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ARTICLE

The Burden of the “False-Negatives” in Clinical
Development: Analyses of Current and Alternative
Scenarios and Corrective Measures

T Burt1,∗, KS Button2, HHZ Thom3, RJ Noveck4 and MR Munafò5

The “false-negatives” of clinical development are the effective treatments wrongly determined ineffective. Statistical errors
leading to “false-negatives” are larger than those leading to “false-positives,” especially in typically underpowered early-phase
trials. In addition, “false-negatives” are usually eliminated from further testing, thereby limiting the information available on
them. We simulated the impact of early-phase power on economic productivity in three developmental scenarios. Scenario
1, representing the current status quo, assumed 50% statistical power at phase II and 90% at phase III. Scenario 2 assumed
increased power (80%), and Scenario 3, increased stringency of alpha (1%) at phase II. Scenario 2 led, on average, to a 60.4%
increase in productivity and 52.4% increase in profit. Scenario 3 had no meaningful advantages. Our results suggest that addi-
tional costs incurred by increasing the power of phase II studies are offset by the increase in productivity. We discuss the
implications of our results and propose corrective measures.
Clin Transl Sci (2017) 10, 470–479; doi:10.1111/cts.12478; published online on 4 July 2017.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔ Early-phase clinical development studies are usually
underpowered, with little knowledge about the extent, mag-
nitude, and economic impact of the consequent “false-
negatives.” Only one brief previous report, using different
methodology, has studied the topic.48

WHAT QUESTION DID THIS STUDY ADDRESS?
✔ Our simulations aimed to study the impact of statistical
error thresholds on clinical development productivity.
WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
✔ Underpowered phase II studies result in unaccept-
ably high rates of “false-negatives.” The burden of “false-

negatives” on clinical development productivity is poten-
tially enormous, leading to loss of effective treatments and
associated commercial profits. Increasing the power of
early-phase trials is worth the investment in larger sample
sizes.
HOW THIS MIGHT CHANGE CLINICAL PHARMACOL-
OGY OR TRANSLATIONAL SCIENCE
✔ Increasing power of early-phase clinical trials could
improve productivity of drug development with increased
profits due to reduction in frequency of “false-negatives”
compensating the costs of larger sample-sized studies.

Clinical development is increasingly a complex, risky,
lengthy, failure-prone, and costly process with considerable
healthcare benefits and commercial profits at stake.1–4 Con-
tributing to the costs and delays are statistical errors that lead
to “false-positive” and “false-negative” results. The “false-
positives” are the treatments that appear promising but in
fact are not. These errors can lead to expensive follow-
up testing, exposure to unnecessary risks and ineffective
treatments, and potentially costly delays in development of
promising back-up treatments. The “false-negatives” are the
effective treatments wrongly eliminated, leading to missed
healthcare and economic opportunities and are the subject
of our investigation.
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While the “falseness” of the “false-positives” may be
exposed in adequately powered, larger confirmatory trials,
the burden of the “false-negatives” is mostly hypothetical,
with little empirical evidence to characterize it and guide cor-
rective measures.5 This is because the “negatives” usually
exit the developmental process and are not exposed to future
adequately powered confirmatory trials. To establish a bet-
ter understanding of the “false-negatives” in clinical develop-
ment, we studied them in several traditional and alternative
simulated scenarios. We were interested in two questions.
First, how does the proportion of “effective” treatments that
ultimately succeed (i.e., pass at phase II and phase III) and
those that ultimately fail (at either phase II or phase III) change
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in different scenarios? Second, what are the costs and poten-
tial profits across the different scenarios? We present the
results for three predefined developmental scenarios (Sce-
narios 1–3) and a fourth scenario that emerged as optimal
from follow-up analyses (Scenario 4).

MATERIALS AND METHODS

To answer the first question, we created a hypothetical
general scenario whereby 100 potential treatments enter at
phase II, with those determined successful (i.e., the “pos-
itives”) proceeding through to phase III. We assumed that
25% of these are “effective” treatments and 75% are “inef-
fective” treatments.2,6–9 Scenario 1 (“Status quo”) uses the
typical values for Type-I and Type-II error rates currently in
use in treatment development. The Type-I error rate (α) is set
at 5% for phase II and at 0.25% for phase III, given the regu-
latory requirement that treatments show efficacy in two inde-
pendent trials at phase III. The Type-II error rate (β) is set at
10% for phase III trials, representing 90%statistical power on
average, and at 50% for phase II, representing 50% statisti-
cal power (1-β) on average.10 (see detailed discussion of the
assumptions in the Supplemental Information). In Scenario
2, phase II has 80% power. In Scenario 3, the significance
threshold is more stringent (1%) in phase II. Separately, we
searched the space of alpha and beta thresholds to identify
the optimal combination of alpha and beta in terms of devel-
opmental productivity (Scenario 4).
To answer the second question regarding costs and poten-

