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Abstract

Epigenome-wide association studies (EWASs) have become increasingly popular for studying DNA methylation (DNAm)
variations in complex diseases. The Illumina methylation arrays provide an economical, high-throughput and
comprehensive platform for measuring methylation status in EWASs. A number of software tools have been developed for
identifying disease-associated differentially methylated regions (DMRs) in the epigenome. However, in practice, we found
these tools typically had multiple parameter settings that needed to be specified and the performance of the software tools
under different parameters was often unclear. To help users better understand and choose optimal parameter settings
when using DNAm analysis tools, we conducted a comprehensive evaluation of 4 popular DMR analysis tools under 60
different parameter settings. In addition to evaluating power, precision, area under precision-recall curve, Matthews
correlation coefficient, F1 score and type I error rate, we also compared several additional characteristics of the analysis
results, including the size of the DMRs, overlap between the methods and execution time. The results showed that none of
the software tools performed best under their default parameter settings, and power varied widely when parameters were
changed. Overall, the precision of these software tools were good. In contrast, all methods lacked power when effect size
was consistent but small. Across all simulation scenarios, comb-p consistently had the best sensitivity as well as good
control of false-positive rate.
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Introduction

DNA methylation (DNAm) is one of the most studied epigenetic
mechanisms, which are stable heritable traits that cannot be
explained by DNA sequences [1]. The most widely characterized
DNAm process is the addition of the methyl group at the 5-
carbon of the cytosine ring, which results in 5-methylcytosine
(5-mC). When located in a gene promoter, DNAm typically acts
to repress gene transcription. The gold standard for measuring
methylation status is the whole-genome bisulfite sequencing
(WGBS). However, the high cost of WGBS limits its use in large
epidemiology studies.

Currently, most of the epigenome-wide association studies
(EWASs) conducted utilize array-based technologies, which
provides an economical, high-throughput and comprehensive
alternative. For example, the HumanMethylation450 BeadChip
(Infinium, Illumina, San Diego, California, USA) methylation
microarray (450K) [2] targets 485 577 cytosine positions in the
human genome, distributed across gene promoters (within 200
or 1500 bp upstream of transcription start sites), 5′ untranslated
region (UTRs), first exon, gene bodies, 3′ untranslated region
(UTRs) and intergenic regions. Alternatively, these positions
can also be classified by their relation to CpG islands (CGIs),
which are regions in the genome where there are more CG
dinucleotides than expected by chance. The CpG positions can
be classified into CGIs, shores (2 kb region flanking CGIs) and
shelves (2 kb region flanking shores) [3]. More recently, the
MethylationEPIC BeadChip (Infinium) microarray (850K) was
developed [4]. This newer array includes more than 90% of
the 450K array probes, as well as an additional 333 265 probes
targeting sites in regulatory regions recently identified by the
ENCODE [5, 6] and FANTOM5 [7] projects.

Recently, it has been observed that contiguous regions in
the epigenome with differentially methylated regions (DMRs)
are associated with various diseases [8–11]. For example, hyper-
methylation of promoter regions of several candidate genes
is important in neoplastic development and contributes to
colon cancer carcinogenesis [12]. In neurodevelopmental dis-
orders, Ladd-Acosta et al. [13] identified and replicated three
genomic regions with significant DNAm changes in postmortem
brain tissues from patients with autism spectrum disorder.
Similarly, Liu et al. [14] identified two clusters within the major
histocompatibility complex region whose differential methyla-
tion potentially mediates genetic risk for rheumatoid arthritis.

A number of tools have been developed for the analysis of
DMRs [15–19]. Methods for DMR identification can be classi-
fied into supervised and unsupervised methods. The unsuper-
vised methods first group the CpG probes into genomic regions
(e.g. CGIs, CGIs shores, TSS200) based on array annotation infor-
mation, and then test each genomic region for association with
phenotype information. In contrast, in supervised methods a
P-value or corresponding t-statistic is computed at each CpG
first, then the regions in the genome with consecutive small
P-values or t-statistics are identified based on user-specified
criteria (such as the minimum number of CpGs for the region).
Note that because of the large number of probes included in
the array (almost half a million), when scanning for small P-
values, these methods typically compute multiple comparison
adjusted P-values for each probe first and then scans the genome
for regions enriched with significant adjusted P-values. Two
previous studies [20, 21] compared unsupervised DMR analysis
methods that test for predefined genomic regions. However,
there is currently a lack of systematic evaluation of supervised
DMR identification methods.

In this study, we conduct a comprehensive evaluation of
the most popular software tools for supervised DMR analysis,
including DMRcate [17], Probe Lasso [19], bump hunting [15] and
comb-p [16]. We chose these tools based on the following several
criteria: (i) They can be used to analyze Illumnina methylation
arrays. (ii) They use the supervised approach to identify DMRs.
(iii) The software has open source code with implementation in
the R or Python programming languages, the most commonly
used computing languages for epigenetic studies, and the imple-
mentations can be scaled up to analyze an EWAS with moderate
sample size in a reasonable amount of time.

