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Abstract: Cancer is a highly heterogeneous disease, which leads to the fact that even the same
cancer can be further classified into different subtypes according to its pathology. With the multi-
omics data widely used in cancer subtypes identification, effective feature selection is essential for
accurately identifying cancer subtypes. However, the feature selection in the existing cancer subtypes
identification methods has the problem that the most helpful features cannot be selected from a
biomolecular perspective, and the relationship between the selected features cannot be reflected. To
solve this problem, we propose a method for feature selection to identify cancer subtypes based
on the heterogeneity score of a single gene: HSSG. In the proposed method, the sample-similarity
network of a single gene is constructed, and pseudo-F statistics calculates the heterogeneity score
for cancer subtypes identification of each gene. Finally, we construct gene-gene networks using
genes with higher heterogeneity scores and mine essential genes from the networks. From the seven
TCGA data sets for three experiments, including cancer subtypes identification in single-omics data,
the performance in feature selection of multi-omics data, and the effectiveness and stability of the
selected features, HSSG achieves good performance in all. This indicates that HSSG can effectively
select features for subtypes identification.

Keywords: cancer subtypes; heterogeneity; single gene; pseudo-F statistic

1. Introduction

Cancer is a complex and highly heterogeneous disease caused by many factors, and its
heterogeneity makes it challenging to target specific therapies for different tumor types [1,2].
The clinical heterogeneity of cancer is traceable to the discovery that morphologically simi-
lar tumors have several subtypes with distinct pathogeneses [3,4]. Therefore, the accuracy
of the cancer subtype is not only meaningful in the development of individualized treat-
ment strategies for patients and understanding of the evolution of the cancer [5–8]. More
importantly, identifying cancer subtypes can provide an understanding of the underlying
molecular mechanisms that can lead to the design of precise therapeutic strategies for effective
cancer management.

With the development of high-throughput sequencing technologies, a large amount
of multi-omics data on various cancers has been generated. A large number of cancer
subtype identification efforts based on multi-omics data have been developed [9–14]. For
example, Guo et al. used a denoising autoencoder to fuse multi-omics data for ovarian
cancer subtype identification [10]. Tang et al. proposed a method based on statistical
moments to reduce the dimension of high-throughput protein omics data to identify cancer
subtypes [12]. Wasito et al. used the combination of kernel classification and SVM to reduce
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the dimension of patient gene expression data and realize the subtypes identification of
lymphoma [14]. However, in using multi-omics data for cancer subtype identification, the
sheer number of genes always results in meaningful information being overwhelmed by
redundant or noisy data. Therefore, deriving or selecting the most discriminatory subset of
genes from tens of thousands of genes is necessary to identify cancer subtypes and reduce
computational costs [15]. So far, most studies have focused on two types of approaches:
feature extraction (FE) and feature selection (FS). The major difference between FS and FE
is that FS retains the original features, whereas FE achieves dimensionality reduction by
compression or mapping. In biology-related studies, exploring the biology mechanism
always requires the identification of marker genes, so FS on biomolecules is more often used
than FE [16]. Nowadays, there are many FS-related methods, such as the most commonly
used differential expression-based gene screening, the Kruskal–Wallis Test, entropy-based
methods, and random forests, among others. However, most of the existing studies do not
consider fusion for each cancer sample specificity from the biomolecular perspective, but
they are based only on differences in numerical patterns of multi-omics data.

Cancer samples are highly heterogeneous and even patients with the same cancer
directly have their unique characteristics [17]. The heterogeneity of cancer samples plays an
important role in understanding and studying the process of cancer development and its
pathogenesis [18–20]. Based on this idea, a small amount of work has applied the specificity
of cancer samples to the identification of cancer subtypes [21–23]. For example, Chen et
al. combined gene expression data and gene interaction networks to identify breast cancer
subtypes by sample-specific perturbations in the biological network [21].

Zhang et al. proposed a cancer subtype identification method based on single-sample
information gain (SSIG), which fused multi-omics data by considering the heterogeneity
of samples to identify breast cancer (BRCA) and kidney clear cell carcinoma (KIRC) [22].
Nakazawa et al. proposed an approach based on sample-specific molecular regulatory
systems to identify cancer subtypes, with good results on lung, gastric, and breast cancer
datasets [23]. The above studies indicate that the specificity of cancer samples is impor-
tant in the identification of cancer subtypes. However, no studies have yet adequately
considered cancer specificity in biomolecules.

