such as proton-
transfer processes through the access region and the 
channel pore, can be described by the rate theory (see 
Eq. A1), and the temperature dependence of the pre-
exponential factor for the rate equation leads to slight 
temperature dependence of Q10, which follows the iso-
enthalpy line (Fig. 10). The large changes in the Q10

app 
values over 1 unit between 4 and 49°C suggest that 
multiple processes with different temperature depen-
dences are involved.

A seminal paper by Decker and Levitt (1988) led us to 
examine the contribution of access resistance to the to-
tal proton current in the presence of a high concentra-
tion buffer. The R pulse method revealed unexpectedly 
large changes in current amplitudes upon exposure to 
the high resistivity solution, suggesting a significant con-
tribution of the access resistance to the measured 
current. A simple model for resistances in series of the 
channel and access regions (the series resistance model) 
was adopted for quantitative evaluation, and the RCh/
Rtotal ratio was estimated to be 0.66 at room temperature. 
This value makes evident that the contribution of the ac-
cess resistance to the measured current was important.

The series resistance model demonstrates that if ther-
modynamic parameters for the channel and the access 
region are given, the temperature-dependent Q10

app can 
be readily calculated. The thermodynamic parameters 
for the access resistance were estimated from that of the 
resistivity of the buffered solution (Fig. 12 B, green line) 
(Hall, 1975). Now that Q10

app and Q10
AR are given, Q10

Ch 
and its thermodynamic parameters can be estimated 
through the fitting procedure.

Fig. 12 B demonstrates graphically how the strong tem-
perature dependency of Q10

app is decomposed into Q10
Ch 

and Q10
AR. At low temperature the Q10

Ch predominates, 
and at high temperature the Q10

AR predominates. Q10
app 

http://www.jgp.org/cgi/content/full/jgp.200910213/DC1
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apparent behavior of the proton channel under physio-
logical conditions and is almost indistinguishable from 
that for other types of channels (Hoffmann and Dionne, 
1983; Urry et al., 1984; Grygorczyk, 1987; Miller et al., 
1988; Sitsapesan et al., 1991; Milburn et al., 1995; Hille, 
2001; Chernyshev and Cukierman, 2002). On the other 
hand, Q10

Ch is a measure to characterize the proton per-
meation in the channel per se, and we have proposed 
an underlying mechanism of proton-selective perme-
ation. These thermodynamic clues are prerequisite to 
advance our understanding of the mechanism of action 
for proton-selective permeation.

A P P E N D I X

Local proton concentration
In the presence of buffer, the concentration polariza-
tion is confined to a limited space, which otherwise ex-
tends farther from the membrane. Zifarelli et al. (2008) 
simulated the concentration profile of protons near the 
membrane. Their numerical evaluation showed that if 
the flux of protons is constant, the concentration polar-
ization develops relatively slowly over a time range of 
several tens to hundreds of milliseconds. For example, 
the pH at the outer vicinity of the membrane decreased 
by 1.3 U in the presence of buffer concentration as low 
as 0.1 mM after 5 s of a proton efflux of 500 pA. This 
local proton accumulation decreased to a pH of 0.07 U 
when the buffer concentration was increased to 2 mM. 
Following the reported method, we simulated the local 
accumulation when the buffer concentration was in-
creased to 100 mM (our experimental condition). The 
pH was only 0.0013 U at the vicinity of the membrane. 
The time course of the development was fitted by a dou-
ble-exponential function, and the smaller time constant 
was 60 ms. The slow development and attenuation of 
the concentration polarization in the concentrated buf-
fer were used in the experimental strategy.

Temperature-dependent Q10

The rate constant for the proton permeation was ex-
pressed in Kramers’ theory (Kramers, 1940; Hänggi et al., 
1990; Berry et al., 2000):
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where the preexponential factor can be expressed as:
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In these equations,  is the friction coefficient, C is 
the characteristic frequency, h is the Planck constant, R 
is the gas constant, and kB is the Boltzmann constant. 

it has been reported that the contribution of the access 
resistance to the recorded single-channel current is sig-
nificant for proton permeation through the gA channel 
(Decker and Levitt, 1988; Cukierman, 2000; Schumaker 
et al., 2000; Schumaker, 2003; Braun-Sand et al., 2005). 
Therefore, the measured temperature dependence of 
earlier studies for the gA channel may be governed largely 
by the access resistance, similar to the voltage-gated pro-
ton channel. In fact, breaks in linearity or curved Arrhe-
nius plots have been reported for gA channels (Chernyshev 
and Cukierman, 2002). The lower Q10 may represent 
the diffusion-limited ion access, and the higher Q10 (>30 
kJ/mol) could represent the inherent proton perme-
ation process.

