Data in Brief 11 (2017) 413-427

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

TH1 and TH2 cytokine data in insulin secretagogues users newly diagnosed with breast cancer

Zachary A.P. Wintrob^a, Jeffrey P. Hammel^b, George K. Nimako^a, Dan P. Gaile^c, Alan Forrest^d, Alice C. Ceacareanu^{a,e,*}

^a State University of New York at Buffalo, Dept. of Pharmacy Practice, NYS Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203, United States

^b Cleveland Clinic, Dept. of Biostatistics and Epidemiology, 9500 Euclid Ave., Cleveland, OH 44195, United States

^c State University of New York at Buffalo, Dept. of Biostatistics, 718 Kimball Tower, Buffalo, NY 14214, United States

^d The UNC Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, Campus Box 7569, Chapel Hill, NC 27599, United States

^e Roswell Park Cancer Institute, Dept. of Pharmacy Services, Elm & Carlton Streets, Buffalo, NY 14263, United States

ARTICLE INFO

Article history: Received 30 November 2016 Accepted 17 February 2017 Available online 22 February 2017

Keywords: Type 1T helper cytokine Type 2T helper cytokine TH1 cytokine TH2 cytokine Cytokine Secretagogue Breast cancer Diabetes Cancer outcomes Cancer prognosis

ABSTRACT

Stimulation of insulin production by insulin secretagogue use may impact T helper cells' cytokine production. This dataset presents the relationship between baseline insulin secretagogues use in women diagnosed with breast cancer and type 2 diabetes mellitus, the T-helper 1 and 2 produced cytokine profiles at the time of breast cancer diagnosis, and subsequent cancer outcomes. A Pearson correlation analysis evaluating the relationship between T-helper cytokines stratified by of insulin secretagogues use and controls is also provided.

© 2017 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

DOI of original article: http://dx.doi.org/10.1016/j.cyto.2016.10.017

* Corresponding author at: State University of New York at Buffalo, Department of Pharmacy Practice, NYS Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203, United States. Fax: +1 716 849 6651. *E-mail address:* ACC36@BUFFALO.EDU (A.C. Ceacareanu).

http://dx.doi.org/10.1016/j.dib.2017.02.044

2352-3409/© 2017 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Subject area More specific sub- ject area	Clinical and Translational Research Biomarker Research, Cancer Epidemiology
Type of data	Tables
How data was acquired	Tumor registry query was followed by vital status ascertainment, and med- ical records review
	Luminex [®] -based quantitation from plasma samples was conducted for the following T-helper 1 and T-helper 2 cytokines: Interleukine-2, soluble
	interleukine-2 receptor α , interleukine-12 subunit p40, interleukine-12
	subunit p70, interferon α 2, interferon γ , chemokine ligand 10 (interferon gamma-induced protein 10), chemokine ligand 9 (monokine-induced by
	interferon γ), chemokine ligand 8 (interleukine-8) interleukine-5, inter- leukine-10, and interleukine-13.
	A Luminex [®] 200 TM instrument with Xponent 3.1 software was used to
Data format	acquire all data Analyzed
Experimental	T-helper 1 and 2 produced cytokines were determined from the corre- sponding plasma samples collected at the time of breast cancer diagnosis
Experimental	The dataset included 97 adult females with diabetes mellitus and newly
features	diagnosed breast cancer (cases) and 194 matched controls (breast cancer only). Clinical and treatment history were evaluated in relationship with cancer outcomes and factor-beloer 1 and 2 produced cytokine profiles A
	cytokine correlation analysis was also performed.
Data source location	United States, Buffalo, NY - 42° 53' 50.3592"N; 78° 52' 2.658"W
Data accessibility	The data is with this article

Specifications Table

Value of the data

- This dataset represents the observed relationship between insulin secretagogues use, circulating Thelper 1 and 2 produced cytokines at breast cancer diagnosis and cancer outcomes
- Presented data has the potential to guide future research exploring the potential use of insulin secretagogues in the modulation of type 1 and type 2 immunity
- Our observations can assist further research exploring the relationship between insulin secretagogues use and T-helper-driven signaling in the occurrence of breast cancer.

1. Data

Reported data represents the observed association between pre-existing use of injectable insulin before breast cancer diagnosis and the T-helper 1 and 2 produced cytokine profiles upon cancer diagnosis in women with both breast cancer and diabetes mellitus (Table 1). Data in Table 2 includes the observed correlations between T-helper 1 and 2 cytokines stratified by diabetes mellitus pharmacotherapy and controls.

2. Experimental design, materials and methods

Evaluation of the association between profiles of T-helper 1 and 2 produced cytokines, injectable insulin use and BC outcomes was carried out under two protocols approved by both Roswell Park Cancer Institute (EDR154409 and NHR009010) and the State University of New York at Buffalo

Table 1T-Helper 1 and 2 produced cytokines' associations with secretagogue use.

Biomarker	Biomarker Grouping	Concentration (ng/ml)	Control	No Secretagogue	Any Secretagogue	Unadjuste	ed p-value (MVP)	
						p^1	p ²	p ³	Global Tesr
IL-2 (pg/ml)	Median (25th-75th) OS-Based Optimization DFS-Based Optimization	- 0.10 to 34.18 35.37 to 516.64 0.10 to 1.94 1.99 to 516.64	1.60 (1.60–3.2) 189 (97.4%) 5 (2.6%) 131 (67.5%) 63 (32.5%)	1.60 (1.60-3.46) 43 (91.5%) 4 (8.5%) 29 (61.7%) 18 (38.3%)	1.60 (1.60-3.20) 49 (98.0%) 1 (2.0%) 34 (68.0%) 16 (32.0%)	$\begin{array}{c} 0.420 \\ (0.100) \\ 0.080 \\ (0.080) \\ 0.450 \\ (0.440) \end{array}$	$\begin{array}{c} 0.760 \\ (0.970) \\ 1.000 \\ (0.780) \\ 0.950 \\ (0.660) \end{array}$	0.400 (0.300) 0.200 (0.080) 0.520 (0.510)	0.650 (0.170) 0.140 (0.180) 0.730 (0.660)
sIL-2Rα (pg/ml)	Median (25th–75th) Quartiles	- 0.00 to 1.60 1.70 to 7.00 7.12 to 57.42 57.68 to ALQ	3.20 (1.60-47.32) 84 (43.3%) 16 (8.2%) 50 (25.8%) 44 (22.7%)	6.38 (1.60-98.14) 20 (42.6%) 4 (8.5%) 7 (14.9%) 16 (34.0%)	12.07 (1.60-60.42) 16 (32.0%) 6 (12.0%) 15 (30.0%) 13 (26.0%)	0.430 (0.100) 0.270	0.240 (0.630) 0.460	0.880 (0.230) 0.270	0.430 (0.210) 0.350
	OS-Based Optimization DFS-Based Optimization	0.00 to 63.34 63.37 to ALQ* 0.00 to 62.50 62.65 to ALQ*	155 (79.9%) 39 (20.1%) 153 (78.9%) 41 (21.1%)	32 (68.1%) 15 (31.9%) 32 (68.1%) 15 (31.9%)	37 (74.0%) 13 (26.0%) 37 (74.0%) 13 (26.0%)	0.080 (0.070) 0.120 (0.120)	0.370 (0.070) 0.460 (0.100)	0.520 (0.900) 0.520 (0.900)	0.190 (0.100) 0.270 (0.160)
IL-12p40 (pg/ml)	Median (25th-75th) Quartiles OS-Based	- 1.25 to 3.20 3.94 to 9.74 9.94 to 30.67 30.92 to 2045.71 1.25 to 3.12	8.16 (1.75-30.81) 74 (38.1%) 29 (14.9%) 42 (21.6%) 49 (25.3%) 53 (27.3%)	16.02 (4.59–41.28) 11 (23.4%) 7 (14.9%) 15 (31.9%) 14 (29.8%) 8 (17.0%)	10.10 (3.39-28.42) 13 (26.0%) 12 (24.0%) 15 (30.0%) 10 (20.0%) 9 (18.0%)	0.110 (0.090) 0.230 0.150	0.430 (0.560) 0.160 0.180	0.400 (0.110) 0.560 0.900	0.230 (0.180) 0.190 0.180
	Optimization DFS-Based Optimization	3.20 to 2045.71 1.25 to 3.12 3.20 to 2045.71*	141 (72.7%) 53 (27.3%) 141 (72.7%)	39 (83.0%) 8 (17.0%) 39 (83.0%)	41 (82.0%) 9 (18.0%) 41 (82.0%)	(0.210) 0.150 (0.210)	(0.210) 0.180 (0.210)	(0.480) 0.900 (0.480)	(0.320) 0.180 (0.320)
IL-12p70 (pg/ml)	Median (25th-75th) OS-Based Optimization	- 0.10 to 0.59 0.70 to 2510.07	1.60 (1.60–3.20) 5 (2.6%) 189 (97.4%)	3.20 (1.60-7.06) 2 (4.3%) 45 (95.7%)	2.12 (1.60-4.40) 4 (8.0%) 46 (92.0%)	0.013 (0.023) 0.620 (0.460)	0.440 (0.980) 0.090 (0.190)	0.190 (0.270) 0.680 (0.740)	0.047 (0.053) 0.140 (0.450)