A novel method is proposed for feature selection to identify cancer subtypes based on
the heterogeneity score of a single gene: HSSG. The proposed method takes full account of
each sample’s specificity under biomolecules, considering the specific features of cancer
samples under individual genes. In addition, the linkage between the selected genes is
also considered, aiming to select a better subset of genes for cancer subtype identification.
Firstly, a sample similarity network under each gene is constructed based on the differential
expression vector of the cancer sample and normal samples. This takes into account not
only the specific characteristics of each cancer sample but also the specificity of the cancer
samples effectively fused under the genes. Secondly, the pseudo-F statistic is used to
calculate the heterogeneity score of a single gene for cancer subtypes identification. Finally,
a gene–gene network is constructed and analyzed to find possible functional modules,
and the critical genes for cancer subtypes identification are selected. Experiments on the
TCGA data sets show that HSSG has achieved better performance than other popular
feature/gene scoring methods. The overall framework is shown in Figure 1.
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Figure 1. The overall process framework of the HSSG.

2. Materials and Methods
2.1. Data Sources

From the TCGA hub data set of UCSC Xena [24], we obtained RNA-seq data, miRNA-
seq data, and the clinical data of five types of cancer samples, including lung cancer (which
is divided into lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD)),
stomach cancer (STAD), colon cancer (COAD) and thyroid cancer (THCA). The reasons for
the choice of these types of tumors: on the one hand, these types of cancer tumors chosen
are very common types of cancer tumors. There has been a great deal of work done on
these types of tumors. On the other hand, benefiting from the profession of the TCGA
project, researchers have collected a wealth of samples that provide a solid basis for the
calculations of our study. The detailed information of these data is shown in Table 1.

Table 1. Number of samples and genes in five types of cancer.

ID Name Data Type
Sample

Total Genes
Tumor Normal

LUAD Lung Adenocarcinoma RNA-seq 517 56

2050
LUSC Lung Squamous Cell Carcinoma RNA-seq 502 54
STAD Stomach Cancer RNA-seq 350 46
COAD Colon Cancer RNA-seq 288 41
THCA Thyroid Cance RNA-seq 513 59

LUAD Lung Adenocarcinoma miRNA-seq 518 46 1881LUSC Lung Squamous Cell Carcinoma miRNA-seq 478 45
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2.2. Construction of Sample-Similarity Network Based on a Single Gene

In this paper, Cg
i and Sg

j represent the gene expression value of i-th cancer sample and
j-th normal sample under the gene g, respectively(i ∈ [1, N], j ∈ [1, M], N, M represent
the total number of disease samples and normal samples, respectively). Firstly, we can
obtain the differential expression vector Vg

i of each disease sample with all normal samples
in the gene g using the following Equation (1):

Vg
i = Cg

i − Sg
∗, (1)

where Sg
∗ and Vg

i are M× 1, which respectively represents the gene expression value of
all the normal samples and the differential expression between disease sample i under the
gene g (i ∈ [1, N]) . Vg

i can effectively reflect the differences between cancer samples and
normal samples and enrich the data characteristics of cancer samples under a specific gene.

To measure the contribution of a single gene to cancer subtype identification, the
similarity of two differential expression vectors of any two cancer samples with all normal
samples under gene g is calculated, denoted by Dg, which is a similarity network between
cancer samples, using the following Equation (2):

Dg = (dg
st)N×N = (||Vg

s −Vg
t ||2)N×N , (2)

where Vg
s ,Vg

t , respectively, represent the differential expression vectors of the s-th and t-th
cancer samples versus normal samples under gene g(s, t ∈ [1, N]), ||Vg

s −Vg
t ||2 represents

the 2-norm of the two vectors and dg
st is the similarity between s and t under gene g. This

process for constructing the sample similarity network of a single gene is shown in Figure 2.

Single Gene Networks

Construction of sample-similarity network based on single gene

Cancer

C1 C2 C3   CN

g1

g2

...

gm

Normal

S1 S2   SM

g1

g2

...

gm

C1 C2 CN
  

g1

S1 S2
 

 
SM

gm

S1 S2
 

 
SM

g1

C1 C2 CN
  

gm

..
.

C1-S1 C1-S2   C1-SM

C2-S1 C2-S2   C2-SM

CN-S1 CN-S2   CN-SM

..
.

Calculate cancer sample-
sample similarity

 g1 sample similarity network

g1

g1

g1

..
.

C1-S1 C1-S2   C1-SM

C2-S1 C2-S2   C2-SM

CN-S1 CN-S2   CN-SM

..
.

gm

gm

gm

..
.

 gm sample similarity network

Normal

S1 S2   SM

Cancer

C1 C2 C3   CN

g1

g2

...

gm

g1

g2

...

gm

Primary Data Single Gene Networks

Calculate cancer sample-
sample similarity

..
.

..
.

Figure 2. The process for constructing a similarity network of a single gene sample.

