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Self-amplified Amazon forest loss due to
vegetation-atmosphere feedbacks
Delphine Clara Zemp1,2,w, Carl-Friedrich Schleussner2,3, Henrique M. J. Barbosa4, Marina Hirota5,6,

Vincent Montade7, Gilvan Sampaio8, Arie Staal9, Lan Wang-Erlandsson10,11 & Anja Rammig2,12

Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify

regional droughts. The consequences of this vegetation–atmosphere feedback for the stability

of the Amazon forest are still unclear. Here we show that the risk of self-amplified Amazon

forest loss increases nonlinearly with dry-season intensification. We apply a novel complex-

network approach, in which Amazon forest patches are linked by observation-based

atmospheric water fluxes. Our results suggest that the risk of self-amplified forest loss is

reduced with increasing heterogeneity in the response of forest patches to reduced rainfall.

Under dry-season Amazonian rainfall reductions, comparable to Last Glacial Maximum

conditions, additional forest loss due to self-amplified effects occurs in 10–13% of the

Amazon basin. Although our findings do not indicate that the projected rainfall changes for

the end of the twenty-first century will lead to complete Amazon dieback, they suggest that

frequent extreme drought events have the potential to destabilize large parts of the Amazon

forest.
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T
he Amazon forest has been listed as one of the tipping
elements of the Earth system1. Large-scale vegetation shifts
resulting from reduced rainfall probably occurred in glacial

times2,3 and might occur under twenty-first century climate
change in combination with increasing deforestation, logging and
fire4–8. It is an open question whether these stressors can trigger
self-amplified forest loss in the Amazon basin9,10. Self-amplified
forest loss may happen due to the strong coupling of vegetation
and regional climate (Fig. 1). On the one hand, the vegetation
state depends on the rainfall regime6,11. With decreasing
precipitation, forest resilience (defined here as the ability of the
forest to recover from perturbations12) decreases12,13 and the
forest might shift to an alternative low tree-cover (TC)
state11,14,15 as a result of perturbations such as fire and extreme
drought events8. On the other hand, forest loss amplifies
drought16,17 by reducing dry-season evapotranspiration
rates18–20 and thereby weakening atmospheric moisture
recycling, which is estimated to amount to 25–50% of total
Amazonian rainfall21–23. As a consequence, a decrease in oceanic
moisture inflow could trigger vegetation–atmosphere feedbacks
and lead to self-amplified forest loss.

Intensification of the Amazonian hydrological cycle has been
observed in the last decades, with the wet season getting wetter
and the dry season getting drier in southern and eastern
Amazonia24–26. This is partly explained by a reduction in
oceanic moisture inflow caused by a sea-surface-temperature-
induced northward displacement of the intertropical convergence
zone24,25. Whether these anomalies will persist in the future is
uncertain and climate model predictions in Amazonia vary from
strong drying to modest wetting27. However, recent projections
constrained with observations show a widespread drying during
the extended dry season (June–November)27. Furthermore, while
the spatial variability of precipitation during the Last Glacial

Maximum (LGM, around 21,000 yr BP) was roughly similar to
the present conditions, rainfall may have been lower over large
parts of the Amazon basin28–30 due to reduced dry-season
oceanic moisture inflow induced by lower evaporation from the
cooler sea surface31.

Despite progress in recent years, the complex and nonlinear
vegetation–rainfall interactions that may cause self-amplified
Amazon forest loss are still poorly represented in process-based
vegetation–climate models32,33. Here we provide a new
perspective on the stability of the Amazon vegetation–rainfall
system and the potential of self-amplified Amazon forest loss by
applying a complex-network approach. Such an inter-disciplinary
approach is powerful for analysing cascading effects and has been
applied to study, for example, contagion in financial systems34,
the spread of innovations in society35, catastrophic species
extinctions36, cascading failure in power grids37 or the collapse
of marine ecosystems38. Recently, complex networks representing
statistical similarities in climatic fields were used to improve
forecasts of Indian monsoon timing39, extreme floods in the
central Andes40 and El Niño events41. Here, we use the
reconstruction of moisture recycling networks23 obtained from
atmospheric moisture tracking22,42 of synthesis climate data (see
Methods). In these networks, nodes represent individual
vegetation grid cells within the Amazon basin that are linked
by monthly water fluxes from the source (evapotranspiration) to
the sink (rainfall). Thus, rainfall in each node has an oceanic and
a continental component22. The ability of such networks to
represent real moisture recycling processes has been shown in a
previous detailed analysis of networks’ topology23. Combining
moisture recycling networks23 and an empirical indicator of
forest resilience11 in a unified cascade model35 allows us to
evaluate the strength and extent of vegetation–atmosphere
feedbacks in a spatially explicit way while relying on observations.
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Figure 1 | Schematic representation of cascading effects in the vegetation–rainfall system. (a) Vegetation–atmosphere system in equilibrium. (b) Initial