Biomarker Grouping	Concentration (ng/ml)	Control

Biomarker	Biomarker Grouping	Concentration (ng/ml)	Control	No Secretagogue	Any Secretagogue	Unadjuste	ed p-value (MVP)	
						p ¹	p ²	p ³	Global Tesr
DFS-Based	0.10 to 2.20	120 (61.9%)	20 (42.6%)	25 (50.0%)	0.018	0.130	0.460		0.033
Optimization	2.28 to 2510.07	74 (38.1%)	27 (57.4%)	25 (50.0%)	(0.033)	(0.380)	(0.420)		(0.100)
IFN- $\alpha 2$ (pg/ml)	Median	_	7.24	7.39	8.00	0.460	0.300	0.980	0.510
	(25th-75th)		(3.20-13.61)	(3.20-22.78)	(3.87-16.94)	(0.230)	(0.830)	(0.270)	(0.410)
	Quartiles	0.61 to 1.60	56 (28.9%)	15 (31.9%)	12 (24.0%)	0.390	0.790	0.680	0.710
	C	3.47 to 7.40	42 (21.6%)	9 (19.1%)	12 (24.0%)				
		7.43 to 15.15	52 (26.8%)	8 (17.0%)	12 (24.0%)				
		15.32 to 1880.18	44 (22.7%)	15 (31.9%)	14 (28.0%)				
	OS-Based	0.61 to 4.18	63 (32.5%)	17 (36.2%)	13 (26.0%)	0.630	0.380	0.280	0.540
	Optimization	4.18 to 1880.18*	131 (67.5%)	30 (63.8%)	37 (74.0%)	(0.600)	(0.990)	(0.430)	(0.720)
	DFS-Based	0.61 to 2.66	29 (14.9%)	7 (14.9%)	3 (6.0%)	0.990	0.110	0.190	0.240
	Optimization	2.93 to 1880.18	165 (85.1%)	40 (85.1%)	47 (94.0%)	(0.600)	(0.047)	(0.130)	(0.100)
	x					. ,	. ,	. ,	· · /
IFN-γ (pg/ml)	Median	-	13.32	11.26	8.53	0.620	0.140	0.550	0.350
	(25th-75th)		(4.70-36.30)	(3.20-42.84)	(2.80-34.28)	(0.860)	(0.420)	(0.450)	(0.770)
	Quartiles	0.07 to 3.86	42 (21.6%)	13 (27.7%)	18 (36.0%)	0.300	0.120	0.780	0.200
		4.03 to 12.43	50 (25.8%)	11 (23.4%)	12 (24.0%)				
		12.55 to 37.33	56 (28.9%)	8 (17.0%)	8 (16.0%)				
		38.74 to 646.43	46 (23.7%)	15 (31.9%)	12 (24.0%)				
	OS-Based	0.07 to 230.77	188 (96.9%)	44 (93.6%)	49 (98.0%)	0.380	1.000	0.350	0.550
	Optimization	376.09 to 646.43	6 (3.1%)	3 (6.4%)	1 (2.0%)	(0.350)	(0.840)	(0.150)	(0.490)
	DFS-Based	0.07 to 187.14	187 (96.4%)	43 (91.5%)	49 (98.0%)	0.230	1.000	0.200	0.250
	Optimization	206.34 to 646.43*	7 (3.6%)	4 (8.5%)	1 (2.0%)	(0.250)	(0.690)	(0.080)	(0.300)
$CXCI_10$ (IP-10 pg/ml)	Median	_	488	440	470	0.650	0.680	0.910	0.850
	(25th-75th)		(347-814)	(338-728)	(355-662)	(0.990)	(0.210)	(0.170)	(0.350)
	Quartiles	16 to 3448	48 (24 7%)	13 (27.7%)	12 (24.0%)	0.960	0.920	0.950	0.990
	Quartites	3461 to 4843	48(24.7%)	13(27.7%) 11(23.4%)	12 (24.0%)	0.500	0.520	0.550	0.550
		484 5 to 748 4	47(242%)	12 (25 5%)	13 (26.0%)				
		751.0 to 3745.0	51 (26.3%)	11 (23.4%)	11 (22.0%)				
	OS-Based	16 to 428 3	81 (41.8%)	22 (46.8%)	21 (42.0%)	0 530	0 970	0.630	0.820
	Optimization	428.9 to 3745.0*	113 (58 2%)	25 (53 2%)	29 (58 0%)	(0.390)	(0.910)	(0.820)	(0.800)
	DFS-Based	16 to 5491	114 (58.8%)	27 (57.4%)	31 (62.0%)	0.870	0.680	0.650	0.890
	Optimization	549.1 to 3745.0*	80 (41.2%)	20 (42.6%)	19 (38.0%)	(0.830)	(0.440)	(0.500)	(0.680)