In practice, we find the algorithms underlying these methyla-
tion analysis tools typically have multiple parameters that need
to be specified. However, directions for specifying the parameters
are often missing from the user guides, and the performance of
the tools under different parameter settings are often unclear.
To help users understand and choose best parameter settings for
DNAm analysis tools, we conduct a comprehensive evaluation of
the tools under multiple parameter settings. In addition to evalu-
ating power, precision, area under precision-recall curve (AuPR),
Matthews correlation coefficient (MCC), F1 score (F1) and type
I error rate, we also compare several additional characteristics
of the analysis results by these different methods, including the
size of the DMRs and overlap between the methods. We discuss
details of the simulation study scheme in the Methods section,
and we discuss the results of the simulation study and a real
data set in the Results section. In the last section, we provide a
brief summary on our main findings and also highlight future
directions in this important research area.

Methods
To preserve correlation patterns in real data sets, we gener-
ated simulation data by using a real data set as input. Figure 1
shows the workflow of our simulation study, which involved the
following several steps:

i. First, we obtained a publicly available methylation data set.
The GEO data set GSE41169 from Horvath et al. [22] included
DNAm profiles of whole blood samples of 62 patients with
schizophrenia and 33 healthy controls from the Dutch pop-
ulation. The Illumina Infinium 450k Human DNA methyla-
tion Beadchip v1.2 was used to measure the methylation
status of 485 577 CpGs. For our study, we selected a total
of 14 samples that satisfied two conditions, (i) these are
all healthy male samples and (ii) the age of the patients
ranged from 20 to 30 years. The sample IDs of the 14 selected
samples are GSM1009666, GSM1009667, GSM1009668, GSM100
9681, GSM1009688, GSM1009695, GSM1009742, GSM1009743,
GSM1009744, GSM1009745, GSM1009746, GSM1009748, GSM10
09892 and GSM1009893.

ii. Next, we performed Adjacent Site Clustering (A-clustering)
[22] to obtain 3063 clusters of adjacent CpG probes
(A-clusters), see details in the section ‘Simulating clusters
of CpGs with differential methylation’ below.

iii. We then simulated differentially methylated clusters of
CpGs by randomly selecting 500 A-clusters and adding
treatment effects to selected samples in the data sets.
This process was repeated for five times for each effect
size μ = (0, 0.025, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4). This gave us 40
simulation data sets.

iv. We applied four DMR finding methods (DMRcate, bum-
phunter, Probe Lasso, comb-p) to the simulation data sets
generated in step 3.
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Figure 1. Overall workflow of the analysis.

v. Finally, we compared results of these methods on precision,
power, AuPR, MCC, F1, type I error rate, size of the DMRs, exe-
cution time as well as overlap of DMRs identified by different
methods.

We discuss these steps in details next. The analysis scripts
used for this study can be accessed at https://github.com/gabriel
odom/DMRcomparePaper.

Simulating clusters of CpGs with differential
methylation

Before clustering analysis, we used the DMRcate [17] function
rmSNPandCH to remove CpGs that are close to single-nucleotide
polymorphisms (SNPs) or CpGs that cross-hybridize with loca-
tions on sex chromosomes. We also removed those CpGs with
little variations across all the samples, i.e. those CpGs with beta
values <0.05 or beta values >0.95 in all samples.

Next we used Adjacent Site Clustering (A-clustering) [22]
to group neighboring CpG sites that are correlated with

each other into clusters. We applied A-clustering to the 14
samples selected above to obtain a total of 3063 clusters, each
consisting of at least five adjacent CpGs. The parameters we
used are assign.to.clusters(betas = beta.value, dist.thresh = 0.5,
bp.merge = 200, dist.type = "spearman", method = "complete")
from the Aclust R package (https://github.com/tamartsi/Aclust),
which corresponded to merging two CpGs with Spearman
correlation greater than 0.5 and are within 200 bp into
a cluster. Figure 2 shows an example of an A-cluster with
5 CpGs.

The 14 methylation samples were randomly divided into two
groups. Differential methylation of a small subset (i.e. 500) of
the clusters were simulated by adding a small treatment effect
μ = (0, 0.025, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4) to beta values in the group
with higher average beta value. For each value of μ, we repeated
the process five times. This yielded a total of 40 simulation data
sets (8 values of μ × 5 repetitions).

On the methylation arrays, beta values are computed based
on the ratios of the methylated signal intensity to the sum of
both methylated and unmethylated signals after background

https://github.com/gabrielodom/DMRcomparePaper
https://github.com/tamartsi/Aclust
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Figure 2. An example cluster with 5 CpGs.

subtraction, so they range from 0 (completely unmethylated) to 1
(fully methylated). To ensure the added treatment effects do not
cancel out existing differences in beta values, for each CpG probe
in the methylation cluster, we first compared the group means
of the two groups and then added treatment effects to the group
with higher mean beta values. After adding treatment effects, if
a beta value was larger than 1, it was set to 1.