tial profits in each of the scenarios, we assumed cost per
study in Scenario 1 of $40M for phase II studies and $163M
for phase III studies.2 Costs of phase II in Scenarios 2–
4 increased proportionally to sample size but with a con-
servative 80% correction due to an economies of scale
reduction in cost-per-participant at higher sample sizes. We
also assumed a return on a single successful treatment of
$2,500M, based on estimates of the costs of taking a treat-
ment through the development process2,7,11 and the need for
developers to have a return on their investments.
In addition, we conducted sensitivity analyses to explore

greater effect sizes at phase II. These “adjusted” analy-
ses (Supplemental Information Additional Analyses, Table
C.2) were designed to account for the potential use of sur-
rogate end points and/or enriched samples at phase II trials
that may result in greater effect size when compared with
the clinically relevant end points and/or nonenriched patient
populations usually used at phase III. We also explored the
impact of a different percentage of “effective” treatments
entering phase II (10% instead of 25%). Finally, probabilistic
sensitivity (Monte Carlo) analyses were conducted to test the
robustness of our conclusions to variations in input parame-
ters. These analyses varied the effect size, the proportion of
effective treatments, the costs per patient, and the return on
success. The alpha and beta levels of the scenarios were held
fixed (Supplemental Information Additional Analyses).

RESULTS

The number of “effective” and “ineffective” treatments that
pass and fail testing at phase II and phase III in each of

the four scenarios is shown in Table 1. Those that pass at
phase II carry on to phase III, whereas those failing at phase
II are removed from the pipeline. Those “effective” treatments
which pass at phase II and phase III are described as true-
positives (i.e., successful treatments), while those “effec-
tive” treatments that fail (at either phase II or phase III) are
described as false-negatives (i.e., missed opportunities). The
“ineffective” treatments which pass at phase II and phase III
are described as false-positives (i.e., incorrectly identified as
effective), while those that fail at either phase II or phase III
are described as true-negatives (i.e., correctly identified as
ineffective). These are shown in Table 2, together with the
cost estimates for phase II and phase III, and the likely profit
under each scenario.
Under Scenario 1, 16.3% of treatments are successful

at phase II and enter phase III (12.5% “effective,” repre-
senting 50% of the original “effective” entering phase II,
plus 3.8% “ineffective” treatments). This means that 77%
(12.5 of 16.3) of the treatments entering phase III are in fact
“effective” treatments and 61.9% (10.1 of 16.3) will pass
at phase III, of which the vast majority (99%; 10 of 10.1)
will be “effective” treatments. However, in this scenario only
10.1 of the original 25 (i.e., 40.4%) “effective” treatments
pass at both phase II and phase III, with 12.5 being lost at
phase II and 2.4 being lost at phase III for a total 14.9 “false-
negatives.”
Under Scenario 2, 23.8% of all treatments pass at phase

II (20% “effective” treatments plus 3.8% “ineffective” treat-
ments). This means that 84.0% of treatments entering phase
III are “effective” treatments. Of these, 68.1% will pass at
phase III, with the vast majority of them “effective” treat-
ments. Critically, in this scenario 16.2 of the original 25 “effec-
tive” treatments (i.e., 64.8%) pass at both phase II and phase
III, with 5.0 lost at phase II and 3.8 lost at phase III for a total
8.8 “false-negatives.” This represents a 60.4% increase in
productivity over Scenario 1 (from 40.4% to 64.8%) and a
reduction from 59.6% to 35.2% in the proportion of “false-
negatives” (i.e., the “missed opportunities”). While the cost
of Scenario 2 is considerably greater than Scenario 1, being
$8,163M at phase II and $3,868M at phase III (104.1% and
46.2% increase vs. Scenario 1, respectively), the number of
successful treatments would return $40,523M, representing
a profit of $28,492M and an overall 52.4% increase in profit
vs. Scenario 1.
Under Scenario 3, 13.3% of all treatments pass at phase

II, the vast majority being “effective” treatments because the
stringent Type-I error rate almost completely removes “inef-
fective” treatments from the discovery pipeline. This means
that 94% of the treatments entering phase III are “effective”
treatments. Of these, 75.9% will pass at phase III, essen-
tially all being “effective” treatments. However, as in Sce-
nario 1, only 10.1 of the original 25 “effective” treatments (i.e.,
40.4%) pass at both phase II and phase III, meaning there
was no increase in productivity. Based on our cost estimates,
the cost of Scenario 3 would be $6,939M in phase II, but
only $2,158M at phase III (73.5% increase and 18.4% reduc-
tion vs. Scenario 1, respectively). While the successful treat-
ments would return $25,317M, almost exactly as in Scenario
1, this would represent a profit of only $16,221M (reduction
of 13.2% vs. Scenario 1) given the higher study costs overall
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Table 1 Passage of “good” and “bad” treatments through the development pipeline