CXCL-9 (MIG, pg/ml)	Median	-	274	148	227	0.420	0.730	0.550	0.690
	(25th-75th)		(119-504)	(67-637)	(120-509)	(0.220)	(0.270)	(0.840)	(0.410)
	Quartiles	1.9 to 103.9	46 (23.7%)	17 (36.2%)	10 (20.0%)	0.090	0.600	0.200	0.190
		104.9 to 263.1	47 (24.2%)	10 (21.3%)	16 (32.0%)				
		264.3 to 512.2	55 (28.4%)	6 (12.8%)	11 (22.0%)				
		519.4 to 2691.0	46 (23.7%)	14 (29.8%)	13 (26.0%)				
	OS-Based	1.9 to 120.1	49 (25.3%)	21 (44.7%)	13 (26.0%)	0.010	0.910	0.060	0.027
	Optimization	121.4 to 2691.0*	145 (74.7%)	26 (55.3%)	37 (74.0%)	(0.002)	(0.470)	(0.120)	(0.013)
	DFS-Based	1.9 to 120.1	49 (25.3%)	21 (44.7%)	13 (26.0%)	0.010	0.910	0.060	0.027
	Optimization	121.4 to 2691.0*	145 (74.7%)	26 (55.3%)	37 (74.0%)	(0.002)	(0.470)	(0.120)	(0.013)
CXCL-8 (IL-8, pg/ml)	Median	_	4.44	6.07	5.72	0.008	0.003	0.880	0.001
	(25th-75th)		(2.50-6.86)	(3.90-9.12)	(4.43-8.35)	(0.090)	(0.090)	(0.960)	(0.090)
	Ouartiles	0.36 to 3.07	61 (31.4%)	6 (12.8%)	7 (14.0%)	0.018	0.070	0.920	0.022
	Q	3.15 to 4.89	47 (24.2%)	12 (25.5%)	13 (26.0%)				
		4.91 to 7.53	47 (24.2%)	11 (23.4%)	14 (28.0%)				
		7.68 to 74.69	39 (20.1%)	18 (38.3%)	16 (32.0%)				
	OS-Based	0.36 to 17.15	187 (96.4%)	45 (95 7%)	49 (98.0%)	0.690	1000	0.610	0 800
	Optimization	19.66 to 74.69*	7 (3.6%)	2 (4 3%)	1 (2.0%)	(0.900)	(0.740)	(0.270)	(0.830)
	DFS-Based	0.36 to 17.15	187 (96.4%)	45 (95.7%)	49 (98.0%)	0.690	1.000	0.610	0.800
	Optimization	19.66 to 74.69*	7 (3.6%)	2 (4.3%)	1 (2.0%)	(0.900)	(1.000)	(0.270)	(0.830)
II_{-5} (ng/ml)	Median ng/ml	_	0.48	0.45	0.35	0.610	0.011	0 160	0.043
ie 5 (pg/iii)	$(25th_75th)$		(0.35_0.77)	(0.3-0.77)	(0.3 - 0.57)	(0.680)	(0.320)	(0.100)	(0.320)
	Quartiles	0.08 to 0.30	38 (19.6%)	$(0.5 \ 0.77)$ 17 (36.2%)	$(0.5 \ 0.57)$ 21 (42.0%)	0.017	0.008	0.230	0.005
	Quartites	0.35 to 0.48	76 (39.2%)	8 (17.0%)	14(28.0%)	0.017	0.000	0.250	0.005
		0.55 to 0.40	49 (25.3%)	14 (29.8%)	7(14.0%)				
		0.85 to 118	31 (16.0%)	8 (17.0%)	8 (16.0%)				
	OS-Based	0.08 to 0.38	66 (34.0%)	20 (42 6%)	26 (52 0%)	0 270	0.021	0 350	0.054
	Ontimization	0.45 to 118*	128 (66.0%)	27 (57.4%)	24 (48 0%)	(0.250)	(0.170)	(0.550)	(0.03)
	DFS-Based	0.08 to 0.38	66 (34.0%)	20 (42 6%)	26 (52 0%)	0.250)	0.021	0 350	0.054
	Optimization	0.45 to 118	128 (66.0%)	27 (57.4%)	24 (48.0%)	(0.0250)	(0.170)	(0.540)	(0.180)
II_{-10} (pg/ml)	Median ng/ml	_	1.60	3 20	1 95	0 220	0 800	0 200	0.440
IL-10 (pg/III)	$(25tb_75tb)$		(160-650)	(160 - 1201)	(160 - 4.70)	(0.150)	(0.770)	(0.230)	(0.230)
	Quartiles	0.18 to 1.6	$(1.00 \ 0.55)$	(1.00 - 12.51) 10 ($10 - 12.51$)	(1.00 + .70) 22 (44.0%)	0.330	0.190	0.110	0.180
	Quartites	161 to 178	3 (15%)	0(0%)	22(44.0%)	0.550	0.150	0.110	0.180
		182 to 8.80	J(1.5%)	11 (23 4%)	2(4.0%) 17(34.0%)				
		8 96 to 1107 52	47 (24.7%)	17 (26.2%)	0(18.0%)				
	OS_Based	0.50 to 1157.55	47 (24.2%) 114 (58.8%)	21(30.2%)	28 (56 0%)	0.080	0 720	0.270	0.220
	Optimization	3 20 to 1107 52*	80 (11 2%)	21 (44.7%) 26 (55.3%)	20 (30.0%)	(0.080)	(0.600)	(0.270	(0.220)
	DFS_Rased	0.18 to 1.00	105 (54 1%)	20 (33.3%)	22 (44.0%)	(0.000)	0.000)	0.300)	0.200)
	Ontimization	2 00 to 1197 52*	89 (45 9%)	28 (59.6%)	25 (50.0%)	(0.080)	(0.510)	(0.380)	(0.220)
	opuniization	2.00 to 1137. JJ	03 (43.3%)	20 (33.0%)	23 (30.0%)	(0.000)	(0.510)	(0.500)	(0.220)

417

Biomarker	Biomarker Grouping	Concentration (ng/ml)	Control	No Secretagogue	Any Secretagogue	Unadjuste	ed p-value (MVP)	
						p ¹	p ²	p ³	Global Tesr
IL-13 (pg/ml)	Median, ng/ml (25th–75th) OS-Based Optimization DFS-Based Optimization	- 0.00 to 1.55 1.60 to 1239.25* 0.00 to 1.01 1.16 to 1239.25	1.60 (1.60-4.49) 24 (12.4%) 170 (87.6%) 19 (9.8%) 175 (90.2%)	1.60 (1.60-4.38) 7 (14.9%) 40 (85.1%) 5 (10.6%) 42 (89.4%)	1.60 (1.60-3.13) 8 (16.0%) 42 (84.0%) 5 (10.0%) 45 (90.0%)	0.810 (0.760) 0.640 (0.450) 0.790 (0.720)	$\begin{array}{c} 0.290 \\ (0.330) \\ 0.500 \\ (0.410) \\ 1.000 \\ (0.970) \end{array}$	0.590 (0.140) 0.880 (0.550) 1.000 (0.620)	0.580 (0.520) 0.760 (0.570) 0.960 (0.900)

* Overall survival (OS)- and disease-free survival (DFS)-optimized biomarker ranges associated with poorer outcomes are represented in bold. ALQ= above limit of quantitation. MVP= p-value of the multivariate adjusted analysis. Interleukine-2, IL-2; soluble interleukine-2 receptor α, sIL-2Rα; interleukine-12 subunit p40, IL-12p40; interleukine-12 subunit p70, IL-12p70; interferon α 2, IFN-α2; interferon γ, IFN-γ; chemokine ligand 10, CXCL-10 (interferon gamma-induced protein 10, IP-10); chemokine ligand 9, CXCL-9 (monokine-induced by interferon γ, MIG); chemokine ligand 8, CXCL-8 (interleukine-5, IL-8); interleukine-5, IL-5; interleukine-10, IL-10; interleukine-13, IL-13.

Table 2T-Helper 1 and 2 produced cytokines' correlations by secretagogue use.

