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Abstract

Introduction/Hypothesis: The outcome of cardiopulmonary resuscitation (CPR) depends on timely recognition of the underlying cause of cardiac

arrest. Ventricular fibrillation (VF) waveform analysis to differentiate primary VF from secondary asphyxia-associated VF may allow tailoring of therapies

to improve cardiac arrest outcomes. Therefore, the primary goal of this investigation was to develop a novel technique utilizing wavelet

synchrosqueezed transform (WSST) and decision-tree classifier that was specifically adapted to discriminate between these two incidents of VF.

Methods: Secondary analytical investigation of electrocardiography (ECG) data obtained from swine models of either primary VF (n=18) or secondary

asphyxia-associated VF (7min of asphyxia prior to VF induction; n=12). In the primary analysis, WSST technique was applied to the first 35s of the VF

ECG signal to identify the most differentiating characteristics of the signal for use as features to develop a machine learning algorithm to classify the

arrest as either primary VF vs. secondary asphyxia-associated VF. The performance of this new interactive Machine Learning algorithm with Wavelet

Energy features of ECG (MLWAVE) was assessed using both classification accuracy and area under the receiver operating characteristic curve

(AUCROC). To evaluate the validity of the new technique, the amplitude spectrum area (AMSA)-based technique, a well-established defibrillation

classification method, was also applied to the same ECG signals. The classification accuracy and AUCROC were then compared between the two

techniques.

Results: For the primary analysis evaluating the first 35s of the VF waveform, the MLWAVE technique classified the type of VF with high accuracy

(28/28 [100%], AUCROC: 1.00). The MLWAVE technique performed better than the AMSA technique across all comparisons, but given the small

sample sizes, differences were not statistically significant (accuracy: 100% vs. 85.7%; p=0.24; AUCROC: 1.00 vs. 0.82; p=0.24).

Conclusion: This analytical investigation illustrates the advantages of the MLWAVE signal processing method which was associated with 100%

accuracy in classifying the type of VF waveform: primary vs. asphyxia-associated. Such classification could lead to personalized tailoring of

resuscitation (e.g., immediate defibrillation vs. continued CPR and treatment of reversible cardiac arrest causes before defibrillation) to improve

outcomes for cardiac arrest.
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Introduction

Cardiac arrest (CA) is an important public health problem. Despite
improving survival rates over the past 20 years, most patients still do
not survive; among survivors, many suffer life-limiting neurological
injury.1,2 Personalized resuscitation has been highlighted as a
potential therapeutic strategy to improve outcomes further, but
implementation has been limited due to a lack of clinical tools to allow
prompt identification of underlying pathophysiologic states.3,4

Ventricular fibrillation (VF) is a cardiac arrest, characterized as
rapid, disorganized contractions of the heart with complex electrocar-
diogram (ECG). To that end, quantitative analysis of the VF waveform
holds promise as a potential tool to improve personalization of
resuscitation technique. Measurable quantitative features such as
amplitude and frequency have been associated with defibrillation
success, short-term, and long-term outcomes.5�7 Because these
quantitative measures are indicative of the metabolic state of the heart,
they may help a rescuer personalize which therapies are likely to
provide the most immediate benefit (i.e., cardiopulmonary resuscitation
[CPR] vs. medications vs. prompt de- fibrillation). Because VF occurs at
some point in more than 20% of pediatric and more than 40% of adult
resuscitations,8 these analytic methods have the potential to improve
the care provided to a substantial proportion of CA patients.

Despite promising applications of existing VF waveform analytic
methods (e.g., AMSA: amplitude spectral area), certain analytic
characteristics limit its value. For example, time-sensitive frequency
trends that might contribute valuable information about the signal
remain uncaptured. This drawback derives from the mathematical
limitations of the fast Fourier transform (FFT), which is the basis for
calculating AMSA value of a VF waveform. In contrast, wavelet
transform (WT) provides an elegant mathematical solution that
addresses FFT limitations, presenting more quantifying information of
the waveform. As such, the objective of this study was to determine if
an optimal synthesis of new WT analysis and machine learning (ML)
could discriminate between primary and secondary asphyxia-
associated VF. Since AMSA values are often used to quantify VF
type9,10 as frequently reported in literature, e.g., Indik et al.5�7,11,12

and Bonnes et al.,13�15 we adopted their ECG metrics and
methodology to validate our method.