Scenario 1: Status Quo

Phase II (α = 5%; 1-β = 50%) Phase III (α = 0.25%; 1-β = 90%)

Total treatments N = 100 (100%) N = 16.3 (100%)

Good treatments N = 25 (25%) Pass 12.5 N = 12.5 (77%) Pass 10.1

Fail 12.5 Fail 2.4

Bad treatments N = 75 (75%) Pass 3.8 N = 3.8 (23%) Pass 0.0

Fail 71.3 Fail 3.7

Scenario 2: High power at phase II

Phase II (α = 5%; 1-β = 80%) Phase III (α = 0.25%; 1-β = 90%)

Total treatments N = 100 (100%) N = 23.8 (100%)

Good treatments N = 25 (25%) Pass 20.0 N = 20 (84%) Pass 16.2

Fail 5.0 Fail 3.8

Bad treatments N = 75 (75%) Pass 3.8 N = 3.8 (16%) Pass 0.0

Fail 71.3 Fail 3.7

Scenario 3: Stringent Alpha

Phase II (α = 1%; 1-β = 50%) Phase III (α = 0.25%; 1-β = 90%)

Total Treatments N = 100 (100%) N = 13.3 (100%)

Good Treatments N = 25 (25%) Pass 12.5 N = 12.5 (94%) Pass 10.1

Fail 12.5 Fail 2.4

Bad Treatments N = 75 (75%) Pass 0.8 N = 0.8 (6%) Pass 0.0

Fail 74.3 Fail 0.7

Scenario 4: Lenient alpha and higher power at phase II

Phase II (α = 20%; 1-β = 95%) Phase III (α = 0.25%; 1-β = 90%)

Total treatments N = 100 (100%) N = 38.8 (100%)

Good treatments N = 25 (25%) Pass 23.8 N = 23.8 (61%) Pass 19.2

Fail 1.3 Fail 4.5

Bad treatments N = 75 (75%) Pass 15.0 N = 15 (39%) Pass 0.0

Fail 60.0 Fail 15.0

Scenario 1, “Status Quo” represents the current, reference situation where the power of phase II (50%) is substantially lower than phase III (90%). In Scenario
2, “High Power at phase II” phase II has 80% power. In Scenario 3, “Stringent Alpha,” the significance threshold is more stringent (1%) in phase II. Scenario 4,
“Lenient Alpha and Higher Power at phase II” alpha is set at 20% and the power is 95%. All four scenarios assume 25% of treatments that enter phase II are
“good” and 75% “bad.” The number of treatments that enter phase III is determined by phase II alpha and beta error thresholds. The percentage of “good” and
“bad” treatments entering phase III differs by scenario but since they are calculated against the overall number of treatments that enter phase III they always total
100%. For example, in Scenario 1, the number of “good” treatments, 12.5, is the number that made it through phase II (50% of 25 treatments entering phase II)
and constitutes 77% of the total 16.3 treatments that enter phase III in this scenario. The overall number of “true” and “false” treatments passing through both
phases is depicted in Figure 1.
Scenario 1: Low power (50%) at phase II, high power at phase III (90%); Scenario 2: High power (80%) at phase II (alpha as in Scenario 1); Scenario 3: Stringent
alpha (1%) at phase II (power as in Scenario 1); Scenario 4: Lenient alpha (20%) and higher power (95%) at phase II.

and no improvement in the proportion of “missed opportuni-
ties” (the false-negatives).
Exploring the space of alpha and beta allowed the identi-

fication of Scenario 4 with optimal combination of both (i.e.,
even lower (5%) beta but more lenient (20%) alpha at phase
II than the other scenarios), 38.8% of all treatments pass at
phase II. Of these, 19.2 (49.5%) will pass at phase III, essen-
tially all being “effective” treatments, representing 76.8% of
the original 25 “effective” treatments, and constituting the
highest productivity of the four scenarios. When compared
with Scenario 1, the status quo, the increase in productiv-
ity is 90.1% (from 40.4% to 76.8%). While the cost of Sce-
nario 4 would be considerably greater than Scenario 1, being
$8,816M at phase II, and $6,311M at phase III (120.4% and
138.5% increase vs. Scenario 1, respectively) the number of
successful treatments would return $48,188M, representing

a profit of $33,060M and an overall 76.9% increase in profit
vs. Scenario 1.

