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Abstract

Clustering is rapidly becoming a powerful data mining technique, and has been broadly applied to

many domains such as bioinformatics and text mining. However, the existing methods can only

deal with a data matrix of scalars. In this paper, we introduce a hierarchical clustering procedure

that can handle a data matrix of scatter plots. To more accurately reflect the nature of data, we

introduce a dissimilarity statistic based on “data depth” to measure the discrepancy between two

bivariate distributions without oversimplifying the nature of the underlying pattern. We then

combine hypothesis testing with hierarchical clustering to simultaneously cluster the rows and

columns of the data matrix of scatter plots. We also propose novel painting metrics and construct

heat maps to allow visualization of the clusters. We demonstrate the utility and power of our new

clustering method through simulation studies and application to a microbe-host-interaction study.
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Introduction

Clustering is rapidly becoming a powerful data mining technique, and has been broadly

applied to many domains such as bioinformatics [1,2] and text mining [3]. Usually the data

are arranged in a data matrix where each row corresponds to an object and each column to a

variable on which objects are characterized. Each element of this matrix is a real number,

representing the measurement of an object on a specific variable. To avoid confusion, we

call this matrix “the data matrix of scalars”.
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Two one-dimensional clustering methods are commonly used: Hierarchical clustering builds

a hierarchy of clusters based on the dissimilarity measures among objects whose results can

be graphically presented in a tree structure, called dendrogram; Partitioning clustering, such

as k-means, divides the objects into a pre-specified number of clusters in which each object

belongs to the cluster with the nearest mean. One may see [4,5] for a survey.

Co-clustering, also called biclustering, bivariate clustering, or two-mode clustering, is to

simultaneously cluster rows and columns. Unlike the one-dimensional clustering methods

that seek to identify similar rows or columns independently, co-clustering seeks to identify

“blocks” (or “co-clusters”) of rows and columns that show highly inter-related coherence.

For example, in gene expression analysis, co-clustering can be used to solve the dual

problem of identifying a set of genes and conditions simultaneously involved in a metabolic

process, a problem that traditional one-dimensional clustering methods can not handle.

Reference [6–9] showed a detailed review.

However, when each cell of the data matrix is not represented by a single numerical value

and instead contains a scatter plot, all the existing clustering methods are not applicable any

more. One may think of incorporating the current clustering methods by using a single

measure, say Pearson correlation coefficients, to analyze the associations between row

variables and column variables, which then reduces the data matrix of scatter plots to the

data matrix of scalars. But the choice of Pearson correlation coefficients is not always

sufficient since it is only a measure of linear association and it is very sensitive to outliers.

Therefore, distance measures among objects based on such coefficients will hinder the

power of discovering clusters of scatter plots with nonlinear patterns and/or clusters with

outliers.

In this paper we introduce a hierarchical clustering procedure that can handle a data matrix

of scatter plots. In Section 2, to more accurately reflect the nature of data, we introduce a

dissimilarity statistic based on “data depth” to measure the discrepancy between two

bivariate distributions without oversimplifying the nature of the underlying pattern. We then

combine hypothesis testing with hierarchical clustering to simultaneously cluster the rows

and columns of the data matrix of scatter plots. We also propose novel painting metrics and

construct heat maps to allow visualization of the clusters. In Section 3 and 4, we

demonstrate the utility and power of our new clustering method through simulation studies

and application to a microbe-host-interaction study.

Methodology

Clustering procedure

Consider a set of row variables {X1,X2,..,VM} and a set of column variables {Y1,Y2,..,YN}.

For each pair of row and column, a number of observations are taken that can be drawn as a

scatter plot in the Cartesian plane. Our goal is to cluster both rows and columns based on

these M×N scatter plots.