			Una	djusted Correlation	l I	Adjusted Correlation			
G 1	D' 1	0	Pearson	95% Confidence	p-value	Pearson	95% Confidence	p-value	
Compared	Biomarkers	All Subjects (n=291)	0 268	0 158 to 0 371	<0.001	0 278	0 168 to 0 381	<0.001	
		Controls (n=194)	0.197	0.058 to 0.379	0.001	0.212	0.072 to 0.344	0.003	
IL-2	sIL-2Rα	No Secretagogue (n=43)	0.486	0.218 to 0.686	< 0.001	0.478	0.196 to 0.687	0.001	
		Any Secretagogue (n=54)	-0.068	-0.330 to 0.204	0.624	-0.024	-0.298 to 0.253	0.865	
		All Subjects (n=201)	0.454	0.257.4-0.540	<0.001	0.454	0.257.4- 0.541	<0.001	
		All Subjects $(n=291)$	0.454	0.357100.540	<0.001	0.454	0.357 10 0.541	<0.001	
IL-2	IL-12p40	No Source $(n=194)$	0.711	0.034 to 0.775	<0.001 0.005	0.722	0.047100.784	<0.001 0.004	
		Any Secretagogue (II-45)	0.411	0.120 to 0.033	0.005 <0.001	0.451	0.138 to 0.055	0.004 <0.001	
		Ally Secretagogue (II-54)	0.072	0.494 10 0.797	<0.001	0.040	0.431 to 0.782	<0.001	
		All Subjects (n=291)	0.250	0.139 to 0.354	<0.001	0.253	0.142 to 0.358	<0.001	
IL-2	IL-12p70	Controls (n=194)	0.461	0.342 to 0.565	<0.001	0.463	0.344 to 0.568	<0.001	
		No Secretagogue (n=43)	0.212	-0.094 to 0.482	0.168	0.243	-0.074 to 0.516	0.126	
		Any Secretagogue (n=54)	0.117	-0.156 to 0.373	0.398	0.096	-0.185 to 0.362	0.501	
		All Subjects (n=291)	0.339	0.233 to 0.437	< 0.001	0.339	0.232 to 0.437	< 0.001	
п2	IEN-a2	Controls (n=194)	0.494	0.380 to 0.594	<0.001	0.493	0.378 to 0.594	< 0.001	
IL-2	II IN-u2	No Secretagogue (n=43)	0.631	0.407 to 0.783	<0.001	0.645	0.417 to 0.796	<0.001	
		Any Secretagogue (n=54)	0.110	-0.162 to 0.367	0.426	0.099	-0.182 to 0.364	0.488	
	All Subjects (n=291)	0.379	0.276 to 0.473	<0.001	0.387	0.285 to 0.481	<0.001		
по	ITNL	Controls (n=194)	0.529	0.419 to 0.623	< 0.001	0.531	0.421 to 0.626	< 0.001	
IL-2	IFIN-γ	No Secretagogue (n=43)	0.604	0.370 to 0.765	< 0.001	0.639	0.409 to 0.793	< 0.001	
		Any Secretagogue (n=54)	0.163	-0.109 to 0.413	0.235	0.146	-0.135 to 0.405	0.305	
		All Subjects (n=291)	-0.027	-0.142 to 0.088	0.641	-0.031	-0.146 to 0.085	0.603	
	IL-2 IFN-γ IL-2 CXCL-10	Controls (n=194)	0.011	-0.130 to 0.152	0.874	0.009	-0.130 to 0.151	0.898	
IL-2	(IP-10)	No Secretagogue (n=43)	-0.059	-0.353 to 0.246	0.706	-0.034	-0.342 to 0.280	0.834	
		Any Secretagogue (n=54)	-0.148	-0.400 to 0.124	0.281	-0.169	-0.424 to 0.055	0.111	
		All Subjects (n=291)	0.192	0.079 to 0.300	0.001	0.183	0.069 to 0.293	0.002	
	CXCL-9	Controls (n=194)	0.170	0.030 to 0.303	0.018	0.160	0.018 to 0.295	0.027	
IL-2	(MIG)	No Secretagogue (n=43)	0.382	0.092 to 0.612	0.010	0.387	0.086 to 0.623	0.012	
		Any Secretagogue (n=54)	-0.029	-0.295 to 0.240	0.832	-0.107	-0.372 to 0.174	0.452	
		All Subjects (n=291)	0.163	0.049 to 0.273	0.005	0.159	0.044 to 0.270	0.007	
	CYCL-8	Controls (n=194)	0.379	0.252 to 0.494	< 0.001	0.396	0.269 to 0.509	<0.001	
IL-2	(IL-8)	No Secretagogue (n=43)	0.333	0.037 to 0.576	0.027	0.317	0.006 to 0.572	0.043	
		Any Secretagogue (n=54)	-0.160	-0.410to 0.113	0.245	-0.224	-0.470 to 0.055	0.111	
		All Subjects (n=291)	0.082	-0.034 to 0.195	0 164	0.080	-0.036 to 0.193	0.177	
		Controls (n=194)	0.060	-0.082 to 0.199	0.406	0.057	-0.086 to 0.197	0.433	
IL-2	IL-5	No Secretagogue (n=43)	0.207	-0.099 to 0.478	0.178	0.216	-0.102 to 0.494	0.176	
		Any Secretagogue (n=54)	-0.069	-0.331 to 0.202	0.616	-0.082	-0.350 to 0.198	0.566	
		,							

IL-2	IL-10	All Subjects (n=291) Controls (n=194) No Secretagogue (n=43) Any Secretagogue (n=54)	0.174 0.553 0.109 0.550	0.060 to 0.283 0.447 to 0.644 -0.197 to 0.397 0.331 to 0.713	0.003 < 0.001 0.482 < 0.001	0.1800.5650.1340.521	0.066 to 0.289 0.460 to 0.654 -0.186 to 0.427 0.286 to 0.696	0.002 <0.001 0.408 <0.001
IL-2	IL-13	All Subjects (n=291) Controls (n=194) No Secretagogue (n=43) Any Secretagogue (n=54)	0.102 0.235 0.213 0.415	-0.013 to 0.214 0.098 to 0.364 -0.093 to 0.483 0.166 to 0.614	0.082 < 0.001 0.166 0.002	0.111 0.241 0.239 0.380	-0.005 to 0.224 0.103 to 0.371 -0.079 to 0.512 0.116 to 0.593	0.059 < 0.001 0.134 0.005
sIL-2Rα	IL-12p40	All Subjects (n=291) Controls (n=194) No Secretagogue (n=43) Any Secretagogue (n=54)	0.355 0.142 0.689 -0.124	0.251 to 0.452 0.001 to 0.277 0.490 to 0.820 -0.379 to 0.149	<0.001 0.048 <0.001 0.371	0.357 0.145 0.720 -0.117	0.252 to 0.454 0.003 to 0.281 0.527 to 0.843 -0.380 to 0.164	<0.001 0.044 <0.001 0.413
sIL-2Rα	IL-12p70	All Subjects (n=291) Controls (n=194) No Secretagogue (n=43) Any Secretagogue (n=54)	0.210 0.009 0.491 -0.006	0.097 to 0.317 -0.132 to 0.150 0.224 to 0.690 -0.273 to 0.262	< 0.001 0.896 < 0.001 0.967	0.2080.0120.5430.025	0.095 to 0.316 -0.130 to 0.154 0.278 to 0.731 -0.253 to 0.298	<0.001 0.868 <0.001 0.862
sIL-2Rα	IFN-α2	All Subjects (n=291) Controls (n=194) No Secretagogue (n=43) Any Secretagogue (n=54)	0.164 0.042 0.665 -0.013	0.050 to 0.274 -0.100 to 0.182 0.455 to 0.804 -0.280 to 0.255	0.005 0.563 < 0.001 0.923	0.165 0.046 0.688 0.026	0.050 to 0.275 -0.096 to 0.187 0.480 to 0.823 -0.251 to 0.300	0.005 0.526 < 0.001 0.854
sIL-2Rα	IFN-γ	All Subjects (n=291) Controls (n=194) No Secretagogue (n=43) Any Secretagogue (n=54)	0.468 0.466 0.569 0.111	0.373 to 0.553 0.348 to 0.569 0.324 to 0.742 -0.161 to 0.368	<0.001 <0.001 <0.001 0.421	0.466 0.469 0.628 0.180	0.371 to 0.552 0.350 to 0.572 0.394 to 0.786 -0.101 to 0.434	<0.001 <0.001 <0.001 0.203
sIL-2Rα	CXCL-10 (IP-10)	All Subjects (n=291) Controls (n=194) No Secretagogue (n=43) Any Secretagogue (n=54)	-0.039 -0.038 -0.052 -0.068	-0.153 to 0.077 -0.178 to 0.104 -0.347 to 0.253 -0.329 to 0.204	0.511 0.599 0.741 0.625	-0.032 -0.027 -0.037 0.016	-0.147 to 0.084 -0.168 to 0.115 -0.344 to 0.278 -0.261 to 0.290	0.587 0.709 0.821 0.912
sIL-2Rα	CXCL-9 (MIG)	All Subjects (n=291) Controls (n=194) No Secretagogue (n=43) Any Secretagogue (n=54)	0.119 0.150 0.104 0.043	0.004 to 0.231 0.009 to 0.285 -0.202 to 0.392 -0.227 to 0.307	0.042 0.036 0.503 0.756	0.123 0.158 0.097 0.066	0.007 to 0.235 0.016 to 0.293 -0.221 to 0.397 -0.213 to 0.336	0.037 0.029 0.549 0.641
sIL-2Rα	CXCL-8 (IL-8)	All Subjects (n=291) Controls (n=194) No Secretagogue (n=43) Any Secretagogue (n=54)	0.146 0.149 0.241 -0.041	0.032 to 0.257 0.008 to 0.284 -0.064 to 0.504 -0.305 to 0.230	0.012 0.038 0.116 0.769	0.155 0.150 0.224 0.055	0.040 to 0.266 0.008 to 0.286 -0.095 to 0.500 -0.224 to 0.326	0.008 0.037 0.161 0.698
sIL-2Rα	IL-5	All Subjects (n=291) Controls (n=194) No Secretagogue (n=43) Any Secretagogue (n=54)	0.091 -0.023 0.660 0.022	-0.024 to 0.204 -0.163 to 0.118 0.449 to 0.802 -0.247 to 0.288	0.121 0.752 < 0.001 0.871	0.092 -0.020 0.678 0.019	-0.023 to 0.206 -0.161 to 0.123 0.465 to 0.817 -0.258 to 0.293	0.117 0.788 < 0.001 0.893