In Figure 1 we show the net profit under the three scenar-
ios we describe, and the impact of a range of costs per partic-
ipant. The current cost per participant ($200,000) is derived
from the average cost of phase II program ($40M)2 divided
by the average number of subjects in phase II studies (N =
200). In all cases, Scenario 4 (lenient alpha and higher power
at phase II) performs the strongest, even when the cost per
participant is doubled.

Probabilistic sensitivity (Monte Carlo) analysis provided
results based on 10,000 samples of 100 candidate drugs.
These are presented in Figures 2 and 3 (and Tables B, C in
Supplemental Information). Scenario 4 has the highest suc-
cessful treatments, fewest missed opportunities, and high-
est profits. Our conclusions hold whether or not the effect
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Table 2 Cost analysis of “effective” and “ineffective” treatments entering the development pipeline

Scenario 1: Status Quo

Phase II
Cost ($M)
unadjusted

Cost ($M)
adjusted Phase III Cost ($M) Total

Profit ($M)
unadjusted

Profit ($M)
adjusted

True positives 12.5 4,017
(2,009 to 5,958)

2,011
(1,008 to 3,001)

10.1 2,650
(1,197 to 4,477)

10.1 18,608
(4,906 to 37,242)

20,614
(7,143 to 39,020)

False negatives 12.5 2.4 14.9

False positives 3.8 0.0 0.0

True negatives 71.3 3.7 75.0

Scenario 2: High power at phase II

Phase II
Cost ($M)
unadjusted

Cost ($M)
adjusted Phase III Cost ($M) Total

Profit ($M)
unadjusted

Profit ($M)
adjusted

True positives 20.0 8,119
(4,050 to 12,046)

4,017
(2,009 to 5,958)

16.2 3,100
(1,359 to 5,376)

16.2 29,208
(7,068 to 59,281)

33,310
(11,619 to
62,920)

False negatives 5.0 3.8 8.8

False positives 3.8 0.0 0.0

True negatives 71.3 3.7 75.0

Scenario 3: Stringent alpha

Phase II
Cost ($M)
unadjusted

Cost ($M)
adjusted Phase III Cost ($M) Total

Profit ($M)
unadjusted

Profit ($M)
adjusted

True positives 12.5 6,938
(3,471 to 10,287)

3,470
(1,739 to 5,180)

10.1 1,730
(708 to 3,120)

10.1 16,589
(2,501 to 35,511)

20,056
(6,425 to 38,625)

False negatives 12.5 2.4 14.9

False positives 0.8 0.0 0.0

True negatives 74.3 0.7 75.0

Scenario 4: Lenient alpha and much higher power at phase II

Phase II
Cost ($M)
unadjusted

Cost ($M)
adjusted Phase III Cost ($M) Total

Profit ($M)
unadjusted

Profit ($M)
adjusted

True positives 23.8 8,802
(4,390 to 13,029)

4,326
(2,157 to 6,415)

19.2 5,051
(2,428 to 8,088)

19.2 34,219
(7,651 to 70,138)

38,695
(12,670 to
74,080)

False negatives 1.3 4.5 5.8

False positives 15.0 0.0 0.0

True negatives 60.0 15.0 75.0

Scenario 1: Low power (50%) at phase II to high power at phase III (90%); Scenario 2: High power (80%) at phase II (alpha as in Scenario 1); Scenario 3: Stringent
alpha (1%) at phase II (power as in Scenario 1); Scenario 4: Lenient alpha (20%) and higher power (95%) at phase II.

sizes are adjusted up at phase II to account for use of potent
surrogate end points and/or “enriched” populations more
likely to respond to the therapeutic intervention (Table 2;
Table C.2, Supplemental Information). In fact, even “unad-
justed” alternative Scenarios 2 and 4 are more cost-efficient
than the “adjusted” “status quo” Scenario 1. We also
explored correlations between simulated differences in prof-
its under competing scenarios and sampled input param-
eters. This indicated a clear correlation between difference
in profits and both return on investment and proportion of
“effective” treatments, and these maximized the superiority
of Scenarios 2 and 4 over the status quo of Scenario 1 (see
Figures A, B, Supplemental Information).