To obtain the distance matrix for performing the hierarchical clustering of rows, we have to

calculate the distance between any two rows. Consider the ith row and the jth row, we would
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like to measure how similar these two rows are to each other based on comparing the

corresponding N pairs of scatter plots. For each column, say the kth column, the pair of

scatter plots can be thought of as the samples taken from two independent bivariate

distributions Fik and Fjk respectively, as shown in (Figure 1) in which each square contains a

scatter plot. As a result, the problem of comparing the pair of scatter plots can be formulated

as testing the following hypotheses:

(1)

Denote by (pvalue)ijk the p-value for testing the above hypotheses. The smaller the p-value,

the less similar the pair of scatter plots to each other. By testing the same kind of hypotheses

for all the N columns, we define the dissimilarity (distance) between the ith row and the jth

row as

(2)

Then the distance matrix for rows {distij} (i, j = 1,2,..,M, and i ≠ j) is inputted to the regular

hierarchical clustering algorithm, which initially regards each row as an individual cluster,

and at each step, merges the closest pair of clusters until all the rows are merged into one

cluster. In doing this, hierarchical clustering creates a hierarchy of row clusters that can be

represented in a tree structure called dendrogram.

The same clustering procedure can be applied to columns as well. Therefore, the rows and

the columns in the original data matrix of scatter plots (Figure 1) are reordered according to

the row dendrogram and the column dendrogram, respectively, which produces a new data

matrix of scatter plots that acts as the output of our proposed clustering procedure.

Hypotheses testing

Liu RY, Singh K [10] proposed a multivariate rank sum test for the hypotheses H0: Fik = Fjk

vs. Ha: Fik≠Fjk where Fik and Fjk are the distribution functions of two independent

populations. Specifically, the test statistic is based on a quality index that measures the

overall “outlyingness” of population Fjk relative to population Fik,

(3)

where D(Fik;·) is an affine-invariant data depth function with respect to Fik that could be

Mahalanobis depth, Tukey (Halfspace) depth, and Simplicial depth, etc. (Refer to Section

6.1 for details)

Given two samples {U⃗
1, ···, U⃗

S} from Fik and {V⃗
1, ···, V⃗

T} from Fjk, Q(Fik,, Fjk) can be

estimated as
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(4)

where  and  are the empirical distributions,  is U⃗
s’s the proportion of with

, and  is the empirical data depth with respect to. From

[10,11], we have

(5)

under H0: Fik = Fjk for many commonly used data depth functions (under general regularity

conditions).

Notice that the overall “outlyingness” of Fik relative to Fjk can be also measured by a quality

index

(6)

where D(Fjk;·) is an affine-invariant data depth function with respect to Fjk. Likewise,

Q(Fjk,, Fik) may be estimated as

where  is the proportion of V⃗
t’s with , and  is

the empirical data depth with respect to .

It can be shown that Q(Fjk, Fik) is not directly related to Q(Fik,, Fik) (Refer to Section 6.2 for

more explanation). However intuitively, we would like to have a unique parameter to

measure the difference between two distributions, either comparing Fik to Fjk, or Fjk to Fik.

Under H0: Fik = Fjk, Q(Fik,, Fik) = Q(Fjk,, Fik) = ½. With the location shift and/or scale

change between Fik and Fjk, either Q(Fik,, Fik) or Q(Fjk,, Fik), or both, would deviate from

1/2 relatively significantly. Therefore, to avoid having one distribution as the reference

distribution, we propose a new quality index, called TS, to measure the overall “difference”

between Fik and Fjk,

(8)

The test statistic for testing H0: Fik = Fjk vs. Ha: Fik≠Fjk is the estimate of TS,
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(9)

Then (pvalue)ijk is calculated by the following permutation test procedure:

1. Pool two samples {U⃗
1, ···;, U⃗

S} and {V⃗
1, ···, V⃗

T}.

2.
Take a sample of size S without replacement { } from the pooled

sample, and the remaining is { }, which are called two permutation

samples.

3. Estimate Q(Fik, Fik) and Q(Fjk, Fik) by  and , respectively,

based on the permutation samples obtained in Step 2.

4. Set  to be equal to  if ;

and equal to  otherwise.

5. Repeat the above steps (Step 2 – Step 4) B times to yield B values of , denoted

by , whose distribution estimates the sampling distribution of the

test statistic  under H0: Fik = Fjk.

6. Let plower be the proportion of ’s with, and pupper the proportion of ’s with. Hence

(pvalue)ijk = 2 × min(plower, pupper).

Data visualization

Data visualization is an important aspect in the clustering technique. In the traditional

hierarchical clustering application, where cells in a data matrix are scalars, the original data

can be rearranged according to the dissimilarity scores between rows (or columns). The

smaller the dissimilarity score between two rows (or columns), the closer the two rows (or

columns). A graphical representation of the rearranged data matrix, called a heat map, can

be created where the cells are color coded based on their scalar values. Obviously, we would

expect cells in close proximity to each other to have a similar color.