2.3. Calculating Heterogeneity Score of Single Gene Based on Pseudo-F Statistics

To describe the contribution of each gene to subtypes identification, pseudo-F statis-
tics [25] is used to calculate the heterogeneity score of each gene for cancer subtypes
identification. Specifically, pseudo-F statistics are based on subtype categories as inputs
and calculated from the similarity matrix of the above-mentioned single gene similarity
networks. Furthermore, it can test the correlation between genes and cancer subtype
classifications. Assuming a total of N samples exist, the formula is as follows:

F =
tr(HGH)

tr[(I−H)G(I−H)]
, (3)

where H = Y(YTY)−1YT is a N × N matrix, Y is a N × 1 vector that indicates N samples
belong to which subtypes (Y = (ym) ym ∈ [1, k], k indicates that there are k cancer sub-
types), G = (I− 1/N11T)A(I− 1/N11T) is the Gower’s centered matrix, A = (ast) =
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(−1/2(dst)2)) (dst ∈ D, D is the sample similarity matrix of a single gene). 1 is a dimen-
sional column vector with element 1, and I is an identity matrix. The contribution of each
gene for subtypes identification is calculated by using pseudo-F statistics. After calculating
the contribution of all genes, we obtain a heterogeneity score for each gene. This score
shows the adequate aggregation degree of different cancer subtype samples under a specific
gene, which can explain the contribution of this gene to cancer subtypes identification.

2.4. Construction of Gene–Gene Network Based on Single Gene Sample-Similarity Network

As cancer is often affected by multiple regulatory modules, we construct a gene–gene
network based on the single gene network obtained above to conform to the biological
regulation law to the greatest extent. Firstly, the genes for constructing the gene-gene
network are screened by the pseudo-F statistic. G̃ = (g̃i) represents the gene order sorted
according to the pseudo-F statistics value. The formula for screening the genes Ĝ that
construct the network is as follows:

Ĝ = (gk)|(ACC = Kmeans(CĜ
∗ )) == max(ACC), (4)

where Ĝ ⊂ G̃ , k ∈ [1, b] (b is the number of selected genes), CĜ
∗ represents the gene

expression matrix of all cancer samples under gene set Ĝ, ACC refers to the accuracy of
K-means clustering [26] with selected genes as features. The genes are selected with the
highest clustering accuracy as the screening genes. Then, after screening genes, those genes
can be used to construct the gene–gene network W, using the following formula:

W = (wqp) = (||Dgq −Dgp ||F)b×b, (5)

where W is b × b matrix indicates the gene–gene network, Dgq , Dgp represents sample-
similar matrices under gene gq and gene gp (gq, gp ∈ Ĝ), respectively, and ||D||F is the
F-norm of matrix D.

2.5. Network Analysis and Module Mining

To identify the critical functional modules of cancer subtypes, we perform the following
operations on the network: firstly, we mined the nodes with the largest degrees in the
network. We believe these nodes play a more critical role in the network [27,28]. Secondly,
the cluster_walktrap function in R (R package igraph 1.3.0) is used to mine the functional
modules in the network [29]. After getting modules by cluster_walktrap function, the modules
are sorted according to the average pseudo-F statistics of each module and the M̃i is used
to represents the i-th gene module in the sorted ordermodules (M̃i ⊂ M̃, M̃ represents all
the sorted order modules). Then, Matthews correlation coefficient (MCC) [30] and RAND
coefficient (RI) [31] are used to measure the performance of the gene modules, and MCC and
RI are defined as follows:

MCC =
TP× TN − FP× FN√

(TP + FP)(FP + FN)(TN + FP)(TN + FN)
, (6)

RI =
TP + TN

TP + FP + TN + FN
, (7)

where TP, FP, TN, and FN mean true positive, false positive, true negative, and false
negative. Finally, we use the following formula to get the needed module genes M̂:

M̂ = (m̂i)| i f ((MCC/RI = Kmeans(C
M̃i+M̃j
∗ )) > (MCC/RI = Kmeans(C

M̃j
∗ )))M̃i ⊂ M̂ (8)

where M̂ ⊆ M̃, C
M̃j
∗ represents the gene expression matrix of all cancer samples under

gene set M̃j, MCC/RI refers to the measurement index of K-means clustering with selected
genes as features. When a module is added, the corresponding gene modules for the
functional module are retained if the clustering indicator increases. If the indicator is
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not added, the community abandons. Finally, we get the genes from module mining for
the network.

2.6. Performance Evaluation Metrics

The performance of the proposed method is evaluated based on accuracy, sensitivity,
and specificity [32]. They are defined as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
, (9)

Sensitivity =
TP

TP + FN
, (10)

Speci f icity =
TN

TN + FP
. (11)

At the same time, the identified gene list was imported into the GO enrichment analysis
and the KEGG pathway enrichment analysis to understand the biological significance of the
selected genes further. In addition, we randomly divided the cancer subtype samples into
training and validation sets in a ratio of 2:1 to test the performance of HSSG. In addition,
the random seeds were set to ensure the reproducibility of the experiments.