Methods

Animal data

In this retrospective analysis, the data was taken from 30 healthy 3-
month-old femaledomesticswine with two differentconditions introduced
during the experiment. Group A: primary normoxic VF (n=18) and Group
B: secondary asphyxia-associated VF (n=12). In Group A, VF was
induced by electrical pacing, and after confirmation of VF, the animal
remained untreated for 7min. In Group B, after asphyxia was
administered through endotracheal tube clamping for 7min, to ensure
a standard length of asphyxia (7min), VF was immediately induced
electrically (<10s) using a bipolar pacing catheter that was advanced into
the right ventricle. Following the injury period of 7min, CPR was provided
for both groups with a target rate of 100 chest compressions (CC) per
minute (CC/min)andventilations at 6min-1 with 100%oxygen.Due to the
nature of original experiments,16,17 half of the animals from each group
randomly received either hemodynamic-directed CPR (HD-CPR),

consisting of compression depth titrated to a target systolic blood
pressure of 100mmHg; or optimal American Heart Association Guideline
care (Guideline-care), consisting of target depth of 51mm and
epinephrine every four minutes.18,19 However, no intravenous vaso-
pressors were administered in HD-CPR nor the Guideline-care in the first
2min of provided CPR. The experimental protocol16,17 was approved by
The Children’s Hospital of Philadelphia Institutional Animal Care and Use
Committee, as previously described in Refs.16,17 As cited above, this is a
retrospective analysis of the data acquired for hemodynamic-directed
CPR studies16,17 and, therefore, introduces some limitations to this
study’sdesign. One of themis that twosamples (onefromeachgroup)did
not have full recordings of the ECG waveforms during the 7min injury
period. This resulted in N = 28 samples (instead of N = 30) for the A and B
comparisons.

Algorithm development

Overview

The ECG waveform was sampled at different locations to address the
primary and secondary goals of this study. The primary objective was
to differentiate between immediate normoxic VF and immediate
asphyxia-associated VF. Here we examined the comparison between
the waveforms during time-intervals [A1, A2; 35-second sample] and
[B1, B2; 5-second sample], as illustrated in Fig. 1. In addition, we also
analyzed the waveforms during time-intervals [C1, C2; 5-second
sample], a period where both types of VF had been treated with 30s of
CPR (i.e., the only difference between the conditions was untreated
VF versus asphyxia prior to initiation of CPR).

Although there currently exists no specific method to differentiate
between the two CA pathologies solely using the ECG signal, to
investigate the accuracy of the developed MLWAVE (Machine
Learning Algorithm with Wavelet Energy features of ECG) technique,
AMSA, a well-established method to predict defibrillation outcome
was adapted to address this problem in order to compare to and
evaluate the results of our new technique.

Waveform analysis

The first step of the technique was to identify relevant frequency
characteristics in the ECG signals to ultimately utilize them as input data
to a ML classification algorithm. The examination of the frequency
content was carried out through WT. As shown through previous
studies,20,21WT provides extraordinary insights regarding frequencies
and their attributes often hidden in the raw ECG signal with respect to
their temporal locations. This ability is of particular interest when the
analyzed waveforms such as ECG (unlike sound waves) are transient
and non-stationary, meaning that the waveforms content has time
specific discontinuities and breakdown points or trends and transients
that might be profoundly meaningful. Mathematically, one can interpret
the result of the WT, W1(s, m)), as a frequency power spectrum with a
time vector and the transform is described mathematically by Eqn. 1.

Wffs; mÞg ¼ f ; Cs;mÞ ¼
Z 1

�1
f tð ÞCs;mðtÞdt

¼
Z 1

�1
f tð Þ 1ffiffiffiffiffijsjp C� t � m

s

� �
dt; (1)

where, in our case, the continuous signal f(t) = ECG is cross correlated
with the Morlet wavelets (Cs,m) of different widths defined by the s

parameter and at different temporal locations along the time axis
governed by the translational parameter m.

