
Oncotarget26100www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/              Oncotarget, 2017, Vol. 8, (No. 16), pp: 26100-26105

Association between echocardiographic structural parameters 
and body weight in Wistar rats
Silvio A. Oliveira-Junior1,*, Paula F. Martinez1,*, William Y.C. Fan2,*, Bruno T. 
Nakatani2,*, Luana U. Pagan2,*, Carlos R. Padovani3,*, Antonio C. Cicogna2,*, Marina P. 
Okoshi2,*, Katashi Okoshi2,*

1School of Physical Therapy, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
2Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
3Botucatu Biosciences Institute, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
*These authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their 
discussed interpretation

Correspondence to: Katashi Okoshi, email: katashi@fmb.unesp.br

Keywords: development, physiological cardiac remodeling, rat, echocardiogram, cardiac structures

Received: November 16, 2016    Accepted: January 26, 2017    Published: February 13, 2017

Copyright: Oliveira-Junior et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT
Background: The association between echocardiographic structural parameters 

and body weight (BW) during rat development has been poorly addressed. We 
evaluated echocardiographic variables: left ventricular (LV) end-diastolic (LVDD) 
and end-systolic (LVSD) diameters, LV diastolic posterior wall thickness (PWT), left 
atrial diameter (LA), and aortic diameter (AO) in function of BW during development. 

Results/Materials and Methods: Male Wistar rats (n = 328, BW: 302–702 g) 
were retrospectively used to construct regression models and 95% confidence 
intervals relating to cardiac structural parameters and BW. Adjusted indexes were 
significant to all relationships; the regression model for predicting LVDD (R2 = 0.678;  
p < 0.001) and AO (R2 = 0.567; p < 0.001) had the highest prediction coefficients 
and LA function the lowest prediction coefficient (R2 = 0.274; p < 0.01). These 
relationships underwent validation by performing echocardiograms on additional rats 
(n = 43, BW: 300–600 g) and testing whether results were within confidence intervals 
of our regressions. Prediction models for AO and LA correctly allocated 38 (88.4%) 
and 39 rats (90.7%), respectively, within the 95% confidence intervals. Regression 
models for LVDD, LVSD, and PWT included 27 (62.7%), 30 (69.8%), and 19 (44.2%) 
animals, respectively, within the 95% confidence intervals.

Conclusions: Increase in cardiac structures is associated with BW gain during rat 
growth. LA and AO can be correctly predicted using regression models; prediction of 
PWT and LV diameters is not accurate.

INTRODUCTION

Animal models are highly relevant in evaluating 
cardiac remodeling under different situations of injury 
and in developing treatment strategies for alleviating 
heart disease in humans [1–3]. Although large mammalian 
species are considered more relevant for simulating human 
disease, rats are commonly used for economic reasons.

Transthoracic echocardiography is a recognized 
safe, reliable, and repeatable diagnostic method which has 
been extensively used to evaluate structural and functional 
cardiac parameters in rats [4]. Being noninvasive in 

nature, it can be used to perform longitudinal studies 
on cardiac remodeling pathophysiology and treatment. 
Baseline echocardiographic values for cardiac anatomy 
and function have been documented for normal adult and 
aged rats [5–7]. 

Cardiac structural parameters such as left ventricular 
(LV) diastolic diameter, LV mass, and left atrial diameter 
are often normalized to body weight to compensate for 
small changes in body mass [8, 9]. However, this does 
not take into account that the relationship between cardiac 
structures and body size is nonlinear [10, 11]. This 
normalization may therefore under or overcorrect for 
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the impact of body size when evaluating rats with severe 
body weight change conditions such as undernutrition, 
obesity, or cardiac and cancer cachexia. To date, the 
relationship between cardiac structures and body weight 
during rat development has not been investigated. This 
study evaluates echocardiographic variables LV end-
diastolic and end-systolic diameters, LV diastolic posterior 
wall thickness, left atrial diameter, and aortic diameter 
in function of body weight during normal development 
in Wistar rats. The high number of ongoing rat cardiac 
remodeling studies in our laboratory allowed us to perform 
this work using a large number of animals [12–14].

RESULTS

Retrospective study

Rat body weight (n = 328) ranged from 302 to 702 g.  
Following descriptive analysis, 36 body mass categories 
were obtained (example: 300–309 g, 310–319 g, etc). 
Different regression models were then built to analyze the 
behavior of LVDD, LVSD, PWT, LA, and AO in function 
of the body weight (Table 1). Confidence intervals for 
each regression model are shown in Figure 1. Adjusted 
indexes were statistically significant for all relationships. 
The regression model for predicting LVDD and aortic 
diameter presented the highest prediction coefficients, 
and the model for predicting left atrial diameter the lowest 
prediction coefficient (Table 1).