forest loss triggered by decreasing oceanic moisture inflow. This reduces local evapotranspiration and the resulting downwind moisture transport. (c) As a

result, the rainfall regime is altered in another location, leading to further forest loss and reduced moisture transport.
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Results
Forest shifts. For each node, the rainfall regime is characterized
by mean annual precipitation (MAP) and maximum cumulative
water deficit (MCWD), a measure of the intensity of the dry
season43. MAP and MCWD are well-suited climatic variables
to explain the variability of vegetation distribution in the
tropics6. Under a range of these variables, two TC states can
be found (Supplementary Fig. 1): (1) an intermediate TC state
(5rTCo55%), comprising deciduous forest, shrubs and
herbaceous and (2) a high TC state (TCZ55%) corresponding
to evergreen forest (hereafter simply called forest) (Fig. 2a). The
probability of forest for different rainfall regimes is derived from
satellite data (see Methods). This probability is used as an
indicator of forest resilience11 (Fig. 3a). Figure 2b shows that
forest resilience decreases with reduced MCWD and MAP. In our
interpretation, a forest with lower resilience is more likely to shift
to a lower TC state in response to perturbations such as extreme
drought and fire. In our modelling approach, forest nodes can
shift stochastically based on thresholds in resilience (see
Methods).

Evapotranspiration and rainfall changes after forest loss.
Changes in evapotranspiration are evaluated using a statistical
model based on multiple synthesis hydro-climate data (see
Methods). The model accounts for the most important factors
controlling monthly evapotranspiration in the Amazon basin as
identified by flux tower measurements19: atmospheric demand
(monthly potential evapotranspiration) and access of subsurface
water during seasonal drought (carry-over factor). A complete
Amazon deforestation experiment allows us to compare our
estimations with existing studies. The spatio-temporal variability
of evapotranspiration changes (Fig. 3b, see also Supplementary
Figs 2 and 3) is in line with simulations from a recent mesoscale
land-surface model17 and measurements from flux towers20. Our
estimates of mean annual evapotranspiration change for complete
Amazon forest loss (� 108 mm per year, see Supplementary
Table 1) is at the lower end of estimates from multiple recent
climate models (� 110 to � 510 mm per year, median � 219 mm
per year)44. Likewise, our estimates of MAP change over the
Amazon basin (� 32 mm per year) are much lower than
the values from regional (70–475 mm per year)44 and global
(140–640 mm per year, mean 324 mm per year)45 climate models.
However, the upper-uncertainty 95th percentile bound of our
estimate (� 274 mm per year, � 13%) corresponds much closer
to the mean rainfall changes simulated by multiple climate

models (� 324 mm per year, � 12%)45,46. Based on this
knowledge, our upper uncertainty bound can be considered as
a realistic estimate. This result is consistent across all data sets
used in this study (Supplementary Table 1).

Self-amplified forest loss under dry-season intensification.
We simulate cascading effects in the vegetation–rainfall system
(see Methods and Supplementary Fig. 4) triggered by gradual
reduction of the contribution of oceanic moisture inflow to total
precipitation during the extended dry season (June-November,
Fig. 3c). Self-amplified forest loss increases nonlinearly with
decreasing oceanic moisture inflow (gray shadings in Fig. 4a).
This results from (1) a nonlinear decrease of forest resilience
(Fig. 4b), (2) a stronger reduction of evapotranspiration after
forest loss (Fig. 4c) and (3) an increased contribution of moisture
recycling to total rainfall (Fig. 4b) under reduced dry-season
oceanic moisture inflow. These findings are robust for different
evapotranspiration input data sets and models (Supplementary
Fig. 5), as well as cascade model settings (Supplementary Fig. 6).

While initial forest loss induced by reduced oceanic moisture
inflow is sensitive to the underlying resilience thresholds, the
additional forest loss attributed to vegetation–atmosphere feed-
backs is more robust (Supplementary Fig. 6). Under a breakdown
of oceanic moisture inflow during the extended dry season, this
additional forest loss amounts to between 11–19% of the Amazon
basin, depending on the thresholds. Among all the underlying
processes represented, the largest uncertainties arise from the
estimated changes in evapotranspiration (Fig. 4c). Considering
these uncertainties, the additional forest loss attributed to
vegetation–atmosphere feedbacks could amount up to 25–38%
of the Amazon basin, depending on the thresholds (light gray
shadings in Fig. 4a and Supplementary Fig. 6).