However, it is not straightforward to apply the above painting strategy to a data matrix of

scatter plots since scatter plots can not be distinguished from each other only by a single

color painting system. In the following we introduce three painting metrics and demonstrate

how to use these metrics to graphically represent the clusters of scatter plots so that similar

scatter plots share the similar color painting whereas different scatter plots correspond to

different color paintings.

1. Center Deviation Index (CDI): All the M×N scatter plots are pooled as a single

scatter plot that is thought of as a sample from the bivariate distribution Fpool. For

any scatter plot that is a sample from the bivariate distribution, we define its center

as the point that maximizes the empirical data depth for. Then the CDI for a scatter

plot is the distance between its center and the center of the pooled scatter plot. For

example, in (Figure 2a), the length of red segment is the CDI measuring the
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deviation of the scatter plot consisting of blue points from the pooled scatter plot

consisting of black points.

2. Center Deviation Direction Index (CDDI): By taking the center of the pooled

scatter plot as the origin of a new Cartesian coordinate system, the CDDI for a

scatter plot is the magnitude of the angle formed by the vector from the origin to its

center and the positive x-axis, which ranges from −π to π. The CDDI depicts the

relative location of a scatter plot with respect to the pooled scatter plot, and then the

relative locations among the scatter plots. For example, in (Figure 2b), the CDDI

for the blue scatter plot is the degree of the angle formed by two red vectors.

3. Dispersion Index (DI): Consider a scatter plot that is regarded as a sample from

the bivariate distribution G. We move this scatter plot such that its center and the

center of the pooled scatter plot overlap, which produces a shifted scatter plot that

is regarded as a sample from a new bivariate distribution G′. The DI for the

original scatter plot is the estimation of the quality index Q(Fpool, G′), which

accounts for the difference between the original scatter plot and the pooled scatter

plot excluding the effect due to the location shift. For example, in (Figure 2c), the

DI for the blue scatter plot is the estimated quality index of the red scatter plot

(obtained from moving the blue scatter plot) with respect to the pooled scatter plot.

To better understand the utility of the above three painting metrics, we present a

number of painting examples. In each example, an matrix of scatter plots (each

scatter plot contains 100 data points) was generated with the top left 4×4, top right

4×4, bottom left 4×4 and bottom right 4×4 scatter plots following the four different

distributions specified in the left panel of (Figure 3,4,5,6). We then obtained 8×8

matrices of CDI, CDDI and DI, based upon which three heat maps can be easily

generated as shown in the right panel of (Figure 3,4,5,6), where the “red” heat map

is based on CDI, the “blue” heat map on CDDI, the “green” heat map on DI, and

the “black” color stands for the minimum index value in all the three heat maps.

Note that for simplicity, we used Mahalanobis depth in all the examples discussed

here.

Simulation study

To investigate the power of our proposed clustering method, we performed a class of

simulation studies. The basic procedure is as follows:

1. Specify a “checkerboard” data pattern with a set of row clusters and column

clusters in which each block shares the same bivariate distribution within itself;

2. Generate random samples based on the given bivariate distributions, and create a

data matrix of scatter plots;

3. Apply our proposed clustering method to this data matrix of scatter plots, and

check whether the original data pattern can be retrieved or not. That is, we check

whether rows within the same block are still close to each other compared to other

rows in the row dendrogram, and columns as well; or equivalently, whether there
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exists a cutting of row dendrogram such that the generated branch set are exactly

same as the original set of row clusters, and columns as well;

4. Repeat Step 2 – Step 3 a number of times, and record the success rate, the

proportion of times that we succeed in retrieving the original data pattern, which

acts as the power measurement for our proposed clustering method.

Intuitively, the total number of rows and columns (the size of the data matrix of scatter plots,

or the data size), the number of rows and columns within each block (the block size), and the

number of blocks would affect the success rate. Therefore, we considered three data pattern

settings shown in (Figure 7).