Our source code of HSSG is Available online: https://github.com/ubuntu1024/HSSG
(Last visited on 1 August 2022). The main packages and R versions used in the code are: R
version 4.0.5; R package limma 3.46.0; R package readr 2.1.2; R package igraph 1.3.0, etc.

3. Results

To verify the effectiveness of the HSSG, seven data sets of five cancer subtypes from
TCGA were experimented with in three ways: Firstly, on the single omics data of RNA—
seq, HSSG can effectively identify the essential genes and the subtypes in the experiments,
including two subtypes identification and multiple cancer subtypes identification. Secondly,
the multi-omics data before and after HSSG feature selection was applied to the five popular
cancer subtypes identification methods based on the multi-omics data. Moreover, the results
showed that HSSG also performed well in feature selection of multi-omics data for cancer
subtypes identification. Finally, to verify the effectiveness and stability of the genes selected
by HSSG, the cancer samples were divided into two halves, and the normal samples were
placed into the cancer samples as subtypes. Half of the cancer samples and the normal
samples were used as the training set to screen genes using HSSG, and the other half was
used as the verification set to verify the effectiveness and stability of the selected genes. It
can be found that the genes selected by HSSG can effectively distinguish different samples.

3.1. Identification of Cancer Subtypes Based on Single-Omics Data
3.1.1. Result of Identifying Two Cancer Subtypes

The RNA-seq data of lung cancer, including LUAD and LUSC, was involved in this
experiment (the data includes 517 samples of lung adenocarcinoma and 502 samples of
lung squamous cell carcinoma). By the above method, the heterogeneity score of each
gene for the identification of cancer subtypes was calculated, and the genes were sorted
according to the value of pseudo-F statistics. By adding genes as features to theorderfor
clustering, the curve of clustering accuracy with the number of genes is shown by the
red line in Figure 3a. The red line in Figure 3a shows the clustering accuracy curve with
the number of genes added, based on the ranking of each gene’s contribution (pseudo-F
statistic value), with the constant addition of genes. When the number of added genes
reaches 3000, the accuracy rate is the highest (95.1%). At the same time, to highlight the
effectiveness of HSSG in screening essential genes that can identify cancer subtypes, we
compared three different methods for screening genes. The curve of clustering accuracy of
the three methods with the rank of gene addition is shown in Figure 3a. The genes selected
based on the differential expression method were analyzed using the limma differential

https://github.com/ubuntu1024/HSSG
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expression analysis method. The limma package in R language (R package limma 3.46.0)
was used to conduct differential expression analysis on sample data of two cancer subtypes,
and the obtained results were ranked according to logFC. LogFC represented the ratio of
expression levels between two samples (groups). In general, the absolute value of logFC
could be used as the screening criterion for differential genes. The clustering accuracy rate
of random selection averaged the clustering accuracy rates of the corresponding number of
genes after 50 random selections. The figure shows that the accuracy rate of gene clustering
sorted by HSSG screening is higher than that of the other two methods.
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Figure 3. The change curve of cluster accuracy in selecting genes for identifying two subtypes.
(a) Curve of the accuracy of three different gene screening methods changing with that number
of added genes; (b) With the addition of gene modules, the accuracy changed with the number of
adding genes.

Then, the first 3000 genes were used to construct a gene-gene network using the
methods described above. After obtaining the gene-gene network, the weighted adjacency
matrix of the network was normalized, and the threshold was set to 0.7 to remove the edges
where the two genes were far apart. On the one hand, through the analysis of the largest
network degrees, the largest 67 network nodes were obtained (the degree of these nodes
is 2999). On the other hand, module mining also was used on the network. By setting
the random walk step size to 7 in module mining, 28 gene modules could be obtained.
The proposed method for rankingthe gene modules to cluster shows the precision curve
in Figure 3b. And Figure 3b shows the clustering accuracy curve with module genes
accessions after constructing a gene-gene network, based on network mining of functional
modules and ranking modules by average module contribution. It is not difficult to see
that with adding a module, the accuracy of clustering does not continuously increase, but
there is continuous fluctuation after adding specific module genes. To accurately mine the
key gene modules for cancer subtype identification, the Matthews correlation coefficient
(MCC) was used to measure the clustering effect. Matthews correlation coefficient is one
of the practical evaluation indexes to measure the result of the two-classification model.
In the end, six gene modules were retained for 644 genes. The 67 genes were mined by
performing a degree analysis on the constructed gene-gene network to find the gene nodes
with the maximum degree. In addition, the 644 genes were mined for the more important
gene modules by performing module mining of the constructed gene-gene network. Finally,
through the above gene–gene network analysis and module mining, we obtained 67 key
genes and 644 key genes.