LGM and twenty-first century. Climate simulations of the
LGM31 indicate that oceanic moisture inflow during that time
was reduced at the end of the dry season, resulting in a mean
Amazonian rainfall decrease of 50% during the extended dry
season (see Methods). Estimated change in vegetation cover
(Fig. 5a) results from a large-scale shift of forests in the southern
and eastern part of the Amazon basin (Fig. 5b). Oceanic moisture
inflow reduction leads to initial forest shifts in the south-eastern
part of the Amazon basin (light blue regions in Fig. 5c), triggering
self-amplifying forest loss in regions located further south and
west (red regions in Fig. 5c). Similar patterns are found using
different resilience thresholds (Supplementary Figs 7 and 8).
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Figure 2 | Probability of finding forest in tropical South America depending on rainfall regime. (a) Frequency distribution of tree-cover (TC) data

(MOD44B v5 for the period 2001–2010) and associated land-cover types (from GLC2000 classification). (b) Probability of finding forest (TCZ55%) as a

function of mean annual precipitation (MAP) and maximum cumulative water deficit (MCWD) calculated from a logistic regression model (equations

4 and 5) using monthly rainfall data (TRMM 3B42 for the period 2000–2012).
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Additional forest loss due to self-amplified effects for the LGM
occurs in 10–13% of the Amazon basin and up to 18–23% when
uncertainties in evapotranspiration estimates are considered
(Supplementary Table 2).

A severe, stylized rainfall change scenario for the end of the
twenty-first century following recent statistical projections27, for
which Amazonian rainfall reduction during the extended dry
season is reduced by 40% induced by oceanic moisture inflow
decrease, can lead to similar dynamics (Fig. 5c). Depending on
the resilience thresholds, forest loss due to self-amplified effects
occurs in 1–7% of the Amazon basin or up to 14% when
uncertainties in evapotranspiration estimates are taken into
account (Supplementary Table 2).

Effect of heterogeneity. Given the risk of self-amplified forest
loss, understanding the specific properties and mechanisms that

stabilize the system is of key interest. Previous modelling studies
indicated the importance of spatial heterogeneity for the stability
of ecosystems47–49 and complex networks in general35. Here we
assess the effect of heterogeneity in the response of forest nodes to
changing climatic conditions on the stability of the Amazon
vegetation–rainfall system. Theoretically, while a completely
homogeneous forest would shift completely if it crosses a
uniquely defined critical rainfall regime, heterogeneity in the
forest response would result in forest nodes shifting at different
critical rainfall regimes. Such heterogeneity may arise, for
instance, from spatial variability in forest adaptability to
drought, in land surface properties controlling water availability
for trees and in disturbances to the forest. To evaluate the
importance of such heterogeneity, we investigate the effect of the
width of the bell-shaped resilience threshold distribution on
cascade size (see Methods) under complete breakdown of dry-
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estimated evapotranspiration change after forest loss are shown (dashed lines). For comparison, the maximum possible forest loss for a complete failure of

moisture recycling is also shown (orange line). (b) Mean Amazon forest resilience (green line, left axis) and mean fraction of oceanic moisture that
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lines), no error bars can be displayed for the latter but uncertainties associated with input data are shown in Supplementary Fig. 5a. (c) Mean

evapotranspiration change (DE) after complete Amazon forest loss, calculated using the model version ‘veg-P’. The upper bound of the 95% CI of

evapotranspiration reduction is shown (dashed black line).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14681

4 NATURE COMMUNICATIONS | 8:14681 | DOI: 10.1038/ncomms14681 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


season oceanic moisture inflow. Figure 6 shows that larger
heterogeneity in forest resilience thresholds reduces the frequency
of high-order cascades by more than 50%, regardless of the model
settings (Supplementary Fig. 9). In other words, if individual
forest nodes shift at different critical rainfall regimes, propagation
of forest loss is usually stopped in the early stage of the cascade.
Hence, variability in the Amazon forest’s sensitivity to altered
rainfall regime seems to alleviate the risk of long-term self-
amplified forest loss.

Sensitivity to evapotranspiration model and data. Effects of
forest loss and rainfall change on evapotranspiration are typically
sensitive to the underlying model and input data50,51. To assess
the sensitivity of our results, we performed additional analyses
using a generalized linear model (equation (17) and for different
input evapotranspiration data (satellite observations and/or

measurements, simulations from land-surface models, output
from atmospheric reanalyses and the merged synthesis of all these
three categories52). We find that these choices do not affect our
results. Firstly, the spatio-temporal variability of simulated
evapotranspiration changes after forest loss is consistent for all
input data sets and for the two statistical models considered
(Supplementary Figs 2 and 3). Secondly, similar dynamics are
found regarding the effect of decreasing oceanic moisture inflow
on simulated changes of evapotranspiration after forest loss
(Supplementary Fig. 5c,d). This gives us confidence that our main
findings are robust with respect to different choices of
evapotranspiration model and input data. However, the
absolute changes might vary depending on the
evapotranspiration data. The results shown in the main part of
the manuscript are therefore based on the merged synthesis
evapotranspiration data set.