Methods for identifying DMRs

DMRcate

The DMRcate [17] method is implemented in the Bioconductor
package DMRcate. The DMRcate method first fits a linear model
at each CpG using the empirical Bayesian methodology from the
limma R package. In our study, this model included methylation
M value as the outcome variable and group status as indepen-
dent variable. M values are logit transformation of beta values,
that is M = log

(
beta/1 − beta

)
, these values have been shown to

have better statistical properties such as homoscedasticity [23]
in methylation data analysis. The statistic Y = t2 is then calcu-
lated for each position, where t is the t-statistic from the linear
model corresponding to the group effect. In the second step,
DMRcate applies kernel smoothing using a Gaussian smoother
with bandwidth λ scaled by a scaling factor C. The P-values at
each position are then computed by moment-matching using
the method of Sattererthwaite [24]. The CpG sites with multiple-
comparison-corrected P-values (via the method of Benjamini
and Hochberg [25]) are then selected as significant CpGs. Regions
for DMRs are identified by collapsing contiguous significant CpGs
that are within λ nucleotides from each other. The P-value for
DMR is computed using Stouffer’s method [26]. We studied the
effect of λ and C on the performance of DMRcate in our simula-
tion study.

Bumphunter

Bumphunter [15] is implemented in the Bioconductor packages
bumphunter and minfi. In the bumphunter method, first a linear
regression model regressing the M value on group is applied to
model differential methylation between case and control groups
at each CpG site. Candidate regions (bumps) are then identified,
these are clusters of consecutive probes for which all the t-
statistics exceed a user-defined threshold (argument cutoff in
the bumphunter function). Permutation tests, which permute
sample labels to create the null distribution of candidate regions,
are then conducted to estimate statistical significance of the
candidate regions separated by at least maxgap base pairs. In the
identification of regions, spatial correlation structures are used
to model correlations of methylation levels between neighboring
CpGs. We studied the effect of the parameters maxGap, pickCut-
offQ and B (the number of resamples) used to estimate DMR P-
values, on performance of bumphunter in the simulation study.

Probe Lasso

Probe Lasso [19] is implemented in the Bioconductor package
ChAMP. In the Probe Lasso method, first a linear model regressing
beta value on group is applied to model differential methylation
between case and control groups at each CpG site. Next, because
the probe spacing on the methylation arrays are not uniform
(e.g. probes located in promoter regions are more densely
spaced, while those located in intergenic regions are more
spread out), Probe Lasso defines flexible boundaries around
each probe depending on the type of genomic feature the probe
is located in (e.g. TSS200, 3′UTR). Much like a real lasso, the
Probe Lasso algorithm ‘throws’ a lasso around each probe with
the dynamic boundaries, centered at the target probe. A region
around the target probe is selected if the number of significant
probes captured within the Probe Lasso boundary is higher
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than the user-specified threshold (argument minProbes in the
champ.DMR function). For each region, Probe Lasso then com-
putes a correlation matrix of normalized beta values within that
region and then uses Stouffer’s method to compute a P-value
for the region by weighting individual probes by the inverse sum
of its squared correlation coefficient in the correlation matrix.
We studied the effect of parameters adjPvalProbe (significance
threshold for probes to be included in DMRs), meanLassoRadius
(radius around each significant probe to detect a DMR) and
minDmrSep (the minimum separation in base pairs between
neighboring DMRs) on the performance of Probe Lasso.

Comb-p

Comb-p [16] is a command-line tool and a Python library [16].
In contrast to the three methods described above, it does not
support calculation of P-values for individual CpGs. Instead, the
input of comb-p is a .BED file with P-values and chromosome
locations of the CpG sites. The comb-p tool then computes cor-
relations at varying distance lags (auto-correlation), which are
used to compute corrected P-values at each CpG site using the
Stouffer–Liptak–Kechris correction [27]. The corrected P-value
at a CpG site will be smaller than the original P-value if the
neighboring CpG sites also have comparatively small P-values.
On the other hand, the corrected P-value at a CpG site will remain
large if neighboring P-values are also large. The false discovery
rate [25] is then calculated at each CpG site and a peak-finding
algorithm is then used to find regions enriched with small
P-values. Once the regions are identified, the final P-value for
each region is computed based on the Stouffer–Liptak correction.
We compared the performance of comb-p when parameters
seed (P-value significance threshold to start a region) and dist
(extend a region if there is another P-value lower than seed
within this distance) were varied.

Evaluation criteria

To compare the sensitivity and specificity of the four DMR find-
ing methods, we assessed their performances on the 40 simula-
tion data sets generated in step (3) of ‘Methods’ section above.
For all methods, we considered detected regions with DMR P-
values less than 0.05 that also contained five or more CpGs as
significant DMRs. For each simulation data set with μ > 0, there
were a subset of regions (clusters of CpGs) to which we added
treatment effect μ. In Table 3, a true-positive (TP) DMR is defined
as a significant DMR declared by a method that overlaps with a
region, which we added treatment effects to methylation beta
values (section ‘Simulating clusters of CpGs with differential
methylation’ above). A false-positive (FP) DMR is defined as a
significant DMR that does not overlap with any of the regions
with added treatment effects. A false negative (FN) is defined as
a region with added treatment effect that does not overlap with
any significant DMRs.

