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Abstract

The present study was designed to assess the relative contribution of each leg to unperturbed bipedal posture in lower limb
amputees. To achieve this goal, eight unilateral traumatic trans-femoral amputees (TFA) were asked to stand as still as
possible on a plantar pressure data acquisition system with their eyes closed. Four dependent variables were computed to
describe the subject’s postural behavior: (1) body weight distribution, (2) amplitude, (3) velocity and (4) regularity of centre
of foot pressure (CoP) trajectories under the amputated (A) leg and the non-amputated (NA) leg. Results showed a larger
body weight distribution applied to the NA leg than to the A leg and a more regular CoP profiles (lower sample entropy
values) with greater amplitude and velocity under the NA leg than under the A leg. Taken together, these findings suggest
that the NA leg and the A leg do not equally contribute to the control of unperturbed bipedal posture in TFA. The
observation that TFA do actively control unperturbed bipedal posture with their NA leg could be viewed as an adaptive
process to the loss of the lower leg afferents and efferents because of the unilateral lower-limb amputation. From a
methodological point of view, these results demonstrate the suitability of computing bilateral CoP trajectories regularity for
the assessment of lateralized postural control under pathological conditions.
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Introduction

In recent years, a growing number of studies have been

designed to explore the dynamical structure of the centre of foot

pressure (CoP) trajectories in terms of entropy (regularity/

predictability) to provide more insight into mechanisms involved

in the control of bipedal unperturbed stance ([1], for a recent

review). Roughly speaking, the more irregular/unpredictable the

series, the greater entropy values [2,3]. Interestingly, thanks to the

computation of CoP entropy, specific postural behaviors induced

either by age [4], health status [5–8], expertise [9,10], postural task

[11], sensory environment [4,8,10,12] and cognitive context

[7,8,10,12,13] have successfully been highlighted. Taken together,

results of these studies have suggested that the regularity of CoP

fluctuation could be considered as a marker of the amount of

attention invested in the control of bipedal unperturbed posture

(see [11], Figure 4), hence justifying the surplus value of CoP

entropy measures in understanding postural control mechanisms.

Computed from the bilateral CoP data, these measures, in

complement to spatio-temporal conventional measures, have

further proven their effectiveness and suitability in disentangling

the relative contribution of the non-paretic and the paretic leg to

the control of unperturbed bipedal posture after stroke [6]. Indeed,

by showing a greater CoP regularity under the non-paretic foot

than the paretic foot, these authors suggested that stroke patients

actively control their unperturbed bipedal posture with their non-

paretic leg. The present study was designed to further investigate

the suitability of computing bilateral CoP trajectories regularity for

the assessment of lateralized postural control in other individuals

suffering from lateralized postural impairment. Among these

pathological populations, persons with unilateral transfemoral

amputation (TFA) are known to exhibit asymmetry in weight

bearing [14–21] and in the patterns of plantar CoP displacements

under their non-amputated (NA) and amputated (A) legs [17–20].

Surprisingly, the control of unperturbed bipedal stance has not

been investigated through the analysis of the dynamical structure

of the CoP in lower limb amputees yet. Considering the above-

mentioned literature ([1] for a recent review), we believe that the

recourse to CoP entropy measures could provide further relevant

information about characterizing the control of unperturbed

bipedal posture in TFA. Within this context, our purpose was to

assess the relative contribution of each leg to unperturbed bipedal

posture in TFA, through the use of the spatio-temporal (CoP

amplitude ACoP and CoP velocity VCoP) and dynamical (CoP

regularity SEnCoP) posturographic measures of CoP trajectories

under each leg [6]. A greater contribution of the NA leg, yielding
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greater amplitude and velocity, accompanied by a more regular

CoP profile under the NA leg than under the A leg, was expected.

Results

As illustrated in Figure 1:

N BW distribution was significantly higher on the NA leg than on

the A leg (t~3:41, Pv0:05, Fig. 1A);

N ACoP was significantly higher the NA leg than on the A leg

(t~6:10, Pv0:001, Fig. 1B);

N VCoP was significantly higher on the NA leg than on the A leg

(t~4:79, Pv0:01, Fig. 1C);

N SEnCoP was significantly lower on the NA leg than on the A

leg (t~{2:82, Pv0:05, Fig. 1D).