Discussion
Our results highlight the key role of regional dynamic vegetation–
atmosphere interactions in the Amazon basin, which are not
considered in most previous modelling studies assessing the
likelihood of Amazon forest dieback for the future5,6,53,54 or for
the LGM3,55. As it does not resolve the underlying processes of
forest dieback, our method is not suited to provide information
on the ‘real-world’ time scale of self-amplified forest loss. Our
study should be seen as a sensitivity analysis rather than a
projection of the system dynamics, as it omits some key feedbacks
important for regulating forest cover. In particular, wind fields are
considered to be static, which is a possible drawback of our
approach as forest loss is expected to alter atmospheric
circulation patterns. However, this effect might be relatively
weak over the Amazon compared to changes in the amount of
water transported17. We do not account for the effects of
changing temperature and atmospheric CO2 concentrations on
the hydrological cycle and on forest resilience, the latter
remaining highly uncertain6,53,54.
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Our results for the LGM show a self-amplified expansion of the
intermediate TC state (encompassing savannas and/or deciduous
forests) at the expense of the high TC state (evergreen forests).
Although we do not account for all processes of vegetation
dynamics, this finding is in line with recent observations of
Amazonian speleothem records indicating a reduced moisture
recycling during this period29,30. This gives us confidence that
vegetation–atmosphere interactions, as represented in our
modelling approach, probably play a major role in explaining
Amazonian precipitation and vegetation changes. Furthermore,
our results suggest that self-amplified forest loss triggered by
oceanic moisture inflow reductions similar to LGM conditions
did not affect the western Amazonia. A more resilient forest area
related to more climatically stable conditions in this region, which
is also suggested by paleoenvironmental records3,29,30,56, might
have been crucial in the biogeographic history of one of the
world’s most species-rich terrestrial ecosystems.

For the end of the century, in agreement with previous
studies53,54,57, we find that projected rainfall reduction does not
lead to complete dieback of the Amazon forest. However, if
extreme drought events become more frequent or intense in the
future, as suggested by some studies based on current trends25

and climate projections51,58, these may push the system towards
large-scale self-amplified forest loss in a step-wise process without
similarly drastic changes in the long-term mean rainfall regime.
Indeed, the main mechanisms responsible for large-scale self-
amplifying forest loss identified in our study might occur during
such extreme drought events. Firstly, we found that the reduction
of evapotranspiration after forest loss is more pronounced with
increasing water deficit, consistent with measurements from flux
towers20. This is due to the fact that, compared to forest,
vegetation states with lower TC are less able to access subsurface
water and thereby to maintain high evapotranspiration rates
during drought18–20. Secondly, we find that the contribution of
moisture recycling to total rainfall increases with reduced oceanic
moisture inflow, consistent with paleoprecipitation records29.
These two effects have probably already occurred during recent
drought years17. Further efforts are needed to assess the effect of
inter-annual rainfall variability on the stability of the Amazon
vegetation–rainfall system and potential time lags in the response
of the coupled system.

By fully coupling vegetation and rainfall, our study goes
beyond previous efforts combining moisture-tracking algorithms
with statistical16 or mechanistic17 climate models. Existing
coupled models still poorly represent nonlinear regional
interactions between biosphere and atmosphere, as shown by
large discrepancies in predictions depending on model structure
and settings9,59. Misrepresented key processes include (1)
access of subsurface water by tropical trees, leading to an
underestimation of the reduction of evapotranspiration after
forest loss (by around 1 mm per day)55,60, (2) moisture recycling,
leading to biases in moisture fluxes61 and (3) forest responses to
drought5–7. In our statistical model, all abovementioned processes
are included by applying vegetation and hydro-climate data,
which are either observation-based or merged from multiple data
sets. Our findings are robust against choices of evapotranspiration
model and data, to which insights about the hydrological cycle are
usually sensitive50,51.

This work adds to previous studies that suggested the
importance of heterogeneity for ecosystems’ stability32,33,47,62,63

and the Amazon forests in particular48,49. However, none
of these studies considered spatial interactions among
vegetation patches32,33,48,49,62 or interactions were represented
non-realistically47,63. Our results illustrate the importance of
maintaining the structural and functional diversity of Amazon
forests to reduce the risk of long-term self-amplified forest

loss. This should be incorporated into future conservation
management strategies and calls for cross-regional and -
national approaches.