To compare the four DMR methods, we considered the
following criteria:

i. Power (sensitivity, recall): This is defined as Probability (pre-
dicted positive | actual positive), which was estimated by the
number of TP DMRs over the total number of regions with
treatment effects added (i.e. 500).

ii. Precision: This is defined as Probability (actual positive |
predicted positive), which was estimated by dividing the
number of TP DMRs over the total number of DMRs declared
by a method.

iii. AuPR: Because the data sets we analyzed in this study are
highly imbalanced—the proportion of true-negative regions
in the genome are much higher than the proportion of
TP regions—we evaluated the performance of the methods
using AuPR, which is robust against class skewness. The
precision-recall curve shows the tradeoff between precision
and recall (or power, sensitivity) as the significance cutoff is
varied. The AuPR represents the overall discriminatory abil-
ity of the methods at determining whether a given region is
associated with the disease over all possible cutoffs. Higher
values of AuPR indicates better performance for a method,
we selected the best-performing parameter setting for each
method based on largest AuPR.

iv. MCC: This is essentially the correlation coefficient between
observed and predicted binary classification. It is also robust
against different sizes of the positive and negative classes.
MCC is computed as MCC = TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. An

MCC of +1, 0 and −1 correspond to perfect prediction, no bet-
ter than random prediction and total disagreement between
predicted and actual status, respectively.

v. F1: This is another measure of a test’s accuracy. It is com-
puted as F1 = 2 × precision × recall

precision + recall . F1 ranges from 0 (worst
prediction) to 1 (perfect precision and recall).

vi. DMR size: Since the probes on the arrays are not distributed
uniformly, we estimated DMR sizes by the number of CpG
sites a detected DMR has.

vii. DMR overlap: The agreement between the DMR detection
methods were assessed by the number of common DMRs
detected by them. We used the makeVennDiagram function
in the ChIPpeakAnno R package to draw the Venn diagrams.

viii. Time: The elapsed time measured in seconds for each DMR
detection method was recorded on a Lenovo Thinkstation,
1009 Think Place Morrisville, NC 27560 United States, P910
server with 64 GB 2400 MHz, DDR4 RAM, Dual Core Intel Xeon
E5-2643 V4 (3.4 GHz) CPU and the Windows 10 Operating
System (for bumphunter, Probe Lasso and DMRcate); and
a Dell Precision Tower Linux server, Dell Inc. One Dell
Way Round Rock, TX 78682, with 64 GB of 2133 DDR4
RAM and Intel Xeon E5-2640 v3 (2.60 GHz) CPU (for comb-
p). When comparing computing times used for different
algorithms, we did not use parallel computing for the results
in Table 3.

Results
Table 1 lists the parameter settings that were compared for the
four DMR finding methods.

Type I error

The results of our simulation study showed all methods had
well-controlled type I error rates (Supplementary Table 1). When
no treatment effects were added to the methylation data sets,
DMRcate and Probe Lasso (under all parameter settings) detected
no significant DMRs. Comb-p detected between 1 and 12 signif-
icant DMRs, and bumphunter detected between 17 (0.57%) and
106 (3.49%) of 3063 significant DMRs with 5 CpGs or more in
different parameter settings. However, these FP rates are still
well below the expected 5% type I error rate for the total of 3063
methylation clusters identified by A-clustering with no added
treatment effect in this type I error rate simulation study.

AuPR, MCC, F1

For each method, we selected the parameter settings that per-
formed best (Table 2) based on largest AuPR value. Table 3 shows

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bby085/-/DC1
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Table 1. Parameter settings for the DMR identification methods. Default settings are underlined and in bold font.

Method Implementation Input Parameters Statistics for computing
DMR P-value

DMR P-value label
in output table

Bumphunter R/BioC package bumphunter
v1.20.0

pickCutoffQ = (0.95, 0.99),
maxGap = (200, 250, 500, 750, 1000),
nullMethod ="permutation", B=10

permutation distribution
based on permuting sample
labels

P-value area

Comb-p Python library comb-p v0.48 –seed (0.001, 0.01, 0.05)
–dist (200, 250, 500, 750, 1000)

Stouffer–Liptak statistic z p

DMRcate R/BioC package DMRcate v1.14.0 lambda = (200, 250, 500, 750, 1000),
C = (1,2,3,4,5)

Stouffer’s method Stouffer

Probe Lasso R/BioC package ChAMP v2.9.10 method = “ProbeLasso”,
adjPvalProbe = (0.001, 0.01, 0.05)
meanLassoRadius = (375, 700, 1000)
minDmrSep = (200, 250, 500, 750, 1000)

Stouffer’s method dmrP

Table 2. Parameter settings that achieved best performance (AuPR)
for each method

Method Parameter setting with best performance

bumphunter cuttoffQ = 0.95, maxGap = 250
comb-p seed = 0.05, dist = 750
DMRcate lambda = 500, C = 5
ProbeLasso adjPval = 0.05, mLassoRad = 1000, minDmrSep = 1000

the number of TP, FP DMRs, missed regions (FN) as well as power,
precision, AuPR, MCC and F1 for each simulation scenario for
the four methods under the parameter settings that performed
best. Similar information for all tested parameter settings are
shown in Supplementary Tables S2–S5. Shown in these tables are
the mean and standard deviations of the metrics averaged over
five simulation repetitions. We note that the results were highly
consistent between AuPR and MCC and F1, the best models with
largest AuPR also had the highest MCC and F1.