Discussion

By separately assessing the posturographic measures of each

foot, the present study showed that the NA leg and the A leg do

not equally contribute to the control of unperturbed bipedal

posture in TFA. To be more precise, two kinds of asymmetry have

been evidenced. The first asymmetry involves the weight bearing,

with the observation of a larger BW distribution applied to the NA

leg than to the A leg (Fig. 1A). This feature, in line with previous

reports [14–21] has been suggested to arise from proprioceptive

and cutaneous loss due to leg amputation. The second asymmetry

concerns the dynamic process aimed at stabilizing unperturbed

bipedal posture. In accordance with previous reports [17–20],

larger ACoP and VCoP values were observed on the NA leg than on

the A leg (Fig. 1B and 1C, respectively). Considering the functional

significance of these two postural parameters [22], these results

could reflect the relative ineffectiveness and the larger amount of

neural control activity required by the TFA to regulate their CoP

under their NA leg, respectively. From a clinical point of view,

such a postural behavior has been suggested to reflect an

adaptation to the loss of the lower leg afferents and efferents

because of the unilateral lower-limb amputation [14,15,17]. The

increase in CoP displacements observed under the NA leg relative

to the A leg could hence reflect enhanced exploratory testing of the

ground movements with sensors of the NA leg’s feet aimed at

providing supplementary somatosensory inputs to the central

nervous system to preserve/facilitate postural control in condition

of somatosensory loss from the amputated leg. Note that a similar

postural response to unilateral neuromuscular perturbation has

recently been observed in young healthy adults subjected to

unilateral muscle fatigue localized at their ankle [23] and hip [24].

It has been suggested that subjects exhibited larger CoP

displacements under their non-fatigued leg than under their

fatigued leg during unperturbed bipedal standing to cope with an

alteration of neuromuscular function induced by a fatiguing

exercise unilaterally localized at their dominant leg’s ankle [23]

and hip muscles [24]. To our knowledge, no previous studies have

investigated this possibility. Interestingly, recourse to the analysis

of the observation of an asymmetry in the dynamical structure of

bilateral CoP trajectories in terms of its regularity allowed to test

this hypothesis, and, hence to provide further significant

information about characterizing the control of unperturbed

bipedal posture in TFA lends support to this assumption. Indeed, a

greater CoP regularity/predictability was noticed under the NA

leg than under the A leg, as indicated by the lower SEnCoP values

reported on the NA leg than on the A leg (Fig. 1D). This result

may seem surprising given that the common expectation is to find

lower SEnCoP values for unhealthy or less adaptable to change

systems [25]. As recently highlighted in the review of [1], the

interpretation of entropy is not straightforward: entropy depends

on automaticity, attention and noise. High values of entropy may

be attributed to expert systems which need not pay attention to

balance and are ready for the unexpected but also to unsustainable

ones which are not able yet to exert an effective attentive control.

This latter case may account for the greater value of entropy

observed under the A leg. Moreover from an attention-control

point of view, the lower SEnCoP values reported on the NA leg

suggests that TFA do actively control unperturbed bipedal posture

with their NA leg. At this point, this postural behaviour could be

considered as an adaptive process that could be common in other

patient populations with lateralized disorders. In this respect, our

results are in line with those recently obtained in stroke patients

[6]. Interestingly, by using the same spatio-temporal (ACoP and

VCoP) and dynamical (CoP regularity, SEnCoP) posturographic

measures of bilateral CoP trajectories we computed in the present

study, these authors have reported a greater relative contribution

of the non-paretic foot to the control of unperturbed bipedal

posture, characterized by a more regular CoP profile with greater

Figure 1. Mean and standard error of the mean body weight distribution (BW distribution) (panel A), the amplitude (ACoP) (panel B),
the velocity (VCoP) (panel C), and the regularity (SEnCoP) (panel D) of centre of foot pressure (CoP) trajectories under the non-
amputated (NA) leg (white bars) and the amputated (A) leg (black bars). The P-values for comparisons between postural parameters
computed from the NA leg and those computed from the A leg are reported (� : Pv0:05; �� : Pv0:01; � � � : Pv0:001).
doi:10.1371/journal.pone.0019661.g001
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amplitude and velocity under the non-paretic foot than under the

paretic foot. Taken together, the above-mentioned results and ours

evidence that the relative contribution of the non-affected and the

affected leg to the control of unperturbed bipedal posture, quantified

by the amplitude, velocity and regularity of the bilateral CoP

trajectories, can be modified after a neurological (stroke) [6] or

traumatic event (lower limb amputation) (the present study). From a

methodological point of view, these results further demonstrate the

suitability of computing bilateral CoP trajectories regularity for the

assessment of lateralized postural control under pathological

conditions. Within this context, to further investigate the generaliza-

tion of these results, a future experiment involving patients with

Parkinson’s disease, who also have demonstrated asymmetry in

postural control between their feet [26], is included in our immediate

plans. Finally, it is important to mention that, considering the

importance of foot position on CoP-based measures [27,28], the

experimental procedure used in the present study involved a

standardized foot position. Along these lines, it is possible that this

imposed upright posture (i.e., feet parallel and separated by the same

distance for each participant) could have been quite different from a

free and/usual bipedal posture for some participants and could have

contributed to specific postural behaviour regarding the relative

contribution of the NA and A legs to the control of unperturbed

bipedal posture. This specific issue deserves further investigation

which is included in our immediate plans.