Methods
Hydro-climate data. The input data for the construction of moisture recycling
networks and calibration of the evapotranspiration model cover the time period
1989–2005 for tropical South America (between 14.25� North and 23.5� South).
The precipitation data are an average of four observation-based data sets: Climate
Research Unit (CRU), the Global Precipitation Climatology Centre (GPCC), the
Global Precipitation Climatology Project (GPCP) and the unified Climate Pre-
diction Center (CPC) from the National Oceanic and Atmospheric Administration.
A description of the precipitation data sets is provided in Appendix A in ref. 52.
The potential evapotranspiration data are based on the Penman–Monteith equa-
tion which is forced by temperature, humidity and wind speed from reanalysis data
corrected to remove biases at various time scales by merging with observation-
based data50,64. The evapotranspiration data sets are taken from LandFlux-EVAL
and are merged synthesis products from different categories: derived from satellite
observations and/or measurements (‘diagnostic’), simulations from land-surface
models and output from atmospheric reanalyses. In the preparation of the merged
LandFlux-EVAL data, the long-term evapotranspiration by the energy balance was
constrained (latent heat flux cannot exceed net surface radiation) but not by the
available water (mean annual evapotranspiration can exceed precipitation).
Evapotranspiration, precipitation and potential evapotranspiration data sets are
available at monthly time scale and for a 1� longitude and latitude grid.
Consistencies between these data sets are shown by Budyko curves (Supplementary
Fig. 10). Wind fields and specific humidity data are taken from the six-hourly
ERA-Interim reanalysis product65.

Data for forest resilience. Calculation of forest resilience is based on TC data
from the Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation
Continuous Fields MOD44B v5 (ref. 66) averaged for the period 2001–2010. The
land-cover map is taken from the Global Land Cover 2000 (GLC 2000) Database67.
To account only for natural distribution of the vegetation, human-modified
landscapes and water bodies (GLC2000 classes 16–18 and 20–23) have been
excluded from the analysis. TC and land-cover data are available at 1 km resolution
of longitude and latitude, and have been sampled at the centroid of each
precipitation grid cell.

For visualization of current forest resilience in the MAP-MCWD space (Fig. 2),
precipitation data are derived from the Tropical Rainfall Measuring Mission
(TRMM) 3B-42 v7 (ref. 68) for the years 2000–2012. These data have the advantage
of their high spatial resolution (0.25� grid) and their ability to represent temporal
and spatial variability over tropical South America69–71. For calibration of the
logistic regression model to simulate self-amplified forest loss, precipitation data
are derived from CRU, which have lower spatial resolution (0.5� grid) but longer
duration (1961–2012).

Vegetation–cover data for the evapotranspiration model. Vegetation cover for
the evapotranspiration model calibration is based on MOD44B v5 (ref. 66) TC data
for the year 2001. To fit with the grid of the LandFlux-EVAL product, TC data have
been upscaled to 1� resolution using the most frequent value. The Andes
mountains were excluded from the analysis as evapotranspiration in this region is
mainly determined by temperature rather than by rainfall. Artificial landscapes
were not excluded. To exclude the Andes from the analysis, we use a natural-
vegetation-cover map at 1� resolution that is based on a consensus of two global
natural-vegetation-cover maps widely used in climate studies, as well as several
regional maps from different sources72. The classes that represent the Andes region
and that were excluded from the analysis are ‘desert’, ‘semi-desert’, ‘tundra’ and
‘grasslands’.

Vegetation-cover data for initial conditions in the cascade model. The initial
vegetation cover for the cascade model is based on two different data sets,
depending on whether grid cells are within the Amazon basin (area of interest)
or outside the Amazon basin (boundary conditions). Within the Amazon basin,
initial vegetation cover is derived from satellite monitoring of the vegetation73

for the year 2003. This data set distinguishes between forest (here set as ‘high
TC state’), non-forest (here set as ‘intermediate TC state’) and deforested area
(here set as ‘treeless state’). The initial vegetation cover outside the Amazon basin is
based on MOD44B v5 (ref. 66) TC data for the year 2001. To fit with the grid of
moisture recycling networks, both vegetation data sets were upscaled to 1.5�
resolution by selecting the most frequent value found in the original data.

Vegetation classification from TC data. Following previous studies11,14, TC data
were used to classify treeless (5%oTC), intermediate TC state (5%rTCo55%)
and high TC state (TCZ55%) states. As the spatial distribution of the two former
states might differ depending on the spatial resolution considered (Supplementary
Fig. 11), we do not distinguish between these two states in step 4 of our cascade
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model. Rather, shifts occur between high TC and lower TC states (TCo55%). To
estimate the effect of the shifts on evapotranspiration, we use parameters estimated
for the treeless model (Supplementary Table 4).

Moisture recycling networks. Following a previous study23, moisture recycling
networks were built with the atmospheric moisture-tracking model WAM-2layers
V2.3.01 (refs 22,42). As requested by WAM-2layers settings, all data have been
spatially interpolated to a 1.5� grid using the nearest-neighbour algorithm. The
temporal resolution of WAM-2layers is 3 h, to which monthly evapotranspiration
and precipitation data have been downscaled using the temporal dynamics of ERA-
Interim products. The output of WAM-2layers is averaged to monthly moisture
transport between grid cells. Hence, in the networks, for each pair of grid cells (or
nodes) j and k and for a given month, the weight of the arrow originating from
j and pointing towards k (mj,k) is the monthly amount of water that comes from
evapotranspiration in j and falls as rain over k.