Prospective study

To validate the relationships between cardiac 
structural parameters and body weight obtained in 
the retrospective study, we prospectively performed 
echocardiograms on additional rats (n = 43) with body 
weights ranging from 300 to 600 g and tested whether 
results were inside the confidence intervals of our 
regressions. Figure 2 shows parameter percentage values 
included in the 95% confidence intervals. Prediction 
models for aortic diameter and left atrial diameter correctly 
allocated 38 (88.4%) and 39 animals (90.7%), respectively, 
within the 95% confidence intervals. Regression models 
for LVDD and LVSD correctly included 27 (62.7%) and 
30 (69.8%) rats, respectively, and regression function for 
PWT only correctly allocated 19 rats (44.2%). 

DISCUSSION

Transthoracic echocardiography has been 
extensively used to evaluate in vivo cardiac structures and 
ventricular function in rodents. This noninvasive technique 
allows longitudinal studies of cardiac remodeling 
induced by different types of aggression and the effects 
of therapeutic interventions [15–17]. Transthoracic 
echocardiography has also been used to examine cardiac 
remodeling caused by systemic diseases which are 
accompanied by losses or gains in body weight, such as 
undernutrition, cachexia, obesity, and aging [18–21]. In 

Figure 1: Regression models and 95% confidence intervals for (A) left ventricular (LV) end-diastolic diameter (LVDD), (B) 
LV end-systolic diameter (LVSD), (C) LV diastolic posterior wall thickness (PWT), (D) aortic diameter (AO), and (E) left 
atrial diameter (LA) in accordance with Wistar rat body weight. Straight line: regression model; dashed lines: superior and inferior 
95% confidence intervals.
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this context, cardiac structures are commonly related to 
body size to establish reference standards for normality 
and permit intergroup comparisons [22–24].

In this study, we aimed to construct 95% confidence 
intervals for normal cardiac structure values in rats with 
body weights ranging from 302 to 702 g. We selected 
echocardiographic parameters of cardiac structures 
that are classical descriptors in several cardiovascular 
conditions [25–27]. Despite linear relationships between 
cardiac structures and body mass in the early growth 
phase, these relationships become complex and nonlinear 

in later development periods up to adulthood. Therefore, 
as expected, all analyzed variables presented nonlinear 
relationships with body weight showing that during 
normal growth, cardiac structures do not increase linearly 
with body mass gain. To the best of our knowledge, this 
is the first study to evaluate associations between cardiac 
structures and body development up to adult age using a 
large sample of rats. 

Although the regression model coefficient of 
determination for LVDD was strongly associated with 
body mass, prospective evaluation found that only 

Table 1: Non-linear regression models for cardiac structures in function of body weight
Regression Coefficient of 

Determination (R2)
P-value Variation Model MSE

LVDD = 9.453–577.331/BW 0.678 p < 0.001 (LVDD)’ = 577.331/BW2 0.0451
LVSD = 4.845–428.215/BW 0.303 p < 0.001 (LVSD)’ = 428.215/BW2 0.1200
PWT = 1.571–43.730/BW 0.256 p < 0.005 (PWT)’ = 43.730/BW2 0.0016
AO = 4.542–289.199/BW 0.567 p < 0.001 (AO)’ = 289.199/BW2 0.0182
LA = 6.012–252.568/BW 0.274 p < 0.01 (LA)’ = 252.568/BW2 0.0749

LVDD: left ventricular (LV) end-diastolic diameter; LVSD: LV end-systolic diameter; PWT: LV posterior wall diastolic 
thickness; AO: aortic diameter; LA: left atrial diameter; BW: body weight; MSE: mean square error.