DISCUSSION

We simulated three scenarios to study the impact of Type-
I and Type-II statistical errors on the productivity of staged
clinical development. While traditional Scenario 1 appears

optimized to remove “ineffective” treatments at phase II, this
is done at the expense of also losing half of all “effective”
treatments at this stage. A more profitable outcome is real-
ized under Scenario 2 by increasing the power of phase II
trials from an average of 50% to 80%. While this entails con-
siderably greater investment at phase II, the far greater num-
ber of “effective” treatments subsequently retained at phase
II that eventually pass at phase III (from 40.4% in Scenario
1 to 64.8% in Scenario 2, a 60.4% increase in productivity)
greatly increases the return on this investment. In addition,
the higher proportion of “effective” treatments being tested
at phase III (84% instead of the current 77%) means more
efficient use of resources at this late and expensive stage
of development. In Scenario 3, increasing the stringency of
the alpha criterion (from 5% to 1%) for a treatment pass-
ing phase II would prohibitively increase sample size and
associated study costs at phase II but only marginally reduce
the costs at phase III.
An exploratory post-hoc Scenario 4 was identified as the

optimal scenario, providing the fewest false-negatives and
greatest return on investment. In this scenario, with even
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higher (95%) power but a more lenient (20%) alpha at phase
II, 76.8% of the original 25 “effective” treatments were iden-
tified as true-positives, a 90.1% increase in productivity and
76.9% increase in profit vs. Scenario 1. Scenario 4 may
be consistent with the “intuitive” approach at early-phase
underpowered studies to consider “trend” results (i.e., amore
lenient alpha).
Probabilistic sensitivity (Monte Carlo) analyses confirmed

that our results are maintained under a range of the basic
assumptions (namely, effect size, proportion of “effective”
treatments at entry to clinical development, developmen-
tal costs, and expected returns) (Supplemental Informa-
tion). Furthermore, we conducted a sensitivity analysis that
assumed a larger effect size at phase II than at phase III,
with the justification being the potential use of more powerful
surrogate end points and/or “enriched” samples that recruit
patients more likely to respond. We examined whether the
higher (“adjusted”) effect size could counter the smaller sam-
ple size at phase II. However, the same development strate-
gies were identified as optimal under this sensitivity analysis,
so our conclusions appear robust to assumptions of greater
effect size at phase II (Supplemental Information Table C.2
and Figure A). The “adjusted” scenarios are more cost-
efficient than the respective “unadjusted” ones but, notably,
even “unadjusted” Scenarios 2 and 4 are more cost-efficient
than the “adjusted” “status quo” Scenario 1 (Table 2). There
appears to be little impact of effect size on the differences in
simulated profits. Importantly, the potential return on invest-
ment will be known when designing phase II studies and our
analyses suggest that if the expected return is large a high
power at phase II is likely to be justified (as was previously
suggested by Cartwright et al.5)
Finally, we assumed that 25%of treatments entering phase

II are “effective” treatments. This proportion is likely to vary
considerably across therapeutic areas. Nevertheless, if we
instead assume that only 10%of treatments entering phase II
are “effective” treatments, then Scenario 2 only outperforms
Scenario 1 at relatively low costs per participant, while at
higher costs per participant Scenario 1 is optimal (Figure 4).
Therefore, in situations where there are very few success-
ful treatments evaluated, the current status quo may be the
better strategy. Nevertheless, recent literature suggests that
only rarely overall success rates are under 10% in clinical
development.2,7,8

Power, “false-negatives,” and implications for clinical
development

The proportion of “false-negatives” is a function of the sta-
tistical power of a study; the greater the power the lower
the proportion of “false-negatives.” The power is 1-beta (the
Type-II error). The Type-II error is a function of the effect size,
sample size, Type-I error, and expected variability of the sam-
ple being tested12:

Power = 1 − �

[
z1−α − μ1 − μ0

σ/
√
n

]

Where � is the cumulative standard normal distribution func-
tion, z is the standardized normal distribution, α is the Type-I

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

$100,000 $150,000 $200,000 $250,000 $300,000

Price per Par�cipant

Pr
ofi

t (
$M

)

b) 80% Power

Scenario 1

Scenario 2

Scenario 3

Scenario 4

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

$100,000 $150,000 $200,000 $250,000 $300,000

Price per Par�cipant

Pr
ofi

t (
$M

)

a) 90% Power

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Figure 1 Impact of cost per participant on net profit. A range of
costs are explored in terms of their impact on net profit in each
of the four scenarios. (a) and (b) indicate 80% and 90% power at
phase III, respectively. The current cost per participant ($200,000)
is derived from the average cost of phase II program ($40M) 2

divided by the average number of participants in phase II studies
(N = 200).

error, n is the sample size; σ is the standard deviation, μ1 −
μ0 is the difference between the group means, and μ − μ0/σ
is the effect size.13

Uncertainty about effect size and variability at early stages
of development may give rise to errors in power calcula-
tions. In addition, commercial, strategic, and resource con-
siderations may limit sample size. Finally, there are four
important asymmetries between the “false-positives” and the
“false-negatives” that have potential to limit study power and
increase the impact of “false-negatives”:

A) The Threshold Asymmetry – In null hypothesis signifi-
cance testing (NHST), still the cornerstone of most sta-
tistical inference, the “false-negative” (i.e., β or Type-II
error) rate is conventionally set at the β = 10% or 20%
level (but is often much higher, especially in underpow-
ered early-phase drug trials), while the “false-positive”
(i.e., Type-I error) rate is set at α = 5%.5,14 This means
that there is an implicit asymmetry in the relative impor-
tance ascribed to the two types of error.15 With Type-II
error at 20%, this is four times as high as the Type-
I error, but in the case of phase II studies. If, as we
assume, power is 50% in the typically underpowered
phase II study, then the Type-II error is 10 times more
likely than the Type-I error. Traditionally, phase II studies
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Figure 2 Distribution of simulated profits from probabilistic sensi-
tivity analysis for the four scenarios varying cost-per-participant,
effect size, proportion of “effective” treatments, and expected
returns. The figure demonstrates that while Scenarios 2 and 4
are superior, the overlapping distribution indicates a degree of
uncertainty.

are conducted with a smaller sample size, and therefore
with even lower power than is implied by the above-
mentioned asymmetry. Typical sample sizes are some-
times an order of magnitude smaller in phase II stud-
ies than in phase III (see Supplemental Information
for more details).10,12,16,17

B) The Developmental Asymmetry – The clinical
development process is one of staged-development
whereby candidates are exposed to successive testing.
However, only the “positives” persist in the process
of development, and hence are exposed to further
testing, while “negatives” are eliminated from further
testing. The additional tests (i.e., the larger confirma-
tory phase III trials) that the “positives” are exposed
to sometimes identify them as “false-positives.”2,7,8

The “negatives” of early clinical development, both the
“true” and the “false” ones, on the other hand, are elim-
inated from the developmental process and do not go
through the later-phase “verification” and “validation”
process. The result is a skewed body of knowledge:
we know more about the “false-positives” than we
know about the “false-negatives.” Another result is
that with successive testing the “false-negatives”
accumulate and increase, while the “false-positives”
are discovered to be false and therefore eliminated and
reduced. One reassuring conclusion from our analyses
is that the likelihood of “false-positives” making it
through the developmental process is miniscule (about
1 in 1,000 treatments developed) (Table 2). However,
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Figure 3 Plot of profit against power for a range of alphas at phase
II. All lines assume two phase III trials with alpha of 5% and power
of 90% each. Plotting lines with higher phase II alphas show that
alpha of 20% (light blue) is a maximum, and optimal power is 95%,
which corresponds to Scenario 4. An alpha of 5% (green) corre-
sponds to Scenarios 1 and 2 while an alpha of 1% (red) corre-
sponds to Scenario 3. Power has relatively more influence on profit
than alpha over the range of these parameters but it is worth noting
the influence of alpha increases as power increases.

even with our most productive scenario (Scenario 4),
5.8% of “false-negative” make it through the clinical
development process.

C) The Economic Asymmetry –While the cost of a “false-
positive” may be expensive phase III trials at several
hundred million dollars at most, the cost of a “false-
negative” may be the loss of a blockbuster worth bil-
lions of dollars.

D) Study Interpretation Asymmetry – When interpreting
study results, attention almost exclusively is directed
at the “significance” of the results (for example, for
publication purposes) as determined by surpassing the
threshold for the Type-I error, or alpha, usually set at
0.05. However, no less important for assessing the
validity of the results is the knowledge of the Type-
II error. A recent review by Pereira et al. noted the
frequent detection of false large effect in early-phase
studies.18 While all were significant at the 0.05 alpha
level, their low power exposed them to detection of
spurious results.

Is it possible that the traditional thresholds for “alpha” and
“beta” of clinical trials are anachronistic, rooted in an era with
different healthcare needs, and economic realities? Specif-
ically, does the asymmetry between the traditional alpha
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Figure 4 Impact on profitability of percentage of “effective” treat-
ments entering phase II. (a) Our main results assume 25% “effec-
tive” treatments entering efficacy testing in phase II of clinical
development. (b) Profits are considerably reduced in all scenarios
and the difference between Scenarios 1, 2, and 4 is minimized if
the percentage of “effective” treatments entering phase II is 10%.