For each grid cell k and for each month, the sum of all incoming arrows
(
P

j(mj,k)) is the amount of precipitation over k that originates from the continent.
Hence, 1�

P
j(mj,k)/Pk, with Pk being the total monthly precipitation in k, is the

fraction of total precipitation that last evaporated from the ocean (Fig. 3a). Note
that it corresponds to 1�r, with r being the continental precipitation recycling
ratio22.

(Maximum) climatological water deficit. The MCWD is the most negative value
of the climatological water deficit (C). For each grid cell k and for each month t
(ref. 6):

Ck;t ¼ Ck;t� 1 þ Pk;t � Efix; ð1Þ

max Ck;t
� �

¼ 0; ð2Þ

Ck;0 ¼ Ck;12; ð3Þ

with Pk,t being the precipitation in month t and grid cell k. The MCWD is an indicator
of ‘meteorologically induced’ water stress43 and therefore evapotranspiration is fixed
(Efix¼ 3.3 mm per day). Efix is an approximation of evapotranspiration rate under
favourable climatic conditions, which we found to be reached both in high and lower
TC regions.

Forest resilience. We calculate the resilience of the vegetation based on ref. 11, but
including MCWD in the calculation as well instead of MAP only. MCWD was
calculated on monthly rainfall data averaged for the entire period (rather than for
each year individually) following a previous study6.

The binomial distribution of forest (TCZ55%) was fitted to a logistic regression
model using the Matlab function ‘glmfit’:

f ðzÞ ¼ 1
1þ expð� zÞ ð4Þ

z ¼ b0 þ b1xþ b3y ð5Þ

with x corresponding to MAP and y to MCWD. For statistical stability, data points
with extreme hydro-climatic values (y¼ 0 and yo800 mm) were excluded from the
analysis. Estimates of the parameters are shown in Supplementary Table 5.

Potential landscapes. We estimated under which conditions high and inter-
mediate TC are alternative stable states by performing potential analysis74 on the
TC data set following an existing method11. We computed stability landscapes of
TC by determining how the probability density of TC changes with MAP (0 to
2,500 mm per year in steps of 25 mm per year) and MCWD (� 800 to 0 mm per
year in steps of 80 mm per year). At each step of the climatic variable (MAP or
MCWD), TC values were weighted by applying a Gaussian kernel on the climatic
variable with a standard deviation of 5% of the total range considered.
Subsequently, the probability density of TC was estimated using the Kernel
smoothing function in Matlab (ksdensity) with a bandwidth according to
Silverman’s rule of thumb. Maxima (minima) in these probability densities are
considered to be stable (unstable) states, whereby local fluctuations in the densities
were filtered out11. Forest is bistable under climatic conditions below the highest
values of MAP and MCWD at which a stable intermediate TC state is inferred
(respectively 2,000 and � 88 mm per year) (Supplementary Fig. 1).

Simple evapotranspiration model on a monthly time scale. To estimate changes
in local evapotranspiration with changing rainfall or vegetation state, we use a
nonlinear regression adapted from a simple evapotranspiration model on a
monthly scale, hereafter called ‘Gerrits’ model’75. Evapotranspiration (E) includes
evaporation of intercepted water by the surfaces (canopy, understory, forest floor
and the top layer of the soil) (Ei) and transpiration by the vegetation (Et), while
evaporation from deeper soil and open water are neglected. In Gerrits’ model,
monthly transpiration is modelled as a simple threshold process that is a function

of monthly precipitation P:

Et ¼ min AþBt P�Eið Þ;Dtð Þ ð6Þ
where A is a carry-over factor that represents the transpiration rate at P¼ 0 and
relates to the access of the vegetation to subsurface water during seasonal drought.
It depends on vegetation-rooting depth and soil moisture. Bt is the slope between
effective rainfall (rainfall minus interception evaporation) and transpiration.
This slope can be estimated as Bt¼ 1�o�o(exp(�o)) with o¼ Sb/Dt where Sb

is the soil moisture below which transpiration is constrained. Dt is the monthly
potential transpiration (that is, the atmospheric demand for evaporation once the
interception process has first absorbed its part of the available energy). In Gerrits’
model, monthly evaporation from interception is modelled as:

Ei ¼ P 1� exp �Bi=Pð Þð Þ ð7Þ
where Bi is the potential amount of monthly interception (in terms of storage
capacity). The authors75 also provide numerical derivation of the processes that
takes into account the distribution of the expected number of rain days per month.
For simplicity, we only use the analytical derivation.