		All Subjects (n=291)	0.236	0.124 to 0.341	< 0.001	0.234	0.122 to 0.340	< 0.001
-II. 2D	II 10	Controls (n=194)	0.054	-0.088 to 0.193	0.456	0.053	-0.090 to 0.193	0.470
sil-2κα	IL-10	No Secretagogue (n=43)	0.496	0.230 to 0.693	<0.001	0.541	0.276 to 0.730	<0.001
		Any Secretagogue (n=54)	-0.029	-0.295 to 0.240	0.833	0.059	-0.221 to 0.329	0.681
		All Subjects (n=291)	0.050	-0.065 to 0.164	0.391	0.046	-0.070 to 0.161	0.433
-II. 2D	11 12	Controls (n=194)	-0.014	-0.155 to 0.127	0.841	-0.019	-0.161 to 0.123	0.792
sil-2Ka	IL-13	No Secretagogue (n=43)	0.438	0.158 to 0.652	0.003	0.489	0.209 to 0.695	0.001
		Any Secretagogue (n=54)	-0.081	-0.341 to 0.191	0.560	-0.015	-0.289 to 0.262	0.919
		All Subjects (n=291)	0.853	0.819 to 0.882	<0.001	0.854	0.819 to 0.883	< 0.001
II_12p40	II_12p70	Controls (n=194)	0.653	0.564 to 0.727	< 0.001	0.655	0.565 to 0.729	< 0.001
1L-12p+0	12-12070	No Secretagogue (n=43)	0.927	0.869 to 0.960	< 0.001	0.930	0.871 to 0.963	<0.001
		Any Secretagogue (n=54)	0.286	0.019 to 0.514	0.034	0.283	0.009 to 0.519	0.041
		All Subjects (n=291)	0.591	0.510 to 0.661	< 0.001	0.590	0.510 to 0.661	<0.001
II_12p40	IFN-a2	Controls (n=194)	0.721	0.645 to 0.782	< 0.001	0.725	0.649 to 0.786	< 0.001
1L-12p+0	1111-02	No Secretagogue (n=43)	0.930	0.875 to 0.962	< 0.001	0.934	0.877 to 0.965	<0.001
		Any Secretagogue (n=54)	0.341	0.081 to 0.558	0.010	0.357	0.090 to 0.576	0.009
		All Subjects (n=291)	0.492	0.399 to 0.574	< 0.001	0.493	0.400 to 0.575	< 0.001
II_12p40	IFN-M	Controls (n=194)	0.473	0.356 to 0.576	< 0.001	0.482	0.365 to 0.584	<0.001
1L-12p+0	11 1 4 -y	No Secretagogue (n=43)	0.755	0.588 to 0.860	< 0.001	0.771	0.604 to 0.873	<0.001
		Any Secretagogue (n=54)	0.209	-0.062 to 0.451	0.126	0.211	-0.068 to 0.460	0.133
		All Subjects (n=291)	0.041	-0.074 to 0.155	0.484	0.044	-0.72 to 0.159	0.458
II_12p40	CXCL-10	Controls (n=194)	0.082	-0.059 to 0.221	0.252	0.077	-0.066 to 0.217	0.290
1L-12p40	(IP-10)	No Secretagogue (n=43)	0.065	-0.240 to 0.358	0.678	0.063	-0.253 to 0.367	0.698
		Any Secretagogue (n=54)	0.113	-0.160 to 0.369	0.414	0.149	-0.132 to 0.408	0.293
		All Subjects (n=291)	0.172	0.058 to 0.281	0.003	0.169	0.054 to 0.280	0.004
II 12p40	040 CXCL-10 (IP-10)	Controls (n=194)	0.248	0.111 to 0.376	<0.001	0.249	0.111 to 0.378	<0.001
1E-12p+0	(MIG)	No Secretagogue (n=43)	0.251	-0.054 to 0.512	0.101	0.259	-0.057 to 0.528	0.103
		Any Secretagogue (n=54)	-0.038	-0.302 to 0.233	0.787	-0.140	-0.400 to 0.141	0.323
		All Subjects (n=291)	0.292	0.183 to 0.394	<0.001	0.295	0.186 to 0.397	<0.001
II12p40	CXCL-8	Controls (n=194)	0.571	0.467 to 0.659	< 0.001	0.572	0.468 to 0.660	<0.001
1E-12p+0	(IL-8)	No Secretagogue (n=43)	0.350	0.055 to 0.588	0.020	0.369	0.065 to 0.611	0.017
		Any Secretagogue (n=54)	-0.050	-0.313 to 0.221	0.720	-0.096	-0.362 to 0.184	0.499
		All Subjects (n=291)	0.297	0.188 to 0.398	<0.001	0.296	0.187 to 0.398	< 0.001
II_12p40	П -5	Controls (n=194)	0.070	-0.071 to 0.209	0.329	0.071	-0.072 to 0.211	0.328
1E-12p+0	IL-5	No Secretagogue (n=43)	0.907	0.833 to 0.949	< 0.001	0.915	0.844 to 0.954	< 0.001
		Any Secretagogue (n=54)	-0.061	-0.323 to 0.210	0.661	-0.086	-0.353 to 0.194	0.545
	p40 IL-5	All Subjects (n=291)	0.909	0.886 to 0.927	<0.001	0.910	0.888 to 0.928	<0.001
IL-12p40	IL-10	Controls (n=194)	0.904	0.874 to 0.927	< 0.001	0.905	0.875 to 0.928	<0.001
12 12p /0	10 10	No Secretagogue (n=43)	0.924	0.864 to 0.958	< 0.001	0.926	0.863 to 0.960	<0.001
		Any Secretagogue (n=54)	0.625	0.428 to 0.764	< 0.001	0.618	0.412 to 0.763	< 0.001