2 R E S U S C I T A T I O N P L U S 5 ( 2 0 2 1 ) 1 0 0 0 5 2



The preliminary investigation of this work21 suggested that frequency
modes and trends with respect to time within the ECG signal could be of
high importance for this analysis. However, due to the nature of traditional
wavelet transform, frequency trends on the time-frequency plane are
captured in a somewhat continuous representation; the effect is often
referred to as energy smearing and is illustrated in Fig. 2b. As a result, to
analyze the frequency modes and frequency trends embedded in the raw
ECG signal in a much more precise way with respect to time, we adopted a
modified operator called wavelet synchrosqueezed transform (WSST). As
shown through graphical representation in Fig. 2c, this type of transform
provides a more detailed time-frequency representation from which
instantaneous frequency trends can be extracted more accurately.20,22�25

Knowing that CC were performed at a rate of 1.6Hz (100 CC/min),
WSST was performed with two different scale-dependent frequency
bands (B1 = [1,4]Hz, B2 = [4,17]Hz) on each ECG waveform to allow for
examination of the waveform without CC artifacts separately. A
graphical illustration of the separation can be seen in Fig. 2d and 2e for
an asphyxia sample. The separation is described mathematically by
Eqn. 2, where f(t) = ECG, Cs,m is the mother wavelet with s and m
being the scaling and temporal parameters, respectively. The
bandwidth in Eqn. 2 is defined by the scales [s1, s2], that are derived
from the set bandwidth frequencies [f1, f2].

Wnffs1 � s2; mÞg ¼ f tð Þ; Cs1�s2;mÞ (2)

Next, the obtained WSST coefficient spectrum W2(f (4, 17Hz, m)) of
each ECG segment was quantified numerically with respect to the
frequencyandtime-frequency domains,summarizing thecharacteristics
of each ECG signal for the ML algorithm. These steps are illustrated in
Fig. 3 for a normoxic VF and an asphyxia-associated VF sample. To
obtain the characteristics from each WSST coefficient spectrum with

respect to the frequency domain, the energy Ei(si) was calculated with
respect to each frequency (scale) according to Eqn. 3. This provided a
frequency function shown in Fig. 3c, describing the frequency content in
the ECG signal unique to every ECG segment. The energy function was
described through the magnitude of the most dominant frequency (|E(s)|

max) and the average frequency-bandwidth energy, yielding the first two
characteristic features for each individual sample.

EisÞ ¼ jWiffsi; mÞgj2 (3)

In the following step, the frequency content was explored in the
time-frequency domain to quantify frequency trends in each signal.
Here, the idea was to look at the distribution of the most dominant
frequencies with respect to time. We defined the most dominant
frequencies as the magnitude peaks on the time-frequency plane, as
they appear in Fig. 3d. Since the frequency modulation was kept to a
minimum through a narrow frequency-bandwidth in W1{f (s11 � s12,
m)}, the frequency trends were only calculated for the WSST
coefficient spectrum W2{f(s21�s22, m)}. To preserve the overall trend
of frequencies with respect to time, a polynomial function Eqn. 4 was
fitted to the scattered locations of the peaks in the time-frequency
plane. Next, the distribution of the peaks was quantified in the form of
perpendicular distance from the fitted curve to the location of each
peak. Fig. 3d illustrates this process in a more geometrical
representation for one of the frequency peaks.

ytÞ ¼ at2 þ bt þ c (4)

Using the calculated distances, statistical values were calculated
to summarize the revealed frequency trends in each ECG waveform.
This process was repeated for each ECG signal resulting in six

Fig. 1 – Evaluation Protocol; ETT, endotracheal tube; VF, ventricular fibrillation; CPR, cardiopulmonary resuscitation.

R E S U S C I T A T I O N P L U S 5 ( 2 0 2 1 ) 1 0 0 0 5 2 3



additional features per signal. Hence, the initial ML classifier was
constructed with an input data of 30 samples, each with a set of eight
characteristic features: energy (E2); area under the curve (AUC2);
interquartile range (IQR); median absolute deviation (MAD); central
moment of order two (CM2); range of values (RoV); standard deviation
(StD); and, variance (Var).