To visualize the global expression changes of the selected genes in all cancer sam-
ples,the simple heat maps of the expression values in two different cancer samples of
the screened 67 genes and 644 genes found by module mining were drawn, as shown in
Figure 4. The heat map clearly shows that the expression values of most of the genes based
on the HSSG screen are more significantly different between the LUAD and LUSC subtypes.
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Finally, the clinical information of the samples was used to analyze the survival rate of the
clustering results. As shown in Figure 5a, it was the graph showing the change in sample
survival rate after clustering the 67 genes. The p-value of the survival rate in the schematic
diagram is 0.037 < 0.05, which indicates that there are significant differences between the
two groups. As shown in Figure 5b, the graph shows the change in sample survival rate
after clustering the 644 genes. The p-value of the survival rate in the schematic diagram is
0.029 < 0.05, indicating significant differences between the two groups. They demonstrated
the superior performance of HSSG.

(a) (b)

Figure 4. Simple heat map of gene expression for the genes selected in identifying two cancer
subtypes. (a) The simple heat map of the expression of 644 genes. (b) Simple heat map of the
expression of 67 genes.

To find out whether the genes we found have biological significance, 67 genes and 644
genes were enriched and analyzed, and the results showed in Figure 5c,d. The result of GO
enrichment analysis on 67 genes showed that these genes were mainly related to epidermis
development, regulation of endopeptidase activity, negative regulation of endopeptidase
in biological processes; They were related to connexin complex and gap junction in cell
composition; they were related to endopeptidase inhibitor activity, peptidase inhibitor
activity, endopeptidase regulator activity in molecular function; From the go enrichment
analysis of the above 67 genes, these 67 genes were related to the development of epithelial
cells. However, it is well known that the most significant difference between lung adenocar-
cinoma and lung squamous cell carcinoma is that lung squamous cell carcinoma is mainly
caused by chronic irritation and injury of columnar epithelial cells of the bronchial mucosa,
cilia loss, squamous metaplasia of basal cells, atypical hyperplasia and hypoplasia [33].
They showed, in some ways, the correctness of the screening genes of HSSG. Similarly, the
GO enrichment analysis on 644 genes was also performed. Furthermore, the results were
similar to those of the 67 genes enrichment analysis, mainly related to the development of
epithelial cells.
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（Months） （Months）

（a） （b）
The survival rate of 67 genes clustered using our method The survival rate of 644 genes clustered using our method

（d）
BP

CC

MF

BP

CC

MF

（c）

Figure 5. The survival rate and enrichment analysis of 67 genes and 644 selected genes. (a) The
survival rate schematic of the 67 genes cluster. (b) The survival rate schematic of the 644 genes
cluster. (c) GO enrichment analysis of the 67 genes. (d) GO enrichment analysis and KEGG pathway
enrichment analysis of the 644 genes.

To show the effectiveness of the proposed method, we compared its performance
with the other six popular feature/gene scoring methods, which used Random selection,
Differential Expression selection, Variance-based score, Kruskal–Wallis Test [34], Entropy-
based score, and Random Forest as the gene importance evaluation criterion. Random
selection and differential expression selection methods are consistent with the beginning of
this experiment. The effects of the above methods in selecting 67 genes and 644 genes are
shown in Tables 2 and 3. It can be seen from the Table that HSSG is slightly better than other
feature/gene scoring methods. To compare the performance of HSSG with other popular
feature scoring methods and the degree of overlap between the features selected by the
different methods, we set thresholds for the five popular methods to make them select the
best features. The number of features selected, the accuracy rate, the number of overlaps
between each method and the features selected by HSSG, and the overlap rate are shown
in Table 4 (the Random selection method is the average number of feature overlaps taken
50 times at random). As can be seen from Table 4, HSSG can select relatively few genes
while achieving the final performance. Then, the clustering heatmaps of gene expression
values for the genes screened by the different methods were drawn to visually compare
the effects of the different methods of gene screening, as shown in Figure 6 (the clustering
heatmaps for random selection are not drawn here because the random selection method
was averaged 50 times at random and the features selected at random were not consistent
each time). In Figure 6, the cancer subtype samples were clustered hierarchically with
genes based on the expression values of the screened genes, respectively, and the clustering
results were subjected to the fisher test. As can be seen from the figure, the HSSG test with
the smallest p-value (p = 2.23e−75) obtained the best results.
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Table 2. Comparison with six popular feature scoring methods in selecting 67 genes.

Method Accuracy Sensitivity Specificity

Random selection 70.5% 68.6% 73.1%
Differential

Expression selection 92.8% 97.5% 89.8%

Variance-based score 93.0% 97.9% 89.1%
Kruskal–Wallis Test 93.6% 98.2% 89.9%
Entropy-based score 93.4% 98.2% 89.6%

Random Forest 93.9% 98.0% 90.5%
HSSG 93.91% 98.5% 90.2%

Table 3. Comparison with six popular feature scoring methods in selecting 644 genes.