IL-12p40	IL-13	All Subjects (n=291) Controls (n=194) No Secretagogue (n=43) Any Secretagogue (n=54)	0.374 0.444 0.865 0.587	0.271 to 0.469 0.323 to 0.550 0.764 to 0.925 0.379 to 0.739	<0.001 <0.001 <0.001 <0.001	0.376 0.449 0.871 0.578	0.273 to 0.471 0.327 to 0.555 0.768 to 0.930 0.360 to 0.736	<0.001 <0.001 <0.001 <0.001
IL-12p70	IFN-α2	All Subjects (n=291) Controls (n=194) No Secretagogue (n=43) Any Secretagogue (n=54)	0.749 0.944 0.816 0.897	0.693 to 0.795 0.926 to 0.958 0.682 to 0.896 0.828 to 0.939	<0.001 <0.001 <0.001 <0.001	0.749 0.944 0.823 0.898	0.693 to 0.796 0.926 to 0.958 0.688 to 0.903 0.826 to 0.941	<0.001 <0.001 <0.001 <0.001
IL-12p70	IFN-y	All Subjects (n=291) Controls (n=194) No Secretagogue (n=43) Any Secretagogue (n=54)	0.526 0.506 0.678 0.816	0.438 to 0.605 0.393 to 0.604 0.475 to 0.813 0.701 to 0.889	<0.001 <0.001 <0.001 <0.001	0.526 0.508 0.683 0.813	0.437 to 0.605 0.394 to 0.606 0.471 to 0.820 0.693 to 0.890	<0.001 <0.001 <0.001 <0.001
IL-12p70	CXCL-10 (IP-10)	All Subjects (n=291) Controls (n=194) No Secretagogue (n=43) Any Secretagogue (n=54)	0.047 0.059 0.087 0.074	-0.069 to 0.161 -0.082 to 0.199 -0.219 to 0.377 -0.197 to 0.336	0.426 0.411 0.577 0.591	0.053 0.063 0.078 0.050	-0.063 to 0.168 -0.080 to 0.203 -0.239 to 0.380 -0.229 to 0.321	0.367 0.386 0.630 0.725
IL-12p70	CXCL-9 (MIG)	All Subjects (n=291) Controls (n=194) No Secretagogue (n=43) Any Secretagogue (n=54)	0.235 0.377 0.233 -0.061	0.124 to 0.341 0.249 to 0.492 -0.073 to 0.498 -0.324 to 0.210	<0.001 <0.001 0.129 0.660	0.235 0.371 0.250 -0.075	0.123 to 0.342 0.242 to 0.487 -0.067 to 0.521 -0.343 to 0.205	<0.001 <0.001 0.116 0.599
IL-12p70	CXCL-8 (IL-8)	All Subjects (n=291) Controls (n=194) No Secretagogue (n=43) Any Secretagogue (n=54)	0.182 0.203 0.293 0.254	0.069 to 0.291 0.064 to 0.335 -0.008 to 0.545 -0.014 to 0.489	0.002 0.004 0.053 0.061	0.188 0.210 0.260 0.329	0.074 to 0.297 0.070 to 0.342 -0.017 to 0.500 0.019 to 0.581	<0.001 0.003 0.063 0.036
IL-12p70	IL-5	All Subjects (n=291) Controls (n=194) No Secretagogue (n=43) Any Secretagogue (n=54)	0.254 0.030 0.877 -0.042	0.143 to 0.358 -0.111 to 0.171 0.782 to 0.932 -0.306 to 0.229	< 0.001 0.674 < 0.001 0.765	0.255 0.033 0.896 -0.026	0.143 to 0.360 -0.109 to 0.174 0.811 to 0.944 -0.299 to 0.252	<0.001 0.649 <0.001 0.858
IL-12p70	IL-10	All Subjects (n=291) Controls (n=194) No Secretagogue (n=43) Any Secretagogue (n=54)	0.897 0.709 0.970 0.817	0.872 to 0.917 0.631 to 0.773 0.945 to 0.984 0.703 to 0.890	<0.001 <0.001 <0.001 <0.001	0.897 0.709 0.970 0.827	0.872 to 0.918 0.630 to 0.773 0.944 to 0.984 0.714 to 0.898	<0.001 <0.001 <0.001 <0.001
IL-12p70	IL-13	All Subjects (n=291) Controls (n=194) No Secretagogue (n=43) Any Secretagogue (n=54)	0.412 0.375 0.964 0.501	0.312 to 0.503 0.247 to 0.490 0.933 to 0.980 0.269 to 0.677	<0.001 <0.001 <0.001 <0.001	0.413 0.380 0.966 0.492	0.312 to 0.504 0.252 to 0.495 0.936 to 0.982 0.250 to 0.676	<0.001 <0.001 <0.001 <0.001
IFN-α2	IFN-γ	All Subjects (n=291) Controls (n=194) No Secretagogue (n=43) Any Secretagogue (n=54)	0.620 0.571 0.796 0.823	0.544 to 0.686 0.468 to 0.659 0.652 to 0.885 0.713 to 0.894	<0.001 <0.001 <0.001 <0.001	0.622 0.571 0.823 0.821	0.546 to 0.688 0.467 to 0.660 0.688 to 0.903 0.706 to 0.894	<0.001 <0.001 <0.001 <0.001

		All Subjects (n=291)	0.047	-0.068 to 0.161	0.424	0.053	-0.063 to 0.167	0.370
	CXCL-10	Controls (n=194)	0.056	-0.086 to 0.195	0.440	0.0616	-0.081 to 0.202	0.396
IFN-α2	(IP-10)	No Secretagogue (n=43)	0.046	-0.258 to 0.341	0.769	0.064	-0.253 to 0.368	0.694
		Any Secretagogue (n=54)	-0.085	-0.345 to 0.187	0.540	-0.122	-0.385 to 0.159	0.390
		All Subjects (n=291)	0.345	0.240 to 0.443	<0.001	0.342	0.236 to 0.441	< 0.001
UEN L O	CXCL-9	Controls (n=194)	0.413	0.289 to 0.524	< 0.001	0.406	0.280 to 0.518	<0.001
IFN-α2	(MIG)	No Secretagogue (n=43)	0.445	0.167 to 0.657	0.002	0.457	0.169 to 0.673	0.002
		Any Secretagogue (n=54)	-0.096	-0.355 to 0.176	0.486	-0.103	-0.368 to 0.178	0.471
		All Subjects (n=291)	0.397	0.296 to 0.490	< 0.001	0.403	0.302 to 0.496	< 0.001
IEN - 2	CXCL-8	Controls (n=194)	0.396	0.270 to 0.508	< 0.001	0.409	0.283 to 0.521	< 0.001
IFIN-α2	(IL-8)	No Secretagogue (n=43)	0.479	0.209 to 0.681	< 0.001	0.495	0.218 to 0.699	< 0.001
		Any Secretagogue (n=54)	0.258	-0.010 to 0.492	0.057	0.253	-0.025 to 0.494	0.071
		All Subjects (n=291)	0.146	0.032 to 0.257	0.012	0.147	0.032 to 0.258	0.012
IEN . 2		Controls (n=194)	0.043	-0.099 to 0.182	0.554	0.045	-0.097 to 0.186	0.533
IFIN-α2	IL-5	No Secretagogue (n=43)	0.829	0.704 to 0.904	< 0.001	0.831	0.702 to 0.908	<0.001
		Any Secretagogue (n=54)	-0.004	-0.271 to 0.264	0.978	0.008	-0.268 to 0.283	0.956
		All Subjects (n=291)	0.655	0.584 to 0.716	< 0.001	0.657	0.586 to 0.718	<0.001
IEN #2	П 10	Controls (n=194)	0.813	0.758 to 0.855	< 0.001	0.480	0.362 to 0.582	<0.001
IΓIN-02	1L-10	No Secretagogue (n=43)	0.783	0.631 to 0.877	< 0.001	0.790	0.635 to 0.884	<0.001
		Any Secretagogue (n=54)	0.750	0.604 to 0.848	< 0.001	0.760	0.612 to 0.856	<0.001
		All Subjects (n=291)	0.556	0.471 to 0.630	<0.001	0.560	0.475 to 0.635	<0.001
IEN «2	II 12	Controls (n=194)	0.538	0.429 to 0.631	<0.001	0.545	0.437 to 0.637	<0.001
11 ⁻ 1 N -U2	112-13	No Secretagogue (n=43)	0.790	0.642 to 0.881	<0.001	0.803	0.655 to 0.891	<0.001
		Any Secretagogue (n=54)	0.551	0.332 to 0.713	<0.001	0.547	0.320 to 0.715	< 0.001
		All Subjects (n=291)	0.062	-0.054 to 0.175	0.295	0.068	-0.048 to 0.182	0.251
IEN a	CXCL-10	Controls (n=194)	0.085	-0.057 to 0.223	0.239	0.103	-0.040 to 0.241	0.156
11 1 N -7	(IP-10)	No Secretagogue (n=43)	-0.056	-0.351 to 0.248	0.719	-0.079	-0.381 to 0.238	0.626
		Any Secretagogue (n=54)	0.066	-0.206 to 0.328	0.635	0.019	-0.258 to 0.293	0.892
		All Subjects (n=291)	0.287	0.178 to 0.389	<0.001	0.291	0.181 to 0.393	<0.001
IFN-4	CXCL-9	Controls (n=194)	0.358	0.228 to 0.475	< 0.001	0.354	0.224 to 0.473	< 0.001
II IX-7	(MIG)	No Secretagogue (n=43)	0.347	0.053 to 0.587	0.020	0.375	0.071 to 0.614	0.015
		Any Secretagogue (n=54)	-0.033	-0.298 to 0.237	0.812	-0.039	-0.311 to 0.240	0.787
		All Subjects (n=291)	0.432	0.334 to 0.521	< 0.001	0.442	0.344 to 0.530	< 0.001
IFN-9	CXCL-8	Controls (n=194)	0.485	0.370 to 0.586	< 0.001	0.504	0.390 to 0.603	< 0.001
nn i	(IL-8)	No Secretagogue (n=43)	0.325	0.027 to 0.569	0.031	0.347	0.040 to 0.594	0.026
		Any Secretagogue (n=54)	0.192	-0.080 to 0.438	0.160	0.180	-0.100 to 0.434	0.202
		All Subjects (n=291)	0.136	0.022 to 0.247	0.020	0.136	0.021 to 0.248	0.021
IFN-γ	IL-5	Controls (n=194)	0.047	-0.094 to 0.188	0.514	0.049	-0.093 to 0.190	0.497
	12.0	No Secretagogue (n=43)	0.613	0.383 to 0.771	<0.001	0.658	0.436 to 0.805	< 0.001
		Any Secretagogue (n=54)	0.001	-0.267 to 0.269	0.995	0.022	-0.255 to 0.296	0.876