Precision

Figure 3A shows under the best performing parameter setting
(largest AuPR); all four methods had good precision or positive
predictive value. In fact, this hold true for all methods under
all parameter settings. In Supplementary Tables S3–S5 and
Figure SF1, comb-p, DMRcate and Probe Lasso achieved precision
of 90% or more under all parameter settings in all simulation
scenarios. That is, given that a DMR is identified by a method, it’s
almost certain that the DMR is a TP. Bumphunter achieved better
precision when the parameter cutoff = 0.99 (instead of 0.95), 80%
or more precision was achieved when effect μ ≥ 0.05 under this
parameter setting. On the other hand, varying the parameter
maxGap had little effect on precision, especially when the effect
is at least moderate with μ ≥ 0.1. However, at small effect size,
bumphunter’s precision dropped significantly. For example,
at effect size μ = 0.025, precision for bumphunter ranged
from 0.66 to 0.80 across different settings. None of the Probe
Lasso parameter settings identified any significant DMRs when
μ = 0.025, so precision estimates were not available (NA) for
these particular instances.

Power

Figure 3B shows power of the four methods under best-
performing (largest AuPR) parameter setting. We note that when
effect size is consistent but small across treated samples (μ =
0.025), none of the currently available methods had acceptable
power over 50% (Figure 3). At μ = 0.05, only comb-p achieved
more than 50% power. Across all simulation scenarios, comb-p
consistently had the highest power, followed by Probe Lasso and
DMRcate.

Supplementary Tables S2–S5 and Figure SF2 show the power
of all the methods under all parameter settings. We found power
varied widely when parameter settings were changed for all
methods. For example, when μ = 0.1, power for bumphunter
ranged from 44% to 56%; power for DMRcate ranged from
26% to 65%; power for Probe Lasso ranged from 30% to 72%;
power for comb-p ranged from 69% to 91%. We found that
none of the methods yielded highest power under default
parameter settings for any effect size (Table 2, Supplementary
Tables S2–S5).

For bumphunter, decreasing the number of resamples used
when computing null distribution (parameter B) from 1000
to 10 or changing the maxGap parameter resulted in similar
power (Supplementary Table S6, Figure SF2). However, decreasing
parameter cutoffQ from the default of 0.99–0.95 improved
power, especially when effect size was small (Supplementary
Figure SF2, Table S2). For comb-p, power improved when the
dist parameter was increased. Power also improved when the
seed parameter was increased, but only when effect size was
small (μ ≤ 0.1; Figure SF2, Table S3). For DMRcate, power
improved when parameter lambda was decreased or when the
parameter C was increased (Figure SF2, Table S4). For Probe
Lasso, power was similar when the parameter minDMrSep
was changed, but power improved substantially when the
parameter meanLassoRadius was increased from default value
of 375 to 1000 or when adjPval was increased from 0.001 to 0.05
(Figure SF2, Table S5).

Precision-recall curves

Figure 4 and Supplementary Figure SF4 show precision-recall
curves for the four methods under the parameter configurations,
which yielded the highest AuPR. Curves for methods that per-
form better are closer to the upper-right corner. These results
showed that comb-p consistently performed best across all sim-
ulation scenarios. For small effect size (μ = 0.05), when power

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bby085/-/DC1
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Table 3. TP, FP, FN, Power, Precision, AuPR, MCC, F1 and Elapsed Time (in Second) for the different DMR detection tools based on simulation data
sets. For each method, shown are the mean (standard deviation) of the performance measures under the best performing parameter setting
for five repetitions of the simulation study at each simulation scenario

Mu Method TP FP FN Power Precision AuPR MCC F1 Time
(seconds)