Materials and Methods

Subjects
Eight unilateral trans-femoral amputees (TFA) (mean age:

26:1+13:5 years; cause of amputation: 8 trauma; mean time since

amputation: 5:8+2:5 years) voluntarily participated in this study.

The study was conducted in accordance with the Declaration of

Helsinki and was approved by the national ethics committee (Socit

Française des Technologies pour l’Autonomie et de Grontechno-

logie). Participants gave their informed written consent to the

experimental procedure. Inclusion criteria were age 20{40 years, a

unilateral traumatic trans-femoral amputation at least 1 year earlier,

the use of a prosthesis on a daily basis, the ability to stand with a

prosthesis without walking aids for at least 10 min and painless

weight bearing on the prosthesis. Participants were excluded if they

had any medical conditions that could affect their mobility or

balance, such as neurological, orthopaedic or rheumatic disorders,

the use of antipsychotic drugs, antidepressants or tranquilizers, otitis

media. Additional exclusion criteria for TFA included reduced

somatosensory sensibility of the non-amputated leg, ulceration or

pain at the stump, or fitting problems of the prosthesis.

Task and procedure
Subjects stood, eyes closed, on a plantar pressure data

acquisition system (Zebris FDM-S Multifunction Force Measuring

Plate system; sampling frequency: 100 Hz), with feet parallel

separated by 10 cm, and their arms hanging loosely by their sides.

This system includes capacitive force sensors arranged in matrix

form (resolution:
1

2
cm2, accuracy:+5%) allowing the real-time

acquisition of the force distribution under each foot and the

computation of the instantaneous position of the CoP under each

foot. Subject’s task was to stand as still as possible during the trial.

Three 30-s trials were performed. Rest periods of 60-s were

provided between each trial during which subjects were allowed to

sit down. The repeatability of foot placement between trials was

ensured by outlining the feet on the top of the plantar pressure

data acquisition system.

Data analysis
As mentioned above, the plantar pressure data acquisition

system used, allowed the simultaneous recording of the force

distributions and the CoP trajectories under the NA leg and the A

leg. Four dependent variables were then computed to describe the

subject’s postural behavior: (1) body weight (BW) distribution, (2)

amplitude (ACoP), (3) velocity (VCoP) and (4) regularity (SEnCoP) of

centre of foot pressure (CoP) trajectories under the A leg and the

NA leg. First the body weight distribution was determined by

calculating the ratio between the force distribution under each leg

and the total force exerted on the platform, the lot afterwards

multiplied by 100 to obtain a percentage. Concerning the COP

analysis, before calculation, the bilateral CoP data were mean-

centered and denoted x in the medio-lateral and y in the antero-

posterior directions. Given that the effect of filtering on non-linear

analysis is still debated, data were not filtered in this study [4,29].

Then, the resultant distance time series denoted rd was calculated

for each leg as follows [22]: rdi~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i zy2
i

q
for i~1, . . . ,N, where

N is the size of the sample. ACoP, VCoP and SEnCoP were then

derived from the rd time series as recently described by [6].

On the one hand, to quantify the amount of postural sway under

each leg, the root mean square of the CoP displacements (ACoP in

mm) and velocities (VCoP in mm=s) were calculated as follows:

ACoP~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i~1
rd2

i

r
, VCoP~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N{1

XN{1

i~1
(
rdiz1{rdi

Dt
)2

r

where Dt~0:01s On the other hand, to give insights into the

dynamical structure of the CoP trajectories under each leg in terms

of regularity, their respective sample entropy was calculated. To

make this measure size and scale-independent their rd time series

were mean-centered and normalized to unit variance before

calculation. Sample Entropy reflects the amount of regularity or

predictability of a time series by quantifying to what extent a pattern

is likely to repeat more or less within a time series. More precisely it

is the negative natural logarithm of the conditional probability that

two datasets of m points similar within an error tolerance of r% of

the standard deviation of the time series remain similar at the next

point mz1, excluding self-matches. Note that m and r are the

embedded parameters of this non-linear analysis. Their establish-

ment follows an optimization procedure based on a metric of the

efficiency of the entropy estimate which led in our case to select the

couple (m~3, r~0:05). For details about the calculation of Sample

entropy and the optimization procedure of the parameters (m,r),
see [30,31]. ACoP, VCoP and SEnCoP have been related to the

effectiveness of the postural control system, the amount of postural

regulatory activity [22] and to the amount of attention invested in

postural control, respectively [11,12]. Note that these postural

parameters have been recently used for the evaluation of

contribution of each leg to the control of unperturbed bipedal

posture after stroke [6].

Statistical analysis
The means of the three postural measurements recorded were

used for statistical analyses. BW distribution, ACoP, VCoP and

SEnCoP of the NA leg were compared with the A leg through a

paired t-tests. The level of significance was set at Pv0:05.
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