Method Accuracy Sensitivity Specificity

Random selection 90.8% 92.6% 88.6%
Differential

Expression selection 93.2% 98.4% 89.1%

Variance-based score 94.3% 97.8% 91.2%
Kruskal-Wallis Test 94.4% 98.2% 91.2%
Entropy-based score 94.3% 98.4% 90.7%

Random Forest 94.5% 98.4% 91.2%
HSSG 94.7% 98.9% 91.2%

Table 4. Overlap of the six popular methods with the genes selected by the HSSG.

Method Gene Number Accuracy Overlap Number Overlap RateWith HSSG
Random selection 67 70.5% 0.6 ∗ 0.89%

Differential Expression 79 93.2% 40 50.6%
Variance-based score 71 93.1% 9 12.6%
Entropy-based score 176 93.7% 39 22.1%
Kruskal–Wallis Test 68 93.7% 18 26.0%

Random Forest 81 93.91% 24 29.6%
HSSG 67 93.91% 67 100%

* The average overlap number of 50 randomly selected.

(a) (b)

Figure 6. Cont.
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(c) (d)

(e) (f)

Figure 6. Heat map of gene expression clustering for genes selected by six different methods. (a) The
heat map of HSSG-selected gene expression clustering. (b) The heat map of Variance-selected gene
expression clustering. (c) The heat map of Entropy-selected gene expression clustering. (d) The heat
map of Kruskal-test-selected gene expression clustering. (e) The heat map of Differential expression-
selected gene expression clustering. (f) The heat map of Random Forest-selected gene expression
clustering.

In addition, 79 genes selected by Differential Expression were enriched for analysis to
explore how the biological significance of the genes selected by the HSSG differs from the
commonly used differential expression-based approach. The differential expression-based
gene enrichment analysis is shown in Figure 7 and the HSSG screened genes enrichment
analysis is shown in Figure 5. As can be seen from the figure, the results of the GO en-
richment analysis based on HSSG screening genes and the results of the conventional
differential expression-based GO enrichment analysis are in agreement for a large part.
There are also some inconsistencies, such as embryonic organ morphogenesis in Biologi-
cal Process, complex trimers in Cellular Component; gap junction in Molecular Function
channel activity in Molecular Function, etc. Finally, the HSSG KEGG pathway enrichment
analysis and differential expression-based KEGG pathway enrichment analysis were com-
pleted. We found that the HSSG-selected gene pathways were mainly related to Cell cycle
and Cellular senescence, while the differential expression-based pathways were mainly
related to the estrogen signaling pathway and Staphylococcus aureus infection.
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GO enrichment analysis

KEGG enrichment analysis

BP

CC

MF

Figure 7. The GO enrichment analysis and KEGG pathway enrichment analysis of differentially
expressed screening genes.

3.1.2. Result of Identifying Multiple Cancer Subtypes

After proving the effectiveness of HSSG in the identification of two cancer subtypes,
another experiment was done to verify the recognition effect of HSSG in three or more
cancer subtypes. However, due to the uncertainty of cancer subtypes, it was difficult to find
definite three or more subtypes data of the same cancer. In this experiment, the samples
of three different cancers (350 gastric cancer, 288 colon cancer, and 350 thyroid cancer)
were mixed, and HSSG was used to verify whether different cancer samples could be
effectively distinguished. As the above method, the heterogeneity score of each gene could
be calculated, and the genes were sorted with the score. Then, genes were added in order
as features, and K-means clustering was adopted (clustering into three classes). The change
curve of clustering accuracy is shown in the red line in Figure 8. The meaning of the other
two curves shown in Figure 8 is consistent with that of the above experiment. From the
figure, the accuracy fluctuates first rose to the highest and then decreased with different
numbers of genes added. When the number of genes was added to 500, i.e., When the
top 500 genes in pseudo-F statistics were added, the accuracy reached 99.89%. To further
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enhance the bio-interpretability of the method and improve the gene-gene relationship, the
first 500 genes were selected to construct a gene–gene network.

0.
85
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90

0.
95

1.
00

Clustering Accuracy Change Trend Diagram

Number of Genes

A
cc

ur
ac

y

500 3000 5000 10000 15000 20000

HSSG

Differential Expression

Random selection

Figure 8. The changing curve of the accuracy of three different methods in identifying three cancer
subtypes.

On the one hand, through analyzing the degree distribution of the network, the nodes
with the largest degrees in the network were selected, with 90 full-degree nodes selected.
And the clustering accuracy was 89.3% when the samples were clustered based on these
genes as a feature. (Results from the degrees distribution analysis for the network in this
experiment were not very effective, and these genes were not studied in depth later). On the
other hand, module mining was performed on the network. We got six gene communities
using the cluster_walktrap function and setting the step size to 7. The communities are
sorted according to the average pseudo-F statistic. Then, the Rand Index (RI) was used to
measure the effectiveness of clustering when joining different communities. In the end, 196
community genes could be gained with a cluster accuracy of 99.89% and RI of 0.9986. Then,
the selected genes were compared with the corresponding numbers of genes from the other
six different methodsselected, with the accuracy shown in Table 5. From Table 5, it is not
hard to see that the effect of screening practical features of HSSG is better than the other
methods.