0.025 Bumphunter 144 (7.87) 69 (3.27) 356 (7.87) 0.29 (0.02) 0.63 (0.02) 0.36 (0.02) 0.38 (0.02) 0.44 (0.02) 157 (4.42)
0.025 Comb-p 198 (8.11) 12 (2.86) 302 (8.11) 0.4 (0.02) 0.95 (0.02) 0.55 (0.01) 0.57 (0.02) 0.55 (0.02) 55 (0.58)
0.025 DMRcate 32 (4.34) 0 (0.45) 468 (4.34) 0.06 (0.01) 0.99 (0.01) 0.25 (0.01) 0.23 (0.02) 0.12 (0.02) 21 (0.24)
0.025 Probe Lasso 0 (0) 0 (0) 500 (0) 0 (0) NA NA NA NA 7 (0.42)
0.05 Bumphunter 248 (10.92) 68 (3.36) 252 (10.92) 0.5 (0.02) 0.75 (0.02) 0.56 (0.02) 0.58 (0.02) 0.63 (0.02) 160 (3.88)
0.05 Comb-p 352 (10.55) 13 (3.58) 148 (10.55) 0.7 (0.02) 0.97 (0.01) 0.78 (0.02) 0.8 (0.02) 0.81 (0.02) 56 (0.37)
0.05 DMRcate 178 (9.63) 3 (1.22) 322 (9.63) 0.36 (0.02) 0.98 (0.01) 0.52 (0.02) 0.55 (0.02) 0.52 (0.02) 20 (0.43)
0.05 Probe Lasso 212 (10.92) 21 (5.03) 288 (10.92) 0.42 (0.02) 0.93 (0.01) 0.57 (0.02) 0.58 (0.02) 0.57 (0.02) 17 (0.83)
0.1 Bumphunter 280 (11.73) 66 (2.88) 220 (11.73) 0.56 (0.02) 0.79 (0.02) 0.64 (0.02) 0.65 (0.02) 0.7 (0.02) 163 (6.92)
0.1 Comb-p 448 (3.11) 16 (4.36) 52 (3.11) 0.9 (0.01) 0.97 (0.01) 0.91 (0.01) 0.92 (0.01) 0.93 (0) 57 (0.53)
0.1 DMRcate 326 (9.29) 8 (3.35) 174 (9.29) 0.65 (0.02) 0.98 (0.01) 0.75 (0.01) 0.77 (0.01) 0.78 (0.01) 21 (1.69)
0.1 Probe Lasso 362 (7.02) 36 (7.36) 138 (7.02) 0.72 (0.01) 0.93 (0.01) 0.79 (0.01) 0.79 (0.01) 0.81 (0.01) 18 (0.16)
0.15 Bumphunter 281 (11.95) 63 (2.86) 219 (11.95) 0.56 (0.02) 0.8 (0.02) 0.66 (0.02) 0.65 (0.02) 0.7 (0.02) 160 (10.11)
0.15 Comb-p 465 (4.16) 17 (4.6) 35 (4.16) 0.93 (0.01) 0.97 (0.01) 0.93 (0.01) 0.94 (0.01) 0.95 (0.01) 57 (0.47)
0.15 DMRcate 376 (6.69) 10 (3.03) 124 (6.69) 0.75 (0.01) 0.98 (0.01) 0.82 (0.01) 0.83 (0.01) 0.85 (0.01) 20 (0.47)
0.15 Probe Lasso 406 (7.6) 40 (8.53) 94 (7.6) 0.81 (0.02) 0.93 (0.01) 0.85 (0.01) 0.84 (0.01) 0.86 (0.01) 18 (0.09)
0.2 Bumphunter 280 (11.78) 62 (3.16) 220 (11.78) 0.56 (0.02) 0.81 (0.02) 0.67 (0.02) 0.66 (0.02) 0.71 (0.02) 157 (6.39)
0.2 Comb-p 471 (4.06) 18 (5.13) 29 (4.06) 0.94 (0.01) 0.97 (0.01) 0.94 (0) 0.94 (0) 0.95 (0) 57 (0.47)
0.2 DMRcate 385 (5.79) 10 (2.86) 115 (5.79) 0.77 (0.01) 0.97 (0.01) 0.83 (0.01) 0.84 (0.01) 0.86 (0.01) 20 (1.43)
0.2 Probe Lasso 415 (9.31) 41 (7.45) 85 (9.31) 0.83 (0.02) 0.93 (0.01) 0.86 (0.02) 0.85 (0.01) 0.87 (0.01) 19 (1.92)
0.3 Bumphunter 280 (11.78) 57 (5.15) 220 (11.78) 0.56 (0.02) 0.82 (0.02) 0.68 (0.02) 0.67 (0.02) 0.71 (0.02) 155 (9.56)
0.3 Comb-p 476 (2.61) 19 (4.67) 24 (2.61) 0.95 (0.01) 0.96 (0.01) 0.95 (0.01) 0.95 (0) 0.96 (0) 56 (0.36)
0.3 DMRcate 398 (1.79) 10 (2.59) 102 (1.79) 0.8 (0) 0.98 (0.01) 0.85 (0) 0.86 (0) 0.88 (0) 21 (1.2)
0.3 Probe Lasso 425 (8.56) 42 (7.48) 75 (8.56) 0.85 (0.02) 0.93 (0.01) 0.87 (0.01) 0.87 (0.01) 0.89 (0.01) 18 (0.06)
0.4 Bumphunter 280 (11.83) 52 (6.15) 220 (11.83) 0.56 (0.02) 0.84 (0.03) 0.68 (0.02) 0.68 (0.03) 0.72 (0.02) 156 (12.24)
0.4 Comb-p 478 (2.7) 19 (4.32) 22 (2.7) 0.96 (0.01) 0.96 (0.01) 0.95 (0.01) 0.95 (0) 0.96 (0) 57 (0.77)
0.4 DMRcate 401 (2.86) 10 (4.44) 99 (2.86) 0.8 (0.01) 0.98 (0.01) 0.85 (0.01) 0.87 (0.01) 0.88 (0.01) 20 (0.95)
0.4 Probe Lasso 427 (8.04) 42 (7.48) 73 (8.04) 0.85 (0.02) 0.93 (0.01) 0.88 (0.01) 0.87 (0.01) 0.89 (0.01) 19 (0.22)

(recall) approaches 80%, all methods exhibited poor precision.
When effect size was increased to μ = 0.1, both comb-p and
Probe Lasso had excellent precision (over 80%), while precision
for DMRcate and bumphunter remained poor. For large effect
size (μ = 0.4), when power (recall) approaches 80%, all methods
except bumphunter had good precision.