IFN-γ	IL-10	All Subjects (n=291)	0.477	0.383 to 0.561	<0.001	0.476	0.382 to 0.561	<0.001
		Controls (n=194)	0.475	0.358 to 0.577	<0.001	0.480	0.362 to 0.582	< 0.001
		No Secretagogue (n=43)	0.620	0.393 to 0.776	<0.001	0.618	0.380 to 0.780	<0.001
		Any Secretagogue (n=54)	0.681	0.506 to 0.803	<0.001	0.678	0.495 to 0.804	<0.001
IFN-γ	IL-13	All Subjects (n=291)	0.492	0.400 to 0.575	< 0.001	0.490	0.397 to 0.573	< 0.001
		Controls (n=194)	0.503	0.390 to 0.601	<0.001	0.504	0.389 to 0.603	<0.001
		No Secretagogue (n=43)	0.660	0.448 to 0.801	<0.001	0.647	0.420 to 0.798	< 0.001
		Any Secretagogue (n=54)	0.459	0.218 to 0.647	<0.001	0.443	0.190 to 0.640	<0.001
CXCL-10 (IP-10)	CXCL-9 (MIG)	All Subjects (n=291)	0.093	-0.022 to 0.206	0.114	0.102	-0.014 to 0.215	0.084
		Controls (n=194)	0.089	-0.052 to 0.227	0.216	0.097	-0.046 to 0.235	0.183
		No Secretagogue (n=43)	0.213	-0.093 to 0.483	0.165	0.214	-0.104 to 0.493	0.180
		Any Secretagogue (n=54)	0.048	-0.222 to 0.312	0.727	0.082	-0.198 to 0.350	0.565
	CXCL-8 (IL-8)	All Subjects (n=291)	0.108	-0.007 to 0.220	0.065	0.095	-0.021 to 0.208	0.108
CXCL-10		Controls (n=194)	0.121	-0.020 to 0.258	0.092	0.110	-0.032 to 0.248	0.129
(IP-10)		No Secretagogue (n=43)	0.112	-0.195 to 0.399	0.473	0.130	-0.190 to 0.424	0.422
		Any Secretagogue (n=54)	0.005	-0.263 to 0.273	0.970	-0.029	-0.302 to 0.248	0.838
	IL-5	All Subjects (n=291)	0.000	-0.115 to 0.115	0.996	-0.002	-0.117 to 0.114	0.975
CXCL-10		Controls (n=194)	-0.007	-0.148 to 0.134	0.918	-0.013	-0.155 to 0.129	0.857
(IP-10)		No Secretagogue (n=43)	0.049	-0.255 to 0.344	0.755	0.068	-0.249 to 0.372	0.674
		Any Secretagogue (n=54)	-0.167	-0.416 to 0.106	0.224	-0.143	-0.403 to 0.138	0.314
	IL-10	All Subjects (n=291)	0.058	-0.057 to 0.172	0.324	0.061	-0.055 to 0.175	0.302
CXCL-10		Controls (n=194)	0.067	-0.075 to 0.206	0.353	0.070	-0.073 to 0.209	0.338
(IP-10)		No Secretagogue (n=43)	0.107	-0.200 to 0.394	0.493	0.095	-0.224 to 0.394	0.559
		Any Secretagogue (n=54)	0.156	-0.117 to 0.407	0.257	0.124	-0.157 to 0.386	0.385
	IL-13	All Subjects (n=291)	0.140	0.026 to 0.251	0.016	0.144	0.029 to 0.255	0.014
CXCL-10		Controls (n=194)	0.140	-0.001 to 0.275	0.051	0.149	0.008 to 0.285	0.038
(IP-10)		No Secretagogue (n=43)	0.142	-0.165 to 0.424	0.360	0.131	-0.188 to 0.425	0.418
		Any Secretagogue (n=54)	0.270	0.003 to 0.502	0.046	0.253	-0.024 to 0.494	0.070
CXCL-9 (MIG)	CXCL-8 (IL-8)	All Subjects (n=291)	0.118	0.003 to 0.230	0.043	0.122	0.007 to 0.234	0.038
		Controls (n=194)	0.107	-0.035 to 0.244	0.137	0.119	-0.023 to 0.257	0.100
		No Secretagogue (n=43)	0.392	0.104 to 0.620	0.008	0.393	0.093 to 0.628	0.011
		Any Secretagogue (n=54)	-0.052	-0.315 to 0.219	0.710	-0.099	-0.364 to 0.182	0.488
CXCL-9 (MIG)	IL-5	All Subjects (n=291)	0.038	-0.077 to 0.153	0.515	0.037	-0.079 to 0.152	0.527
		Controls (n=194)	-0.025	-0.165 to 0.117	0.734	-0.023	-0.164 to 0.119	0.752
		No Secretagogue (n=43)	0.356	0.062 to 0.593	0.017	0.363	0.058 to 0.606	0.019
		Any Secretagogue (n=54)	0.159	-0.114 to 0.409	0.248	0.140	-0.141 to 0.400	0.324
CXCL-9 (MIG)	IL-10	All Subjects (n=291)	0.149	0.035 to 0.260	0.011	0.153	0.038 to 0.264	0.009
		Controls (n=194)	0.274	0.139 to 0.400	<0.001	0.274	0.137 to 0.400	<0.001
		No Secretagogue (n=43)	0.126	-0.181 to 0.411	0.417	0.138	-0.181 to 0.431	0.393
		Any Secretagogue (n=54)	-0.077	-0.338 to 0.195	0.577	-0.139	-0.399 to 0.142	0.329