Figure 2: Percentages of echocardiographic parameters falling within regression model 95% confidence intervals for 
prospectively evaluated Wistar rats with body weights ranging from 300 to 600 g (n = 43). LVDD: left ventricular (LV) 
end-diastolic diameter, LVSD: LV end-systolic diameter, PWT: LV diastolic posterior wall thickness, AO: aortic diameter, LA: left atrial 
diameter. 
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62.8% of LVDD values were within the 95% confidence 
intervals. Similarly, LVSD and PWT regression models 
demonstrated a poor potential for predicting values in 
normal rats (69.8% and 44.2%, respectively). However, 
despite presenting a low coefficient of determination in 
the retrospective study, the left atrial diameter regression 
model produced the best prospective prediction score 
(90.7%). The aortic diameter regression model was also a 
good predictor (88.4%) for normal rats. Therefore, normal 
values for left atrium and aorta diameters can be obtained 
by using our regression models when evaluating Wistar 
rats with different body weights. A similar approach 
was employed by Ahmet et al. [28] using sophisticated 
allometric scaling procedures to evaluate the effects of 
calorie restriction on cardioprotection in Fisher rats. As 
our LV diameter regression models included less than 70% 
of rats in the normal range, we should be careful when 
using mathematical models to estimate values for normal 
LV diameters.

A limitation of this study is that we evaluated only 
male Wistar rats. Therefore, additional studies are required 
to ascertain whether our results are valid for female Wistar 
rats and other rat strains.  

In conclusion, cardiac structure increase is 
associated with body weight gain during Wistar rat 
growth. Left atrial and aortic diameters can be correctly 
predicted using regression models; however, left 
ventricular wall thickness and diameters prediction is not 
accurate. 

MATERIALS AND METHODS

Animals

Two sets of animals were studied. The first set of 
rats was used to perform retrospective analysis and the 
second to prospectively validate results obtained in 
the initial study. All experiments and procedures were 
approved by the Ethics Committee of Botucatu Medical 
School, Sao Paulo State University, UNESP, SP, Brazil, 
and were in accordance with the “Guide for the Care and 
Use of Laboratory Animals” published by the US National 
Institutes of Health.

The retrospective study used data from male 
adult Wistar rats (n = 328) previously evaluated in our 
laboratory. All animals had been housed in a temperature 
controlled room at 23°C to 24°C on a 12-h light/dark cycle 
with free access to water and chow. Rats were euthanized 
at different ages and body weights according to the 
respective experimental protocols. Rats had been weighed 
and subjected to transthoracic echocardiography within 
one or two days of euthanasia.

For the prospective analysis, male Wistar rats  
(200–250 g, 50–60 days old; n = 43) were purchased from the 
Central Animal House at Botucatu Medical School, UNESP, 
and kept as previously described. These rats were assigned 
into seven groups (n = 6–7 per group) for body weight 

evaluation and echocardiogram after achieving the following 
body weights: 300, 350, 400, 450, 500, 550, and 600 g.

Echocardiographic study

Echocardiographic evaluation was performed using 
a commercially available echocardiograph (General 
Electric Medical Systems, Vivid S6, Tirat Carmel, Israel) 
equipped with a 5–11.5 MHz multifrequency probe, as 
previously described [29–31]. Rats were anesthetized 
by intramuscular injection of ketamine (50 mg/kg) and 
xylazine (0.5 mg/kg). Two-dimensional guided M-mode 
images were obtained from parasternal short-axis views of 
the LV just below the tip of the mitral-valve leaflets, and 
at the level of the aortic valve and left atrium. M-mode 
images were printed on a thermal printer (Sony UP-
890MD) at a sweep speed of 200 mm/s. All LV structures 
were manually measured by the same observer (KO) 
using the leading-edge method of the American Society 
of Echocardiography [32]. Mean values were obtained 
from at least five cardiac cycles on M-mode tracings. 
The following structural variables were measured: left 
atrial diameter, aortic diameter, LV end-diastolic and end-
systolic diameters (LVDD and LVSD, respectively), and 
LV diastolic posterior wall thickness (PWT). Intraobserver 
reproducibility of echocardiographic variables has been 
previously published [4].

Statistical analysis

All analyzes were carried out using the SPSS 
statistical software package (Release 6.0 for Windows; 
SPSS, Chicago, IL). In the retrospective study, 
relationships between body mass and echocardiographic 
parameters were determined from dispersion diagrams 
and regression models were constructed [33]. Higher 
coefficient of determination scores (R2) were considered 
for selecting the better prediction model. Using functions 
obtained by regression analysis, 95% confidence intervals 
were built and used to prospectively investigate the 
accuracy of predictive echocardiographic parameters 
values in healthy rats. Statistical significance was accepted 
at P < 0.05. 

Abbreviations

AO: aortic diameter, BW: body weight, LA: left 
atrial diameter, LV: left ventricular, LVDD: left ventricular 
end-diastolic diameter, LVSD: left ventricular end-systolic 
diameter, MSE: mean square error, PWT: left ventricular 
diastolic posterior wall thickness.
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