Here, we assume that limits of Ei and Et can be combined to derive the overall
limiting factors of E. Because there is no interception with no rainfall, E is limited
at P¼ 0 by A. In addition, the upper limit of E is the potential evapotranspiration
Ep. We can thus model E as:

E ¼ Ei þEt ð8Þ

E ¼ Ei þmin AþBt P�Eið Þ;Dtð Þ ð9Þ

E¼ min AþEi þBt P�Eið Þ;Ep
� �

ð10Þ

E¼ min AþP 1� exp �Bi=Pð Þð ÞþBt P�P 1� exp �Bi=Pð Þð Þð Þ;Ep
� �

ð11Þ

E¼ min AþP 1� exp �Bi=Pð ÞþBt 1� 1� exp �Bi=Pð Þð Þð Þð Þ;Ep
� �

ð12Þ

E¼ min AþP 1� exp �Bi=Pð ÞþBt exp �Bi=Pð Þð Þð Þ;Ep
� �

ð13Þ

E¼ min AþP 1� exp �Bi=Pð Þ 1�Btð Þð Þ;Ep
� �

: ð14Þ
To account for depletion of subsurface water, here we consider that A is a

variable that is modelled as a linear function of the climatological water deficit
(C, see equations 1–3). Here, C is estimated individually for each year (rather than
on the average for the entire period). We call p1¼ 1/(1�Bt) and p2¼Bi. Our
evapotranspiration model becomes:

E ¼ min Aþ P
p1

1� exp � p2

P

� �� �
;Ep

� �
ð15Þ

A ¼ � p3Cþ p4 ð16Þ
with p1, p2, p3, p4 parameters. While these parameters depend typically on land-
surface properties (soil and vegetation) and daily rainfall characteristics75, for
simplicity we consider here only the vegetation control. These parameters are
estimated for each vegetation state (high TC, intermediate TC, treeless) using
iterative least-squares estimation based on the function ‘nlinfit’ in Matlab with
initial values set to 1.

The estimated parameters and the corresponding standard errors for each
category of evapotranspiration input data set are shown in Supplementary Table 4.
To account for uncertainties associated with the parameters, we perform
simulations for which evapotranspiration rates in high and low TC states nodes are
replaced by the 95% upper bound and 5% lower bound of the estimates,
respectively.

Generalized linear model. To assess the sensitivity of our results to the choice of
evapotranspiration model, we performed additional analyses using a generalized
linear model:

E ¼ p5Pþ p6P2 þ p7Cþ p8Cþ p9; ð17Þ
in which p5, p6, p7, p8, p9 are parameters. Using a generalized linear mixed-effects
model would be more appropriate due to dependency of the observations (spatio-
temporal data). However, the use of a generalized linear model already reproduces
sufficiently well the results based on our evapotranspiration model (equations 15
and 16).

Cascade model. Our approach has been largely inspired by the ‘Watts model’35,
which simulates cascades that are found in social systems, such as the spread of
innovations. Typically, individuals must decide between two alternative actions and
their decisions depend explicitly on the actions of other individuals with whom
they interact. The Watts model is based on a random network, in which each node
might shift between alternative states depending on the states of their neighbours
according to a simple threshold rule. Here, our model is based on moisture
recycling networks and the threshold rule is related to local forest resilience
that depends on the total incoming moisture. Initially, each node is assigned a
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resilience threshold drawn from a normal distribution with mean f and standard
deviation s.

A simulation run comprises the following steps (Supplementary Fig. 4). First,
moisture of oceanic and continental origin propagates through the network using
moisture recycling networks and the simple evapotranspiration model
(equation 16). This occurs on a monthly time scale, where the strongest effects of
varying vegetation states on evapotranspiration can be observed, as shown by flux
tower measurements18–20. In this step, it is assumed that with the moisture
recycling link between two nodes, mj,k (from j to k) changes linearly with total
evapotranspiration in the source node (in j). This implies that atmospheric
circulation following vegetation shifts are not considered and that rainfall is
assumed to be linearly correlated to atmospheric moisture. Second, the rainfall
regime characterized by the MAP and the MCWD are calculated for each node.
Third, the forest resilience is calculated for each node (equation 5). Fourth, a
critical transition occurs in all nodes for which the forest resilience crosses the
individual threshold, without any time lag. Fifth, local evapotranspiration is
updated in nodes where shifts occur. The model runs with nodes updating their
status until equilibrium in vegetation cover is reached.

The resilience thresholds are fixed for the duration of the simulation and
potential spatial correlations are not considered. Results are shown for 1,000
random realizations of the initial condition. In the main text, it is assumed that
f¼ 0.5, which best reproduces vegetation cover under current rainfall conditions
(Supplementary Fig. 12), and s¼ 0.05, which limits the occurrence of shifts
(Supplementary Fig. 13) to the zone where high TC and intermediate TC states can
both exist (Supplementary Fig. 1). Results for other plausible values of f, ranging
from 0.4 to 0.6, are shown in Supplementary Figs 6–8.