DMR sizes

Figure 5 shows distribution of the sizes of significant DMRs iden-
tified by each method. For each method, the size of significant
DMRs remained stable across different effect sizes. The median
DMR sizes for bumphunter, comb-p and DMRcate were 6, 7 and
7, respectively. Significant DMRs identified by Probe Lasso were
larger with median DMR size around 9. We also note that the
sizes of the DMRs identified by Probe Lasso tended to have larger
variabilities in the simulation data sets than those from other
methods.

Overlap of DMRs by different methods

Figure 6 and Supplementary Figure SF5 show the overlap of
significant DMRs identified by the four methods under best
parameter settings. We observed an increase in agreement
among the methods when effect size was increased. There was
substantial overlap in the significant DMRs identified by comb-
p, DMRcate and Probe Lasso. Overall, comb-p and bumphunter
identified the most unique DMRs not found by other methods,

followed by Probe Lasso. Almost all DMRs identified by DMRcate
were also identified by comb-p.

Execution time

The last column in Table 3 shows execution time for each of the
methods under different simulation scenarios. We found analy-
sis using all software can be finished within a reasonable amount
of time. All methods completed calculation in less than 1 min
per simulation data set, except for the bumphunter method. We
believe this may be because bumphunter relies on permuting
sample labels rather than approximation based on statistical
distribution to estimate P-values. Both bumphunter and Probe
Lasso support parallelization on all major operating systems,
while DMRcate supports parallelization in Unix environment.

Results of real data analysis

In addition to simulated data sets, we also applied the four
software tools under best parameter settings (Table 2) to a real
methylation data set from The Cancer Genome Atlas (TCGA)
project [28]. Yuan et al. (2016) [29] conducted a comprehensive
study on the molecular basis for sex disparities in 13 cancer
types and identified 1 group of cancers with a small number of
sex-affected genes and another group with more extensive sex-
based molecular signatures. In this study, we compared DNAm
profiles between colon cancer samples from male and female
subjects in the TCGA database.

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bby085/-/DC1
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Figure 3. Precision (A) and power (B) of the methods under best performing parameter setting when different treatment effects (μ) where added to simulation data

sets.

First, we downloaded TCGA level 3 methylation data,
which were measured by Illumina 450K arrays, for the colon
cancer cohort (COAD) from the UCSC Xena Public Data Hubs
(http://xena.ucsc.edu/public-hubs/). Level 3 data consists of cal-
culated methylation beta values mapped to genome per sample
(https://cancergenome.nih.gov/abouttcga/aboutdata/datalevelst
ypes#9). We used beta values for 325 independent tumor
samples for comparison, including 174 male and 151 female
samples. First, we removed confounding effects by fitting a linear
regression model with methylation M values (logit-transformed
beta values) as the outcome variable and patient stage and age at
initial pathologic diagnosis as independent variables. We then
used the residuals from this model for further analysis. We
compared the four DMR identification methods at their best
performing parameter settings as identified in the simulation
study.

In real DNAm data, precision and recall cannot be assessed
because the true DMRs are not known. Nevertheless, we com-
pared the patterns of significant DMRs by each method. Overall,
we found the results of the real data analysis were largely in
agreement with results from the simulation study. We compared
the number of significant DMRs with P-values less than 0.05 that
also included at least 5 CpGs identified by each method (Figure 7).
The results showed that comb-p identified 70 significant DMRs,
bumphunter identified 72 significant DMRs, DMRcate identified
10 significant DMRs and Probe Lasso identified no significant
DMRs. Yuan et al. showed that COAD belongs to the group of
cancers with a weak sex effect, so we expected small effect sizes
for the differences between male and female samples in COAD

cohort. The results from our COAD sex-differences comparison
agreed well with the results from our simulation study (shown
in Table 3; μ = 0.025). In Table 3, the number of significant DMRs
is indicated by the sum of TP and FP columns. In particular,
both real data analysis and simulation study results showed that
comb-p and bumphunter identified the most significant DMRs,
followed by DMRcate, while Probe Lasso lacked power when
effect size is small.

Discussion
Most complex diseases are likely caused by a combination of
genetic and environmental factors. Although many genetic vari-
ants have been identified, typically, they only explain a small
proportion of variance in disease susceptibility. Epigentic vari-
ations, such as DNAm, hold promise in detecting new regula-
tory mechanisms that may be susceptible to modification by
environmental factors, which in turn modify the risk of dis-
ease. However, exactly how DNAm contributes to disease risk
and progression remains poorly defined for many diseases. The
development of genome-wide methylation profiling techniques
has led to the increased popularity of EWASs for characterizing
methylation patterns across the genome.

