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Brain Activity Foreshadows Stock Price Dynamics
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Successful investing is challenging since stock prices are difficult to consistently forecast. Recent neuroimaging evidence sug-
gests, however, that activity in brain regions associated with anticipatory affect may not only predict individual choice, but
also forecast aggregate behavior out-of-sample. Thus, in two experiments, we specifically tested whether anticipatory affective
brain activity in healthy humans could forecast aggregate changes in stock prices. Using functional magnetic resonance imag-
ing, we found in a first experiment (n= 34, 6 females; 140 trials/subject) that nucleus accumbens activity forecast stock price
direction, whereas anterior insula (AIns) activity forecast stock price inflections. In a second preregistered replication experi-
ment (n= 39, 7 females) that included different subjects and stocks, AIns activity still forecast stock price inflections.
Importantly, AIns activity forecast stock price movement even when choice behavior and conventional stock indicators did
not (e.g., previous stock price movements), and classifier analysis indicated that forecasts based on brain activity should gen-
eralize to other markets. By demonstrating that AIns activity might serve as a leading indicator of stock price inflections,
these findings imply that neural activity associated with anticipatory affect may extend to forecasting aggregate choice in
dynamic and competitive environments such as stock markets.
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Significance Statement

Many try but fail to consistently forecast changes in stock prices. New evidence, however, suggests that anticipatory affective
brain activity may not only predict individual choice, but also may forecast aggregate choice. Assuming that stock prices index
collective choice, we tested whether brain activity sampled during the assessment of stock prices could forecast subsequent
changes in the prices of those stocks. In two neuroimaging experiments, a combination of previous stock price movements
and brain activity in a region implicated in processing uncertainty and arousal forecast next-day stock price changes—even
when behavior did not. These findings challenge traditional assumptions of market efficiency by implying that neuroimaging
data might reveal “hidden information” capable of foreshadowing stock price dynamics.

Introduction
Although investors strive to forecast changes in stock prices,
most fail to consistently do so. Accordingly, traditional finance
theory implies that investors should not be able to reliably fore-
cast stock prices (Fama, 1970), although behavioral finance

researchers have identified exceptions (Farmer and Lo, 1999;
Barberis and Thaler, 2003; Shiller, 2003; Hirshleifer, 2015).
Forecasting stock prices might prove challenging for many rea-
sons, including random variation in systematic preferences of
investors, as well as arbitrage of naive investors’ systematic pref-
erences by more sophisticated investors (Camerer, 2003;
Barberis, 2018).

Despite the challenge of translating individual predictions
into aggregate forecasts, recent neuroimaging work suggests that
some neural predictors of individual choice might further scale
to forecast aggregate choice (Falk et al., 2012; Knutson and
Genevsky, 2018). For instance, average group neural activity in
laboratory samples has been used to forecast aggregate market
responses to music clips (Berns and Moore, 2012), advertise-
ments (Venkatraman et al., 2015), microloan appeals (Genevsky
and Knutson, 2015), crowdfunding proposals (Genevsky et al.,
2017), news summaries (Scholz et al., 2017), and video clips
(Tong et al., 2020). In some cases, experimentally measured neu-
ral activity can even forecast aggregate choice better than stated
preferences or behavioral choices. These collected findings imply
that some neural processes occurring before individual choices
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may generalize to forecast others’ choices, and may do so more
robustly than other neural processes or even behavior (Knutson
and Genevsky, 2018).

We sought to extend this “neuroforecasting” approach in a
critical new direction by examining whether experimentally
measured brain activity can forecast changes in stock prices. We
specifically tested whether brain activity sampled from a group of
individuals assessing and investing in stocks might reveal useful
information about impending stock price changes. Forecasting
stock price dynamics presents a significant new challenge, since
stock prices reflect not only the aggregate choices of individuals
(in which increased purchases drive prices up, while increased
sales drive prices down), but also dynamic interactions and com-
petition between individuals (De Martino et al., 2013).
Understanding whether neural processes forecast stock price dy-
namics might yield insights into which neural mechanisms gener-
alize across individuals to forecast aggregate choice in general, and
further test whether brain activity extends to forecast aggregate
behavior in dynamic and competitive environments like stock
markets.