We use different model settings: a fully coupled vegetation–rainfall system
(‘P2veg’), a one-way coupled system in which changes in vegetation states do not
affect precipitation (‘P-veg’) and a one-way coupled system in which changes in
precipitation do not affect vegetation states (‘veg-P’) (Supplementary Fig. 4).
Several metrics are of interest: first, the difference between forest loss in P2veg
and P-veg, which quantifies the additional forest loss due to self-amplified effects;
second, the relative difference between the shifting frequency in P2veg and
P-veg, which quantifies the share of cascading effect in forest loss (‘share of
cascading effect’); third, the number of model iterations until equilibrium (‘cascade
size’) in the fully coupled version (P2veg). The cascade size can be interpreted as
a time span of the cascade, but only on a relative scale (for comparison between
high- and low-order cascades). We note that only nodes in which the shifting
frequency exceeds 3% are accounted for.

Experiments of dry-season oceanic moisture inflow reduction. We present two
different set-ups to study the effects of decreasing monthly oceanic moisture inflow
during the extended dry season (June–November) with the period 1989–2005 as
baseline. In a first setup, oceanic moisture inflow is homogeneously decreased by
2 mm per day increments until this inflow ceases completely in most of the
Amazon basin (up to 8 mm per day reduction for each month of the extended dry
season).

In a second setup, two stylized scenarios (end of twenty-first century and LGM)
are generated based on long-term precipitation change estimations for the
extended dry season in the Amazon basin drawn from previous studies27,31. The
first scenario (end of twenty-first century) follows the upper bound of projected
precipitation reduction for the end of the twenty-first century (2060–2099) based
on a combination of observation-based data and the ensemble mean of CMIP5
climate models27. In this scenario, monthly oceanic moisture inflow is reduced
homogeneously by [0.8, 1.0, 1.1, 1.3, 1.0, 0.8] mm per day (in June-November). If
the resulting amount of oceanic moisture inflow becomes negative, it is set to zero.
Averaged over the Amazon basin during the extended dry season, it corresponds to
an oceanic moisture inflow reduction of 57% and a total rainfall reduction of 38%
(calculated from step 1 of the cascade model).

The second scenario (LGM) follows a reconstruction of Amazonian rainfall
during the LGM from a regional climate model, in which the effect of vegetation on
climate has been turned off (Fig. 13b in Cook et al.31). Here, monthly oceanic
moisture inflow is reduced by [0, 1, 2, 6, 10, 6] mm per day (June–November).
Averaged over the Amazon basin during the extended dry season, it corresponds to
an oceanic moisture inflow reduction of 76% and a total rainfall reduction of 52%
(calculated from step 1 of the cascade model). The ability of this scenario to
represent accurately LGM rainfall conditions depends on the quality of the sea-
surface temperature reconstruction used as forcing data, as well as on the climate
model parameterization. The latter was optimized to reproduce South American
climate under present conditions sufficiently well31. Furthermore, the total rainfall
reduction is in agreement with recent observation-based paleoprecipitation
reconstructions30. Supplementary Table 3 summarizes the different model settings,
scenarios and initial conditions used to produce the figures.

Data availability. The data can be downloaded from http://www.un-spider.org/
links-and-resources/data-sources/land-cover-map-glc2000-jrc (GLC2000 land-
cover map), https://data.iac.ethz.ch/landflux/ (LandFlux-EVAL evapotranspira-
tion), http://hydrology.princeton.edu/data.pdsi.php (Potential evapotranspiration),
ftp://ftp.glcf.umd.edu/glcf/Global_VCF/Collection_5/ (MOD44B v5 TC), http://
www.csr.ufmg.br/simamazonia/ (Amazonian vegetation classification for 2003)

http://mirador.gsfc.nasa.gov/cgi-bin/mirador/presentNavigation.pl?tree=project
data set¼TRMM_3B42_daily.007 project¼TRMM dataGroup¼Gridded
version¼ 007 (TRMM 3B-42 v7 precipitation). The precipitation data from CRU,
GPCC, GPCP and CPC can be downloaded using links given in a previous study
(ref. 75) and the merged synthesis product has been obtained from the author of
that study (B.M.) upon request. The natural-vegetation-cover classification is
accessible from Instituto Nacional de Pesquisas Espaciais (INPE)—Centro de
Previso de Tempo e Estudos Climticos (CPTEC). The moisture recycling networks
and the computer code of the models developed in this study are available from the
corresponding author D.C.Z., upon reasonable request. A basic version of the WAM-
2layers model is available through the link https://github.com/ruudvdent/
WAM2layersPython.
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