The voltage-gated proton channel exhibits nearly per-
fect proton selectivity compared with the gA channels. We 
estimated the activation enthalpy of proton permeation 
through the channel to be 64 kJ/mol. This is essentially 
the first quantitative evaluation of a thermodynamic pa-
rameter for proton permeation through proton-selec-
tive channels. What is the underlying mechanism of the 
H ‡ value for the proton permeation? Quantitative 
comparison of the present H ‡ value with those of other 
types of channels must be reserved until the genuine 
H ‡ values without effect of the access resistance would 
become available for other types of channels. Still, we 
anticipate that H ‡ for the proton channel is significantly 
higher than for the gA channel, and a gap between the 
H ‡ value of the proton channel and gA channels can-
not be accounted for by simple modifications of the 
proton jump mechanism through a single-file pore. We 
present here a hypothetical mechanism for proton-
selective permeation: A proton-selective site(s) should 
exist along a water-filled pore, and its configuration needs 
to be rearranged upon proton transfer, which would 
account for the additional cost of H ‡ for the proton 
permeation. The mechanism of proton permeation 
through the molecular candidate of the voltage-gated 
proton channels (Ramsey et al., 2006; Sasaki et al., 2006; 
DeCoursey, 2008) and other proton-selective pores  
in the voltage sensor domain of potassium channels 
(Starace and Bezanilla, 2004) has not been studied. How-
ever, given the structural elements that the candidates 
possess, such as water crevices toward protonation sites, 
our hypothetical mechanism is compatible with those that 
the candidates may exhibit. Involvement of local struc-
tural changes during rearrangement of proton-accepting 
histidine residues may account for the observed acti-
vation enthalpy. Those are thermodynamic aspects of 
experimental evidence supporting the candidate mole-
cule as the molecular entity of the voltage-gated pro-
ton channel.

Here, we conclude the temperature dependence of 
the voltage-gated proton channel. Q10

app is a measure that 
represents the overall nature of proton permeation, in-
cluding the access resistance. The value characterizes 



� Kuno et al. 203

1

1 1k H k[ ]
,+

−+

and it is calculated as 104 to 105 s for a k1 of 109–1010 
M1/s and k1 of k1 × 10pK. This value is much larger than 
the time constant for development of the access resis-
tance (1010 s). This means that the release rate of 
protons from the protonated buffer is much slower than 
the development of access resistance. In this case, the 
proton supply from the protonated buffer cannot keep 
up with the demand. The access resistance for the volt-
age-gated proton channel has not been estimated quan-
titatively, so these theoretical predictions remain to be 
evaluated experimentally.

The total resistance (Rtotal) across the membrane is 
composed of the channel resistance (RCh) and the ac-
cess resistance on both sides of the membrane (exter-
nal and internal RAR).

	 R R R Ri o
total Ch AR AR  = + + . 	  (A8)

The relative contributions of RAR to Rtotal were esti-
mated by the following methods. Changes in the exter-
nal RAR lead to changes in Rtotal, even if RCh and internal 
RAR are constant. The external RAR can be changed by 
altering  (Eq. A7) (Hall, 1975), which is attained by 
perfusing extracellular solutions with higher resistivity, 
such as by adding concentrated nonelectrolytes (Ando 
et al., 2005). From the changes in the current ampli-
tude upon exposure (the resistivity pulse method), the 
relative contribution of RAR to RCh can be estimated by 
this equation:
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in which RAR
o represents the resistance after perfusion 

with a different conductivity solution. Incorporating 
Hall’s relation for the ratio of the access resistances at dif-
ferent solutions, the conductance ratio can be obtained:
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We assume that the external and internal RAR are 
identical in symmetric solutions. Based on Hall’s equation, 
RAR is determined by the conductivity and the capture 
radius. Therefore, the symmetric assumption is accept-
able as far as the structural information of the channel 
is not available. Eq. A10 becomes
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This equation for condensed systems is valid in the limit 
of large friction. The temperature dependence for the 
friction coefficient is:
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With this relation, the Kramers’ equation becomes
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where ∆HCh
‡ is the activation enthalpy and ∆SCh

‡ is the 
activation entropy. Here, HCh

‡ and b were lumped 
together as HCh‡ (=HCh

‡ + bR) because (T) and its 
temperature dependence cannot be obtained un-
equivocally. Also, a and C were collected as C’ (=a 
C). Then,
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The temperature dependence of k(T), or Q10 of proton 
permeation, is expressed as:
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The access resistance
Access resistance was formalized theoretically based on 
geometrical and electrostatic considerations, and a sim-
plified expression was proposed by Hall (1975) as

	 R
rAR = ρ

4
, 	  (A7)

where  is the resistivity of the solution and r is the cap-
ture radius. The resistance of a hemispherical region 
outside a pore entrance was integrated to give the ac-
cess resistance, and most of the resistance arises within 
close vicinity of the pore. The time for development of 
the access resistance can be estimated by r2/D (Crank, 
1975). For r < 1 nm and D (diffusion coefficient) < 104 
cm2/s, the time constant is 1010 s.

The access resistance is further modified by the pres-
ence of buffer. Protonated buffer distributes within the 
access region and supplies protons to the pore, which re-
plenishes the limited delivery (proton supply by buffer; 
Fig. 2) (Decker and Levitt, 1988). This may attenuate am-
plitudes of the access resistance. Here, we estimate the 
effectiveness of the proton supply from the buffer to the 
pore quantitatively. The time constant for buffering is
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In this equation, the resistivities of the buffer solution 
were measured by a conductivity meter at different tem-
peratures. The resistance ratio is an only unknown  
parameter that can be obtained through fitting the ex-
perimental data.

The Q10 value for resistances in series
The total conductance of the channel and access resis-
tances in series are expressed as

	 G
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, 	  (A12)

where GCh is the channel conductance and GAR is the 
access conductance. The Q10 value for this conduc-
tance is
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GCh was replaced by k(T) and GAR was replaced by Eq. 
12, in which  is expressed by 1/(A Exp[B/T]). Then, 
Q10(T) is expressed as
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where HCh
‡ is the activation enthalpy, SCH

‡ is the acti-
vation entropy, and C is the frequency factor for the 
channel. A and B can be obtained from the resistivity 
measurements at different temperatures. The fitting of 
the three unknown parameters (H ‡Ch, S ‡Ch, and C) 
to the measured Q10 values was performed.
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