For each setting, we specified a class of bivariate normal distributions for blocks, which

only differ in location. Specifically, the x-coordinate of the mean increases equidistantly

along the row direction ranging from 0 with the y -coordinate of the mean remaining same;

whereas the y-coordinate of the mean increases equidistantly along the column direction

ranging from 0 with the x-coordinate of the mean remaining same. For example, with a

location shift of 1, the mean of the top left bivariate normal distribution in “R2C2” and

“2*R2C2” is , the top right ac, the bottom left , and the bottom right .

Furthermore, 50 data points were generated for each scatter plot, Mahalanobis depth was

adopted, 500 resampling times were taken for the permutation test, and the “average”

linkage method was chosen for the hierarchical clustering procedure. We performed 500

simulations for each setting. The relationship between the success rate and the location shift

is summarized in (Figure 8), where the solid lines stand for the variance-covariance matrix

 specified for the bivariate normal distributions, and the dashed lines for 

with the correlation coefficient ρ = 0.5.

From (Figure 8), we may observe the following:

1. By comparing the solid line with the dashed line for each setting, the correlation in

the bivariate normal distribution improves the success rate.

2. By comparing “R2C2” with “2*R2C2” both having a fixed number of blocks, with

a relatively large location shift, the larger the block size, the higher the success rate;

with a relatively small location shift, the smaller the block size, the higher the

success rate. That is, more scatter plots with larger distance between blocks

improves the chance of capturing the pattern. However, more scatter plots with

smaller distance between blocks introduces a higher chance for noise in the

clustering.

3. By comparing “2*R2C2” with “R4C4” both having a fixed data size, the smaller

the number of blocks, the higher the success rate, which means it is harder to do a

more delicate job (more row clusters and column clusters).

4. By comparing “R2C2” with “R4C4” both having a fixed block size, with a

relatively small location shift, the smaller the number of blocks, the higher the
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success rate; with a relatively large location shift, the larger the number of blocks,

the higher the success rate. The reason is similar to what we previously discussed in

the comparison of “R2C2” with “2*R2C2”.

Application

Our new clustering method should have utility for a variety of biological applications, one of

which will be examining host-microbe interactions. For example, consider the case of

inflammatory bowel disease (IBD). IBD is a disease that is likely caused by several factors,

including genetics, lifestyle and intestinal bacteria. To identify putatively important host-

microbe interactions, we recently examined the amounts of bacteria and proteins in mucosal

luminal interface samples from IBD and healthy subjects [12].

Two datasets were generated from the experiment. “Microbe” data were arranged as a data

matrix with 81 rows (3 rows containing missing values are excluded) standing for samples,

15 columns for microbes, and each cell being a single numerical value recording the level of

a microbe in a sample. “Protein” data were also arranged as a data matrix with 81 rows

standing for the same set of samples, 440 columns for proteins, and each cell being a single

numerical value recording the level of a protein in a sample. To identify associations

between levels of the microbes and proteins, we combined the above two data matrices of

scalars by treating each pair of rows (one from “Microbe” data, the other from “Protein”

data) as bivariate data with the y-axis being microbe level and the y-axis being protein level,

which results in a data matrix of scatter plots as shown in (Figure 1) where M=440, N=15,

and each scatter plot contains 81 data points.

Regarding the scatter plots as samples taken from the corresponding independent bivariate

distributions, we applied our proposed clustering method to these 440×15 scatter plots, and

cluster both proteins (rows) and microbes (columns). Specifically, we used Mahalanobis

depth as the data depth measure, B=500 resampling times for the permutation test, and the

“average” linkage method to perform the hierarchical clustering.

We then cut the “Protein” dendrogram at the height of 6, which generates 80 protein

branches/clusters. The proteins within the same branch are more similar to each other, or

show more similar microbe-protein patterns, than those in other branches. From the 80

protein clusters, we only selected those containing at least 20 proteins, which leads to 5

protein clusters. We also generated 4 microbe clusters by cutting the “Microbe” dendrogram

at the height of 430, and selected those containing at least 5 microbes. One pair of the

selected protein cluster and microbe cluster is depicted in (Figure 9), where the heat map

with the DI painting metric is shown. The promise of these results is demonstrated by the

fact that most of the identified proteins have been previously associated with IBD as in [13–

18].