Machine learning

Since the task at hand is to classify two different pathophysiologic
paths of the CA, a binomial coarse decision-tree classifier was
selected as the ML model. The learning structure of a decision-tree
classifier is driven by an information-gain heuristic and provides an
efficient method for finding a simple classification model. If the
performance of the decision-tree classifier is decided to be suitable for
a given task, the most important characteristics of the signal can be
easily identified and improved in terms of their effect on accuracy,
generalization, and overfitting of the final classifier.

From the performance of the decision-tree classifier, it was
deduced that interquartile range (IQR) and median absolute deviation
(MAD) features provide the best possible class separation in the
initial classification attempts, as shown in Fig. 4. Since all of these
characteristic values depend on a bandwidth of B2 = [f4, f17], it was safe
to assume that the performance of the classifier depends on the
bandwidth as well. Thus, an optimization technique was developed to
obtain the best possible bandwidth limits [f1, f2]. The accuracy of a tree
classifier model served as the cost function for the optimization, where
the structure of the tree classifier was constrained by the features IQR
and MAD, as shown in Fig. 4. The bandwidth limits [f1, f2] served as
design parameters ranging from 4Hz to 20Hz. The generalized
genetic26 and pattern search27 optimization techniques were used to
obtain the best bandwidth since both methods are relatively robust to
local minima and converge reasonably quick to an optimal solution.
Both optimization techniques yielded similar results.

Giving that this is retrospective data with some limitations imposed
by the original design of the study and small sample size with unknown
inter-patient distribution, we have chosen to rely on error minimization
and generalization optimization with given samples, instead of
extending the data set by synthetic representatives as is often done
with non-medical data sets.26,28 Thus, we address the limited number
of samples by using k-fold cross-validation (k = 8), a widely employed
technique that utilizes all available data for training and evaluation,
ensuring the retention of the high generality principle of any ML
classifier.

Baseline algorithm

Although there currently exists no specific method to differentiate
between the two CA pathophysiologies solely using the ECG signal,
AMSA, a well-established method to predict defibrillation outcome
was adapted and applied to address this problem to principally serve
as a point of comparison to MLWAVE.

Among the different VF waveform parameters, AMSA has
demonstrated in multiple observational and retrospective studies
the correlation between the AMSA value of the VF ECG signal and the

Fig. 2 – a) Original ECG waveform, b) ECG WT coefficient
spectrum W (s,m) with bandwidth B = [1,17]Hz, c) ECG
WSST coefficient spectrum WSST (s, m) with bandwidth B
= [1,17]Hz, d) WSST coefficient spectrum W1 f (s1 s2, m),

with bandwidth B1 = [1,4]Hz, e) WSST coefficient
spectrum W2 f (s1 s2, m), with bandwidth B2 = [4,17]Hz;
ECG, electrocardiogram; WT, wavelet transform; WSST,
wavelet synchrosqueezed transform; B, bandwidth; s,
scale; f, frequency; m, translational parameter.
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success of the defibrillation.29�33 Since the methods including AMSA
values are often used to quantify VF type9,10 as frequently reported in
literature5�7,11�14,34 we have adopted their ECG metrics such as:
mean absolute amplitude, AMSA, most dominant frequency, median
frequency and interquartile bandwidth range, to validate our method.

Evaluation

Theprimarypointsofanalysiswereduringthefirst35sand5s,respectively,
of the VF waveform in both conditions. (A1 and A2, and B1 and B2, Fig. 1.).
The secondary point was during the 5s, 30s after initiation of resuscitation
duringactivechestcompressions(C1andC2,Fig.1).Theprimaryoutcome

Fig. 3 – I. VF sample and II. Asphyxia sample; a) original ECG waveform, b) ECG WSST coefficient spectrum W1 f ([4, 12.5]
Hz, m), c) frequency vs. E, d) distribution of peaks on the time-frequency plane; VF, ventricular fibrillation; ECG,
electrocardiogram; WT, wavelet transform; WSST, wavelet synchrosqueezed transform; E, energy; f, frequency; m,
translational parameter.
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was classification accuracy defined as: (((true positives + true negatives)/
number of samples) 100) of MLWAVE technique. The performance of the
MLWAVE technique was compared to the AMSA-based technique using
classification accuracy and AUCROC as a measure of class separability.
Fisher’s exact test was used to compare classification accuracy between
the techniques, while DeLong’s test to compare the ROC.35,36 To account
for within-subject correlation, Generalized Estimation Equation (GEE) with
binary distribution, logit link function and exchangeable working correlation
matrix was applied to compare classification accuracy as a sensitivity
analysis.