While some aspects of the analyses in EWAS are similar
to those for genome wide association studies (GWAS), such
as the need to properly control for multiple comparisons and
correction for batch effects, EWAS presents several additional
challenges [30]. First, while genetic variants studied in GWAS
are static, epigenetic marks such as DNAm are tissue specific.

http://xena.ucsc.edu/public-hubs/
https://cancergenome.nih.gov/abouttcga/aboutdata/datalevelstypes#9
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Table 4. Summary of comparison results for the four DMR identification methods

Small effect size Large effect size

Method Precision Power Precision Power Speed Can model covariate variable

bumphunter - - + - + Yes
combp ++ - ++ ++ + Yes
DMRcate ++ – ++ + ++ Yes
Probe Lasso + – ++ + ++ No

A ‘–’ and ‘-’ indicate very unsatisfactory and unsatisfactory results for the given criterion, respectively. A ‘+’ and
‘++’ indicate good and very good results for the given criterion, respectively.

Figure 4. Precision-recall curve of the four methods under best performing

parameter settings, (A) for small effect size (μ = 0. 05) and (B) large effect size

(μ = 0.4).

Therefore, selecting appropriate tissues would have important
implications for studying disease-relevant variations. Second,
it’s important to control factors that are known to influence the
methylome, such as age [31], gender [32], smoking [33] and cellu-
lar heterogeneity [34]. Third, the dynamic nature of methylation
changes means these changes can also be caused by the disease
itself. Therefore, the results of methylation study need to be
interpreted carefully, and additional experimental approaches
are needed to prove functional relevance. Finally, while methyla-
tion of specific cytosines can be important, recent research has
gradually shifted to the analysis of DMRs, as it has been observed
that differential methylation between different tissue and cell
types [35], in malignant cells [3] and in response to environmen-
tal factors [36] often extends across genomic regions.

To this end, critical evaluation of tools used to identify DMRs
in EWASs becomes an important issue. In contrast to studies
that rely on simulated data generated from specific statistical
distributions, we conducted our simulation study by generating
simulation data sets from a real methylation data set and added
treatment effects to selected samples. We believe this approach,
which previously has been successfully applied to methylation
[22] and gene expression data sets [37, 38], can better emulate
the correlation patterns in real omics data sets and enable more
unbiased comparison of the methylation analysis methods.

Our study compared four popular DMR analysis methods
under 60 different parameter settings. We found all methods
performed well in terms of precision. In terms of power, all
tools varied widely depending on parameter settings. Overall,
comb-p showed the best sensitivity as well as good control of FP
rate across all simulation scenarios. Although a large number of
significant DMRs were identified by all methods, comb-p identi-
fied substantially more TP DMRs than other methods, especially
when effect sizes were small. We also examined the overlap
of significant DMRs between the software tools, and we found
that the results from the different methods agreed more when
effect size was increased. On the practical side, computation
from all algorithms can be finished in a reasonable amount
of time.

However, all methods lacked adequate power to detect small
but consistent changes across all samples. Therefore, currently
available tools would likely perform well for disease studies that
are known to have large effect sizes (such as various cancers),
but can be problematic when studying for phenotypes with
smaller effect sizes (such as neurological or developmental
diseases). The research field will likely benefit from future
development of methods that can detect small but consistent
changes in DNAm data. Integrating with functional annotations
or additional omics data types such as pathway-based analysis
[39–41] and integrative GWA-eQTL analysis [42–44], which have
been successful for GWAS data, are also likely to improve power
in EWAS.

Furthermore, as we have shown, performance of the software
tools varied widely depending on different parameter settings.
We would therefore encourage future software developers to
include in-depth discussion and experience-based recommen-
dations in the package vignettes on how users should choose
parameter settings.

In summary, we have studied the effect of different param-
eter settings on performance of the methods including power,
AuPR, MCC, F1, and type I error rate, as well as additional charac-
teristics such as computation time, overlap of the methods and
size of the DMRs. For each method, we have also identified the
best parameter setting that had highest overall discriminatory
ability based on AuPR. A summary of the conclusions for our



An evaluation of DMR analysis methods 2233

Figure 5. DMR sizes of the four methods under best performing parameter settings for each of the four methods.

Figure 6. OverlapAQ12 of the four methods under best performing parameter settings,

(A) for small effect size (μ = 0. 05) and (B) large effect size (μ = 0.4).

Figure 7. Significant DMRs identified by the four methods under best performing

parameter settings for the comparison between male and female tumor samples

in the TCGA COAD cohort.

study is shown in Table 4. We hope that our study results, based
on both simulation and real methylation data sets, will help
investigators to better understand and select the most appro-
priate methods and parameter settings for their studies.

Key Points
• The identification of DMRs is an important analytical

task in the analysis of EWASs.
• All DMR analysis tools had well-controlled type I error

rate and good precision.
• Power of all supervised DMR analysis tools (bum-

phunter, comb-p, DMRcate and Probe Lasso) varied
widely depending on parameter settings.
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• None of the methods had good power to detect small
but consistent changes.

• Overall, comb-p performed best in terms of precision
and recall across all simulation scenarios.
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