Examining such relationships will have utility for several purposes. First, by clustering

relationships of various host and microbial variables, one can identify groups of

relationships that have similar and/or dissimilar associations by visually examining the heat

maps. Large assemblages of individual relationships with similar associations may point

toward those that have increased importance, because they indicate organisms having a
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greater impact on the host, or vice versa. Assemblages with similar associations might also

be used to identify different taxa with similar functions as well as direct decisions

concerning which of the myriad of unidentified variables should be examined further. This

latter feature addresses the nature of data generated in this “omics era,” where most of the

variables cannot be identified by simple database searches, but instead require procedures

consuming considerable amounts of time and effort. Lastly, dissimilar relationships could

provide key information, for example, in identifying relationships between host defense

molecules and the bacteria they target.

Conclusion

Our proposed method showed a significant utility and power in handling a data matrix of

scatter plots. More importantly, this clustering procedure can be easily extended to the high

dimensional case when one or more sets of variables needs to be analyzed. Moreover, the

novel painting metrics we proposed can be easily extended to multidimensional clusters of

multivariate plots.

Co-clustering is desirable over traditional one-dimensional clustering as it is more

informative and easily interpretable while preserving most of the information contained in

the original data; and it allows dimension reduction along both axes simultaneously and

hence leads to a much more compact representation of the original data for subsequent

analysis. Hence, our future study is to develop a new co-clustering method to deal with a

data matrix of scatter plots.

Finally, although these methods were developed to analyze microbe-host interactions, we

anticipate that this general approach will have utility for a wide range of investigations,

including those examining relationships among gene expression profiles, metabolites, genes

and epigenetic parameters.
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Appendix

Data depth

Let F be a probability distribution in Rp with P≥1 and x⃗ a point in Rp. The data depth at with

respect to F is denoted by D(F;x⃗), which measures how deep (or central) the point x⃗ is with

respect to F. The larger, the deeper (or more central) the point with respect to F. Some

commonly used data depth functions are listed as follows.

1. Mahalanobis Depth [19]:
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where μ⃗F and ΣF are the mean and variance-covariance matrix of F, respectively.

The sample version of MhD(F;x ⃗) is obtained by replacing μ⃗F and ΣF with their

sample estimates.

2. Tukey Depth/Halfspace Depth [20]:

The sample version of TD(F;x ⃗) is TD(Fn;x⃗) where Fn is the empirical distribution.

3. Simplicial Depth [21]:

where {X⃗
1, ···, X⃗

p+1} is a random sample from F. The sample version of SD(F;x ⃗) is
the fraction of the sample random simplexes containing the point x⃗.

Q(F,G) vs. Q(G,F)

Consider two independent distributions F and G, and two variables X ~ F and Y ~ G. We

present several examples to show the relationship between Q(F,G) and Q(G,F). For

simplicity, univariate normal distributions and Mahalanobis depth are adopted here.

Example 1: For , and , we have

and Q(F,G) + Q(G,F) = 1,

Example 2: For , and μ0≠μ1, we have

and Q(F,G) = Q(G,F).

Example 3: For , μ0≠μ1, and , we have

and <1/2, =1/2, or >1/2.
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Figure 1.
Data structure: a data matrix of scatter plots.
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Figure 2.
Three painting metrics.
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Figure 3.
Painting Example 1: the bivariate normal distributions differ by location only and are

asymmetric about the origin, therefore only CDI can reveal clusters of scatter plots.
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Figure 4.
Painting Example 2: the bivariate normal distributions differ by location only and are

symmetric about the origin, therefore only CDDI can reveal clusters of scatter plots.
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Figure 5.
Painting Example 3: the bivariate normal distributions differ by scale only, therefore only DI

can reveal clusters of scatter plots.
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Figure 6.
Painting Example 4: the bivariate normal distributions differ by both location and scale and

asymmetric about the origin, therefore CDI, CDDI and DI all reveal clusters of scatter plots.
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Figure 7.
Three data pattern settings: (a) “R2C2”: there are 2×2 blocks (2 row clusters and 2 column

clusters), each of which contains 2×2 cells, thus the data size is 4×4. (b) “2*R2C2”: the

block size is doubled in the “R2C2” setting, thus the data size is 8×8. (c) “R4C4”: there are

4×4 blocks (4 row clusters and 4 column clusters), each of which contains 2×2 cells, thus the

data size is 8×8.
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Figure 8.
Success rate versus location shift.
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Figure 9.
Heat map with the DI painting metric.
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