Results

The final MLWAVE classification technique was developed using the
8-dimensional input data from each sample. Fig. 5 summarizes the

classification accuracy and AUCROC for MLWAVE and AMSA-based
techniques. The result illustrated that MLWAVE outperformed the
AMSA-based technique in all comparisons, with a perfect perfor-
mance in ECG segments [A1, A2; 35-second sample] (accuracy: 100%
vs. 85.7%; p=0.24, AUCROC: 1.00 vs. 0.82; p=0.24) and a
substantial superiority in shorter ECG segments [B1, B2; 5-second
sample] (accuracy: 92.86% vs. 82.1%; p=0.25, AUCROC: 0.93 vs.
0.86; p=0.13), although the differences were not statistically
significant. The MLWAVE also had higher classification accuracy in
the [C1, C2; 5-second sample] segments, where both VF groups had
CPR performed for 30s, although again, comparisons were not
statistically significant (accuracy: 93.3% vs. 83.3%; p=0.42, AU-
CROC: 0.94 vs. 0.83; p=0.14). The result is consistent with sensitivity
analysis.

Discussion

In this study, we used a sophisticated analytical technique to develop
an MLWAVE technique to discriminate between primary VF and
secondary asphyxia-associated VF with 100% accuracy in approxi-
mately 30s. Such rapid and accurate classification could allow the
provider to tailor CPR interventions to etiology of arrest. To our
knowledge, the presented approach is the first automated decision
support system for this longstanding critical problem.

The high classification accuracy was achieved through comple-
mentary interaction of ML and WSST analysis, which revealed several
essential and previously unknown characteristics embedded in the
ECG waveform. In comparison, the novel MLWAVE technique
performed with higher accuracy than the AMSA-based technique.

One of the reasons why MLWAVE outperformed the AMSA-based
technique lies in the advantages of the applied WT. Despite many
proven applications of AMSA in critical care and particularly in
defibrillation technology, the inherent mathematical limitations of
AMSA bear several weaknesses. The AMSA value is calculated from
the frequency power spectrum obtained through the FFT over a
defined time window. The shortcoming of FFT is that it fails to provide
any time reference to the frequency content in its spectrum. Any
hidden frequency trends, defined as frequency modulation with

Fig. 4 – Structure of the coarse tree classifier with the
most relevant features; VF, ventricular fibrillation;
ASPH, asphyxia; IQR, interquartile range; MAD, median
absolute deviation.

Fig. 5 – Results comparison between the AMSA-based and the developed MLWAVE technique; AMSA, amplitude
spectral area; MLWAVE, Machine Learning Algorithm with Wavelet Energy features of ECG; AUCROC, area under the
receiver operating characteristic curve; VF, ventricular fibrillation; ASPH, asphyxia; N, number of samples.
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respect to time within the ECG signal, remain invisible in the FFT
power spectrum (see Fig. 6a). The wavelet transform, as well as the
wavelet synchrosqueezed transform, provide an elegant solution to
address this drawback by detecting all the time-dependent frequency
modulations that remain undetected in the FFT power spectrum (see
Fig. 6b).