and beta thresholds contribute to an inefficient development
process by allowing and tolerating greater error in the pro-
portion of “false-negatives” than that of “false-positives”?
This asymmetry possibly originated in an era when resources
were constrained and true hypotheses were easier to confirm
(so called “low-hanging fruit”). Possibly there were enough
treatments with large true effects capable of being identified
with the smaller sample sizes of phase II studies. Possibly,
also, return on investment was not as high, making the large
sample sizes required in phase II in our Scenario 2 prohibitive.
However, today we likely have the opposite scenario,

where “effective” treatments are more difficult to come by
and the stakes and potential rewards are much higher. Reg-
ulators, academicians, industry, ethicists, and the public at
large have identified the resulting stagnation, inefficiency,
and uncertainties of clinical development as a major public
health challenge.19–22 In this case, the additional resources
required for larger sample sizesmay not seem that prohibitive
anymore, given that the potential rewards of harvesting as
many “true-positives” as possible are much more attrac-
tive. There is also a suggestion that the overall true effect
size of new treatments is gradually being reduced in what
has been termed “innovation to extinction.”23,24 This may
mean that new statistical and strategic approaches and tools
are required (see under proposed approaches, below).25–27

It may be telling that our most productive scenario (Sce-

nario 4) reverses the above-mentioned threshold asymme-
try between the Type-I and Type-II errors (from α = 5%, β =
50% to α = 20%, β = 5%), suggesting greater value for the
missed opportunities of the “false-negatives” than the exces-
sive testing of the “false-positives.”

Recent publications attempting to address the under-
productivity of clinical development have focused on the
high and expensive attrition rates at phase III as drivers
of unproductivity.28,29 It may therefore seem counterintuitive
that we come up with a recommendation that increases the
number of compounds reaching phase III. However, under
Scenario 2, virtually all this increase (from 12.5 to 20.0 treat-
ments; Table 1) is composed of “effective” treatments hav-
ing been previously eliminated as “false-negatives” in under-
powered phase II studies. In addition, the increase in the
costs of phase III studies is more than compensated for by
the higher percentage of technical success (60.4% overall
increase in productivity). Recommendations to “seek truth,
not progression” are to be lauded; however, they appear to
be aimed mainly at the “false-positives” (i.e., when the non-
true progress) 29,30 Similar efforts should be directed at the
“false-negatives,” as suggested below.

Preventative, minimizing, and mitigating approaches

We propose the following preventative, minimizing, and mit-
igating approaches to increase the effective power of early-
phase studies. Although most are currently being used, they
are not used universally or in concert:

1. Increasing sample size. The most straightforward way
to increase study power is to increase its sample size.
Our analyses suggest that the increased costs will be
rewarded by increased productivity. Increased sample
size does not necessarily mean a longer duration of
phase of development, as increases in number of sites
and speed of recruitment can counter that impact.

2. Increase effect size. Effect size is usually thought of as
fixed for a given treatment, but in fact it is the average
of the effects observed in the test sample. Suboptimal
choice of doses and/or target population may “dilute”
the maximal effect of the treatment. To address uncer-
tainties regarding the dose–effect relationship in phase
II studies and inform optimal dose selection in confirma-
tory phase III trials, the MCP-Mod (Multiple Comparison
Procedures Modeling) was developed and endorsed by
the US Food and Drug Administration (FDA) and Euro-
pean Medicines Agency (EMA).31 In addition, identify-
ing and validating biomarkers that narrow the optimal
dose range and target populations as early as possi-
ble in clinical development could optimize exposure–
response profiles and increase the implied power of
the studies.32–35 Likewise, using enriched populations,
more likely to respond to treatment, can increase the
implied effect size. However, this may come at the
expense of generalizability to the intended target thera-
peutic population.

3. Reducing variability. Excessive variability in study
population and execution of study procedures could
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decrease the power. Strict inclusion and exclusion cri-
teria and precision in study execution both have the
potential to increase the power of a study. Atten-
tion to the placebo effect and training to minimize its
magnitude (e.g., by reducing expectation, nonspecific
therapeutic effects, inflation of baseline values, and
unblinding) will help reduce variability.36

4. Use of repeated measures has the potential to maxi-
mize power and increase the yield of available data and
has been accepted by regulators as an alternative to
the traditional Last Observation Carried Forward (LOCF)
approach.37–39

5. Bayesian statistical approaches hold the promise of
maximizing early-phase clinical development by incor-
porating data from various nonclinical and clinical stud-
ies to reduce the uncertainties around study design and
power calculation (e.g., effect size, dose ranges, study
population).17,40–42 The Bayesian approach, especially
with sequential analysis with unlimited looks at the data
with no penalty, could address some of the inherent
uncertainties of early-phase clinical development.