CXCL-9 (MIG)	IL-13	All Subjects (n=291)	0.159	0.045 to 0.269	0.006	0.166	0.052 to 0.277	0.004
		Controls (n=194)	0.186	0.047 to 0.319	0.009	0.191	0.051 to 0.324	0.008
		No Secretagogue (n=43)	0.232	-0.073 to 0.498	0.130	0.251	-0.065 to 0.522	0.114
		Any Secretagogue (n=54)	0.069	-0.203 to 0.331	0.619	0.027	-0.251 to 0.300	0.850
CXCL-8 (IL-8)	IL-5	All Subjects (n=291)	0.125	0.010 to 0.237	0.033	0.125	0.010 to 0.237	0.033
		Controls (n=194)	0.107	-0.034 to 0.245	0.135	0.107	-0.036 to 0.245	0.141
		No Secretagogue (n=43)	0.336	0.039 to 0.578	0.025	0.351	0.045 to 0.598	0.024
		Any Secretagogue (n=54)	0.058	-0.213 to 0.320	0.677	0.035	-0.243 to 0.308	0.805
CXCL-8 (IL-8)		All Subjects (n=291)	0.402	0.301 to 0.494	<0.001	0.408	0.307 to 0.500	< 0.001
	II 10	Controls (n=194)	0.672	0.586 to 0.742	< 0.001	0.677	0.592 to 0.747	<0.001
	IL-10	No Secretagogue (n=43)	0.316	0.018 to 0.563	0.036	0.347	0.040 to 0.594	0.026
		Any Secretagogue (n=54)	0.142	-0.131 to 0.395	0.303	0.090	-0.191 to 0.356	0.529
CXCL-8 (IL-8)		All Subjects (n=291)	0.640	0.567 to 0.703	<0.001	0.651	0.579 to 0.713	< 0.001
	п 12	Controls (n=194)	0.687	0.605 to 0.755	<0.001	0.695	0.613 to 0.761	<0.001
	IL-13	No Secretagogue (n=43)	0.366	0.073 to 0.600	0.014	0.398	0.099 to 0.632	0.009
		Any Secretagogue (n=54)	0.012	-0.256 to 0.279	0.929	-0.040	-0.312 to 0.238	0.780
		All Subjects (n=291)	0.308	0.200 to 0.408	<0.001	0.309	0.200 to 0.410	<0.001
IL-5	IL-10	Controls (n=194)	0.134	-0.007 to 0.270	0.270	0.138	-0.004 to 0.275	0.056
		No Secretagogue (n=43)	0.867	0.767 to 0.926	< 0.001	0.887	0.795 to 0.939	< 0.001
		Any Secretagogue (n=54)	-0.111	-0.368 to 0.162	0.422	-0.113	-0.377 to 0.167	0.425
IL-5	IL-13	All Subjects (n=291)	0.134	0.020 to 0.245	0.022	0.134	0.018 to 0.246	0.023
		Controls (n=194)	0.065	-0.076 to 0.204	0.364	0.066	-0.077 to 0.206	0.363
		No Secretagogue (n=43)	0.811	0.675 to 0.893	< 0.001	0.842	0.718 to 0.914	< 0.001
		Any Secretagogue (n=54)	-0.022	-0.288 to 0.247	0.874	-0.019	-0.293 to 0.258	0.894
IL-10	IL-13	All Subjects (n=291)	0.513	0.423 to 0.593	<0.001	0.512	0.422 to 0.593	<0.001
		Controls (n=194)	0.596	0.497 to 0.680	< 0.001	0.601	0.501 to 0.684	<0.001
		No Secretagogue (n=43)	0.942	0.895 to 0.968	<0.001	0.942	0.893 to 0.969	<0.001
		Any Secretagogue (n=54)	0.654	0.468 to 0.784	< 0.001	0.628	0.426 to 0.770	< 0.001

Significant correlations are displayed in bolded text. The differences that are only significant in either adjusted or unadjusted correlations are further denoted by an outline. Interleukine-2, IL-2; soluble interleukine-2 receptor a, SIL-2Ra; interleukine-12 subunit p40, IL-12p40; interleukine-12 subunit p70, IL-12p70; interferon a, IFN-a2; interferon y, IFN-y; chemokine ligand 10, CXCL-10 (interferon gamma-induced protein 10, IP-10); chemokine ligand 9, CXCL-9 (monokine-induced by interferon y, MIG); chemokine ligand 8, CXCL-8 (interleukine-8, IL-8); interleukine-5, IL-5; interleukine-10, IL-10; interleukine-13, IL-13.

(PHP0840409E). Demographic and clinical patient information was linked with cancer outcomes and profiles of T-helper 1 and 2 produced cytokines of corresponding plasma specimen harvested at BC diagnosis and banked in the Roswell Park Cancer Institute Data Bank and Bio-Repository.

2.1. Study population

All incident breast cancer cases diagnosed at Roswell Park Cancer Institute (01/01/2003-12/31/2009) were considered for inclusion (n=2194). Medical and pharmacotherapy history were used to determine the baseline presence of diabetes.

2.2. Inclusion and exclusion criteria

All adult women with pre-existing diabetes at breast cancer diagnosis having available banked treatment-naïve plasma specimens (blood collected prior to initiation of any cancer-related therapy - surgery, radiation or pharmacotherapy) in the Institute's Data Bank and Bio-Repository were included.

Subjects were excluded if they had prior cancer history or unclear date of diagnosis, incomplete clinical records, type 1 or unclear diabetes status. For a specific breakdown of excluded subjects, please see the original research article by Wintrob et al. [1].

A total of 97 female subjects with breast cancer and baseline diabetes mellitus were eligible for inclusion in this analysis.

2.3. Control-matching approach

Each of the 97 adult female subjects with breast cancer and diabetes mellitus (defined as "cases") was matched with two other female subjects diagnosed with breast cancer, but without baseline diabetes mellitus (defined as "controls"). The following matching criteria were used: age at diagnosis, body mass index category, ethnicity, menopausal status and tumor stage (as per the American Joint Committee on Cancer). Some matching limitations applied [1].

2.4. Demographic and clinical data collection

Clinical and treatment history was documented as previously described [1]. Vital status was obtained from the Institute's Tumor Registry, a database updated biannually with data obtained from the National Comprehensive Cancer Networks' Oncology Outcomes Database. Outcomes of interest were breast cancer recurrence and/or death.

2.5. Plasma specimen storage and retrieval

All the plasma specimens retrieved from long-term storage were individually aliquoted in color coded vials labeled with unique, subject specific barcodes. Overall duration of freezing time was accounted for all matched controls ensuring that the case and matched control specimens had similar overall storage conditions. Only two instances of freeze-thaw were allowed between biobank retrieval and biomarker analyses: aliquoting procedure step and actual assay.

2.6. Luminex[®] assays

A total of 12 biomarkers - interleukine-2, soluble interleukine-2 receptor α , interleukine-12 subunit p40, interleukine-12 subunit p70, interferon α 2, interferon γ , chemokine ligand 10 (interferon gamma-induced protein 10), chemokine ligand 9 (monokine-induced by interferon γ), chemokine ligand 8 (interleukine-8), interleukine-5, interleukine-10, and interleukine-13 - were quantified according to the manufacturer protocol. The Luminex[®] HCYTOMAG-60K panel (Millipore Corporation, Billerica, MA) was used in this study.

2.7. Biomarker-pharmacotherapy association analysis

Biomarker cut-point optimization was performed for each analyzed biomarker. Biomarker levels constituted the continuous independent variable that was subdivided into two groups that optimized the log rank test among all possible cut-point selections yielding a minimum of 10 patients in any resulting group. Quartiles were also constructed. The resultant biomarker categories were then tested for association with type 2 diabetes mellitus therapy and controls by Fisher's exact test. The continuous biomarker levels were also tested for association with diabetes therapy and controls across groups by the Kruskall-Wallis test and pairwise by the Wilcoxon rank sum. Multivariate adjustments were performed accounting for age, tumor stage, body mass index, estrogen receptor status, and cumulative comorbidity. The biomarker analysis was performed using R Version 2.15.3. Please see the original article for an illustration of the analysis workflow [1].

Correlations between biomarkers stratified by type 2 diabetes mellitus pharmacotherapy and controls were assessed by the Pearson method. Correlation models were constructed both with and without adjustment for age, body mass index, and the combined comorbidity index. Correlation analyses were performed using SAS Version 9.4.

Funding sources

This research was funded by the following grant awards: Wadsworth Foundation Peter Rowley Breast Cancer Grant awarded to A.C.C. (UB Grant number 55705, Contract CO26588).

Acknowledgements

Authors acknowledge the valuable help of Dr. Chi-Chen Hong with case-control matching.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at http://dx.doi. org/10.1016/j.dib.2017.02.044.

Reference

 Z. Wintrob, J.P. Hammel, T. Khoury, G.K. Nimako, H.-W. Fu, Z.S. Fayazi, D.P. Gaile, A. Forrest, A.C. Ceacareanu, Insulin use, adipokine profiles and breast cancer prognosis, Cytokine (2017) 45–61. http://dx.doi.org/10.1016/j.cyto.2016.10.017.