Although WT applications have appeared in the conventional ECG
signal analysis,20,22,23,37�39 most of the ideas reported in this study
had to be reformulated from basic WT concepts to address the VF
patterns. First, utilizing computational optimization of the convoluted
WSST and ML algorithm, we were able to identify relevant frequency
bandwidth to characterize the VF types. The most apparent
characteristics separating the VF waveform types were embedded
in the frequency bandwidth B=[4, 12.5] Hz of the raw ECG signal.
Second, this novel approach provided a way to detect and capture
relevant frequency trends. In comparison to the AMSA-based

technique, the frequency trends added an amendatory dimension
to characterize the VF waveforms, providing a notable advantage to
MLWAVE, as reflected in the results of A1 & A2 and B1 & B2.
Comparing specifically the results of the ECG intervals [B1, B2; 5-
second sample], we showed that even in timely short waveforms,
there exists a correlation between the variances of dominant
frequencies and the VF types. Furthermore, while one might argue
that our selection of A1 & A2 and B1 & B2 for technique assessment is
flawed due to the presence of CPR in A2 & B2 and not in A1 & B1, the
MLWAVE results of ECG intervals as compared in C1 & C2

demonstrate that the technique can classify VF with high accuracy
even when CPR has been provided for 30s in both conditions and
while the intervals C1 & C2, demonstrate that the technique can
classify VF with high accuracy even when CPR has been provided for
30s in both conditions and while intervals C1 and C2 are intrinsically
different, due to the prolonged VF injury in the C1 samples.

Fig. 6 – a) Fast Fourier transform of a 5s ECG segment that underlines the AMSA approach and b) Wavelet
synchrosqueezed transform of the same 5s ECG segment that underlines our approach; ECG, electrocardiogram;
AMSA, amplitude spectral area.
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The potential clinical relevance of our findings deserve mention.
Existing CPR guidelines offer a provider-centric approach that does
not necessarily take into account patient factors such as etiology of
arrest, intra-arrest physiology, or response to resuscitation. In
contrast, there is a growing body of translational and clinical science
suggesting that a personalized approach to resuscitation may
improve outcomes.16,17,40�42 With continued refinement, our
MLWAVE technique could be used to help a provider tailor the
initial resuscitation efforts. For example, patients with asphyxia VF
may respond better to defibrillation attempts after providing CPR to
restore oxygenation/favorable metabolic milieu rather than immedi-
ate defibrillation. Such an approach would be more consistent with a
personalized resuscitation approach and could be used to improve
CA outcomes.

The possible underlying clinical physiologic mechanisms behind
our findings are worthy of comment. It is well known that VF waveform
characteristics such as AMSA are indicative of the underlying
metabolic substrate of the myocardium (e.g., ATP, ADP) and
therefore, the likelihood of defibrillation success.43 Although
completely speculative, it may be that asphyxia prior to VF results
in differential substrate availability across varying regions of the heart.
Such an occurrence would result in more heterogeneity in the VF
frequencies ob- served in these asphyxiated samples.44 Again, while
speculative, this finding of higher variance of VF frequencies have
uncovered the need for further clinical study to discover the underlying
physiologic mechanism of our ML analyses.

This study has some limitations. First, even though MLWAVE had
higher classification accuracy than the AMSA approach for all periods,
we were possibly underpowered (due to small sample size) to detect
statistically significant differences in this work. Thus, to assure
adequate performance on unseen data samples, other ML classifiers,
such as Random Forest that achieve the same performance (A1 vs. A2

accuracy: 28/28 [100%], AUCROC: 1.00) as the presented Decision-
Tree classifier during the development stage but tend to be more
robust to overfitting, should be evaluated as an ML classifier in the
developed MLWAVE technique. Second, although swine are
commonly used for CA models due to their similarities to humans,
validation of our method using human clinical data is necessary to
establish its relevance to clinical care. Third, our MLWAVE technique
cannot provide classification results within the first 5s because it
requires a 5s delay for signal analysis. Although immediate
determination would be ideal, it is likely that such a short delay would
not be clinically important in actual practice. Lastly, since this was a
retrospective analysis, prospective validation of the MLWAVE
technique is required.

Conclusion

This paper introduces a new method that we call MLWAVE to classify
two types of VF arrests, primary normoxic VF and asphyxia-
associated VF. Utilizing the detected and previously unknown
frequency trends within the ECG waveform, MLWAVE could alert
the provider as to whether the event was primary VF versus secondary
asphyxia-associated VF with 100% accuracy in a time period of 35s
and with 92.9% accuracy in 5s. It should be noted that this is the first
documented research project to analyze this critical problem using a
non-invasive method, the significance of which could lead to
personalized tailoring of resuscitation with the goal to improve
outcomes from cardiac arrest.
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