Table 5. Comparison with six popular feature scoring methods in selecting 500 and 196 genes.

Method Gene Number Accuracy

Random selection 500 81.4%
Differential Expression selection 500 95.4%

Variance-based score 500 96.5%
Kruskal–Wallis Test 500 97.4%
Entropy-based score 500 96.6%

Random Forest 500 99.6%
HSSG 500 99.8%

Random selection 196 80.0%
Differential Expression selection 196 96.1%

Variance-based score 196 95.9%
Kruskal–Wallis Test 196 97.1%
Entropy-based score 196 97.8%

Random Forest 196 99.6%
HSSG 196 99.8%
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At the same time, the simple heat maps of the expression values in three different
cancer samples of the 500 genes and the 196 genes screened were shown in Figure 9.
Through the heat maps, it is not difficult to see a significant difference in the expression of
genes screened by HSSG in the samples of three cancer subtypes. Finally, the enrichment
analysis of 196 genes is shown in Figure 10. Through enrichment analysis, it could find that
most of our selected genes were related to gland development, and the KEGG pathway
was also related to thyroid hormone synthesis.

(a) (b)

Figure 9. Simple heat map of gene expression for the selected genes in identifying multiple subtypes.
(a) Simple heat map of 500 genes selected by pseudo-f statistics. (b) Simple heat map of the 196 genes
selected by network module mining.

3.2. The Performance in Feature Selection of Multi-Omics Data

To verify the effectiveness of HSSG in feature selection of multi-omics data, multi-
omics data of LUAD and LUSC was used for this experiment (i.e., binding of RNA-seq
data and miRNA-seq data). HSSG was used to select the features of RNA-seq data and
miRNA-seq data. And the feature selection of RNA-seq data of lung cancer was completed
in the above experiments. The 644 genes selected in the above experiments were used
as the features of RNA-seq data. In the same way, HSSG conducted feature selection on
the miRNA-seq data of lung cancer and finally selected 442 miRNAs as the features of
miRNA-seq data. Then the data without HSSG feature selection and the data with HSSG
feature selection were applied to five popular cancer subtypes identification methods based
on multi-omics data, including COCA [35], LRAcluster [36], ConsensusClustering [37],
iClusterBayes [38], and IntNMF [39], and the results are shown in Table 6. As shown in
Table 6, it can be seen that the effect of each method has been improved after the feature
selection of HSSG.

Table 6. Performance of five popular cancer subtypes identification methods.

Method Accuracy without
Feature Selection

Accuracy after
Feature Selection Increase of Method

COCA [35] 66.8% 92.7% +25.9%
LRAcluster [36] 92.8% 94.6% +1.8%

ConsensusClustering [37] 94.1% 94.8% +0.7%
iClusterBayes [38] 94.2% 94.8% +0.6%

IntNMF [39] 93.9% 95.1% +1.2%



Cells 2022, 11, 2456 15 of 20

GO enrichment analysis

BP

KEGG Pathway enrichment analysis

Figure 10. The GO and KEGG pathway enrichment analysis of 196 obtained gene.

After that, the top 10 miRNA in the mined 442 miRNA with higher heterogeneity
scores based on pseudo-F statistics were carefully studied. Through a literature search, 8
of the top 10 mined miRNAs were closely related to lung cancer, which also proved that
HSSG has good performance in feature selection. The detail of the top 10 miRNA is shown
in Table 7.

Table 7. The detail of the top 10 miRNA in our study.

Number Name of miRNA Heterogeneity Score Verified

1 hsa-mir-205 [40,41] 1847.826056 Yes
2 hsa-mir-149 [42,43] 856.438976 Yes
3 hsa-mir-708-5p [44] 684.3413755 Yes
4 hsa-mir-203a-3p [45] 542.132398 Yes
5 hsa-mir-769-5p [46] 457.3321947 Yes
6 hsa-mir-326 [47] 449.3204298 Yes
7 hsa-mir-6510 424.1914996 No
8 hsa-mir-6512 387.6342542 No
9 hsa-mir-378a-3p [48] 375.8590445 Yes
10 hsa-mir-1271-5p [49] 356.288151 Yes

3.3. The Effectiveness and Stability of the Selected Genes

The above aspects show that HSSG could effectively select features and identify cancer
subtypes. After that, the effectiveness and stability of the selected genes were verified in
this experiment. In this experiment, the 400 thyroid cancer samples were divided equally
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into two groups of 200 samples each. Then, the first 200 cancer samples were then mixed
with 59 normal samples (as a subtype) to obtain a disease set of 259 samples to identify
normal and cancer samples. The heterogeneity score of each gene was calculated, and the
genes were ordered according to the above method’s value. Finally, genes were added
in order as features to conduct K-means clustering, and the change curve of accuracy is
shown in the red line in Figure 11. At the same time, the genes screened out based on the
differential expression method (limma differential expression analysis) were used as the
control, and the curve of change in accuracy is shown in the blue line in Figure 11.