6. Adaptive design could enable early, seamless, and effi-
cient selection of optimal doses (i.e., with the largest
effect size), thus maximizing existing sample sizes for
the study of the most effective doses. Adaptive design
could also enable early termination of studies if con-
vincing signals of efficacy or toxicity are identified early,
thus mitigating some of the expenses of large sample
size studies.5,16,41,43–45

7. Use of one-tailed tests. There have been calls to
increase the power of clinical trials by including one-
tailed instead of two-tailed significance levels in the
analysis of the results. This, however, will allow test-
ing of only the “side” of benefit while knowledge of the
countereffects or harmful effects, also of public health
and drug development relevance, will be missed (for
example, if a drug for hypertension increased blood
pressure instead of reducing it).

8. Strategic approach. Recent reports have introduced
clinical development models and decision algorithms
that could incorporate our conclusions to improve out-
comes by adjusting the choice of error rates to the cost
of the errors, and quantifying the corresponding suc-
cesses and profits.5,46,47

A recent analysis by Lindborg et al. supports the general
notion that higher-powered early-phase trials may increase
treatment development productivity.48 Using different
assumptions (e.g., a higher probability of success), method-
ology, and outcomes (e.g., using cost of development alone
instead of including value of “false-negatives”), they reach
similar conclusions. They demonstrate that the values for
alpha and beta that are optimal for treatment development
productivity (alpha 0.15–0.35 and beta 0.05–0.15) differ
from conventional values but resemble the results of our
Scenario 4 (and in reversing the asymmetry of the Type-I
and Type-II errors). However, while we demonstrate that

increasing sample size at phase II is justified by the return
on investment, Lindborg et al. suggest keeping the sample
size the same as in traditional approaches. More detailed
discussion of the similarities and differences between
our analyses, and the combined implications to drug
development strategies, is available in the Supplemental
Information (Additional Analyses).

Limitations and follow-up analyses

Our analyses have several limitations and constraints. First,
most of our assumptions (such as the cost of development,
the determinants of developmental decisions, and details of
sample size, effect size, and variability) depend on informa-
tion that is often confidential, especially at the early stages
of clinical development. Greater transparency among clini-
cal development stakeholders is needed to enable informed
research and consolidation of experience across sponsors.
Second, there is a great deal of variability in developmental
scenarios (e.g., use of one or two phase II studies) across
therapeutic areas (e.g., in effect size and minimal meaning-
ful clinical effect), types of treatment (e.g., small molecules
vs. biologics), and costs of development. Our analyses and
discussion therefore necessitated simplification of a complex
developmental environment using assumptions that may not
represent all existing scenarios. Third, our analyses and rec-
ommendations are limited to consideration of efficacy based
on a simple hypothesis test. We acknowledge that equat-
ing “false-positive” and “false-negative” with alpha and 1-
power is an approximation, respectively, of their use in real
practice, where a distribution of the effect size is normally
used. We recognize that the real-life relationship and inter-
play between the Type-I and Type-II errors can be complex
and dependent on multiple factors, some possibly unknown
at the time the studies were conducted, such as the prob-
ability of identifying poor disposition profile, signals of tox-
icity or intolerance, poor compliance, and dropouts. These
could result in different “false-positive” and “false-negative”
rates than predicted by the simple hypothesis test. Our cal-
culations assume that a negative study (in terms of efficacy)
always results in termination of a treatment from develop-
ment. This may not always be the case, and even a weak
statistical evidence of efficacy (e.g., P = 0.1) or evidence
in a subgroup analysis may be sufficient to pursue devel-
opment. The decision to eliminate a treatment from devel-
opment is multipronged and depends not only on efficacy
considerations but also on safety (including nonclinical toxi-
city and carcinogenicity data that may emerge during clinical
development), pharmacokinetics, availability of resources,
the profiles of other treatments in the pipeline, and strate-
gic and competitive environment considerations. Our results
should therefore be seen in the context of the role of efficacy
as a determinant of treatment viability. Accordingly, we rec-
ommend that follow-up analyses incorporate these aspects
of developmental decision-making and test our results
across a range of therapeutic areas and stages of treatment
development.
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SUMMARY

Early-phase clinical studies are typically underpowered. In
addition, an asymmetry between the two types of statistical
errors means that “false-negatives” are more likely to occur
than “false-positives,” are cumulative, and exit the develop-
ment process upon discovery, preventing the verification of
their “falseness” in higher-powered follow-up studies. The
resulting “false-negatives” mean loss and delay of effective
treatments to patients and could be worth billions of dollars
in untreated morbidity and mortality, and loss of commer-
cial benefits to treatment developers. Our simulations pro-
vide information about the magnitude and correlates of the
“false-negatives” to support informed developmental deci-
sions, and suggest that higher-powered early-phase stud-
ies are worth the investment. Our findings require replication,
validation using a spectrum of therapeutic areas and devel-
opmental scenarios, and debate by the relevant treatment
development stakeholders.
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