From Figure 11, it is not hard to find that when the number of genes was added to 40 in
the order of pseudo-F statistical values, the cluster accuracy reached the maximum of 82.9%.
And the accuracy of the genes found by HSSG was higher than the genes selected based on
differential expression, which further verified the method’s effectiveness. Through analysis,
the reason for the low accuracy should be that the classification data of normal and cancer
samples is unbalanced, leading to the low accuracy of the experiment.

Finally, as there are too fewer genes to construct gene–gene networks when the
accuracy reaches the maximum, 40 genes were used as features to cluster these 259 samples,
including the last 200 cancer samples and 59 normal samples. The accuracy of clustering
was 81.4%, which proved that the genes we found were still valid for other samples.
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Figure 11. The changing cluster accuracy curve for two different ways to add genes.

4. Discussion

This paper proposes a heterogeneity score of the single gene method, HSSG, to iden-
tify cancer subtypes effectively. First, the sample similarity network of a single gene is
constructed based on the existing data, and the TOP gene that contributes to clustering is
screened out based on the pseudo-F statistic, which improves the accuracy of the experi-
ment. The distance between the two genes is then calculated to build a network of gene
interactions under a particular disease. Through the network analysis, the key genes of
subtypes recognition are found. In addition, K-means are clustered by using the key genes
as the characteristics. We did experiments from three aspects, and the results showed that
our method had a significant effect on the classification of cancer subtypes and mining
the subtype-specific biomarker. The method has strong reusability and can also be used
to identify other cancer subtypes. In addition, HSSG can be used for other applications
besides cancer subtype identification. For example, as HSSG can effectively mine biomark-
ers that identify cancer subtypes, this means that HSSG can also be applied to the mining
of various cancer biomarkers (treating normal samples as subtypes and using HSSG to
mine biomarkers in cancer samples versus normal samples), which will be important for
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cancer-related research. Cancer biomarkers identified by HSSG can also be used as a guide
for cancer screening techniques, such as liquid biopsy-based cancer screening.

Although HSSG has the above advantages, it also has some shortcomings: on the one
hand, the number of key genes in constructing a gene–gene network is judged subjectively
according to the accuracy curve, which may not show the optimal effect of the model;
On the other hand, the proposed method will calculate the heterogeneity score of each
gene, which leads to a little high time complexity of the whole model. At the same time,
parts of the approach can be studied further: we will find that the methods can find
genes that effectively distinguish between different cancer subtypes, but these genes are
not necessarily disease-causing. The biological significance of these genes can be further
studied. At the same time, the differences between enrichment analysis of HSSG mined
genes and enrichment analysis based on differential expression methods are also areas
where future research could be focused. In future work, we will combine the biological
regulation process, the pathogenic genes of cancer, and the genes found by our method to
analyze the regulation process in the human body.

Finally, we found that the identification of cancer subtypes based on the random
selection of genes was more accurate than the expected random dichotomization or tri-
chotomization, especially in the “Result of identifying multiple cancer subtypes” section.
Here, the phenomenon is discussed and analyzed. On the one hand, clustering samples
by randomly selected genes is different from directly classifying the sample at random.
Although there are fewer genes that contribute significantly to the classification of cancer
subtypes (i.e., fewer genes that are directly associated with cancer subtypes and can be
used as biomarkers for cancer subtypes), there are many genes that differ in trace amounts
across cancer subtypes (i.e., genes that contribute somewhat less to the identification of
cancer subtypes). Due to the complexity of cancer, abnormal expression of some genes
may lead to partial expression differences in some other genes. This potentially makes it
possible that randomly selected feature clustering does not match the expected outcome
of randomly dividing the sample. On the other hand, to explore the distribution of tumor
sample data for different cancers, we have carried out a PCA analysis of three cancerous
tumors and have drawn a PCA plot for the three cancers, as shown in Figure 12. From the
plot, we can see that there are indeed some differences between the three tumor samples.
This may be the reason for the high accuracy of randomly selected features in identifying
cancer subtypes.
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Figure 12. The PCA plot of three different cancer samples.

5. Conclusions

We proposed a new single gene-based feature selection method for cancer subtype
identification and applied it to five cancer samples from TCGA. Calculation of the contri-
bution of a single gene to cancer subtype identification has a significant effect on feature
selection. Subsequently, a gene–gene network was constructed to explain the biological
significance of the genes further and provide a basis for better mining of genes for cancer
subtype identification. In conclusion, a single-gene-based cancer subtype identification
offers new prospects for related research.
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