Building from the notion that anticipatory affect can precede
and predict risky choice in individuals (Bechara et al., 1996;
Loewenstein et al., 2001; Knutson and Greer, 2008), we hypothe-
sized that sampled brain activity associated with positive aroused
affect and approach behavior [i.e., Nucleus Accumbens (NAcc)
activity] would forecast increased demand for stocks and associ-
ated price increases (i.e., price direction), but that brain activity
associated with negative or generally aroused affect and avoid-
ance behavior [i.e., anterior insula (AIns) activity] would instead
forecast decreased or changing demand for stocks and associated
price decreases or changes (i.e., price inflections; Paulus et al.,
2003; Kuhnen and Knutson, 2005; Knutson and Huettel, 2015).
Further, and consistent with a “partial scaling” account (Knutson
and Genevsky, 2018), we hypothesized that activity in deeper
brain regions associated with anticipatory affect might forecast
aggregate choice—even when activity in more cortical regions
associated with value integration [e.g., the medial prefrontal cor-
tex (MPFC)] and subsequent choice behavior do not. We tested
these hypotheses first in a neuroimaging experiment, and then
examined the replicability and generalizability of those findings
in a second preregistered neuroimaging experiment.

Materials and Methods
Experimental design

Subjects. Forty-one healthy subjects were recruited and scanned for
experiment 1 and 49 healthy subjects were recruited and scanned for
(preregistered) experiment 2. The sample size for experiment 1 was
based on a review of previous neuroforecasting research (Knutson and
Genevsky, 2018). Exclusion criteria included typical magnetic resonance
safety criteria (e.g., no metal in the body or fear of enclosed spaces), as
well as history of psychotropic drug use, brain damage, alcoholism,

substance use, or cardiac medications. For experi-
ment 1, six subjects were excluded for excessive head
motion during scanning (i.e., .4 mm of movement
from one image volume acquisition to the next) and
one subject was excluded because of incomplete data
acquisition, leaving a total of 34 subjects for analysis
(6 females; age range = 22–43 years; mean age = 29.1
years; SD =5.35). For experiment 2, 7 subjects were
excluded for excessive head motion during scanning
and 3 subjects were excluded because of incomplete
data acquisition, leaving a total of 39 subjects for anal-
ysis (7 females; age range = 18–47 years; mean age
= 27.5 years; SD=6.14). Most subjects were students
at Stanford University, no expertise in financial inves-
ting was required, and subjects reported that they ei-

ther did not invest at all or only invested in personal (not professional)
accounts. Consistent with the sex imbalance typically observed in profes-
sional traders, more males than females volunteered.

Subjects received $20/h for participating, as well as the opportunity
to keep any money they gained based on their performance in the asset
pricing task (APT) and an unrelated subsequent financial decision-mak-
ing task (not described here). Subjects earned an average of $10.40 (SD,
$0.36) per stock in experiment 1 and $10.29 (SD, $0.41) per stock in
experiment 2 (which included their $10.00 starting endowment for each
stock). All procedures were conducted as approved by the Institutional
Review Board onMedical Human Subjects of Stanford University.

Procedure. After providing informed consent, subjects read the
instructions and completed several practice trials for the experimental
task of interest (i.e., the asset pricing task; described below) as well as
practice trials for a subsequent and different financial decision-making
task. In experiment 1, the second task was the behavioral investment
allocation strategy task (Kuhnen and Knutson, 2005), and in experiment
2 the second task was a gambling task (Leong et al., 2016)—findings
related to these tasks will be described elsewhere. Before and after scan-
ning, subjects completed questionnaires assessing sociodemographic
information and individual differences in affective experience and cogni-
tive abilities (adapted from Knutson et al., 2011).

Asset pricing task. To assess brain activity related to stock price dy-
namics, we designed a novel APT suitable for use with functional mag-
netic resonance imaging (fMRI). The APT displays trend lines that
sequentially and dynamically depict historical prices of real stocks. After
each daily price update, subjects chose whether to either invest in the
displayed stock or not (Fig. 1). Stock trend lines depicted daily closing
prices and came from 14 different stocks selected from the S&P 500
index and extracted from online finance data (listed on https://finance.
yahoo.com). For each experiment, we randomly selected a 30 d trading
period in 2015 (October 28 to December 9, 2015, for experiment 1;
March 4 to April 15, 2015 for experiment 2), which represented recent
markets relative to the time when the experiments were conducted (i.e.,
in 2016). For experiment 1, 14 stocks were randomly selected from the
S&P 500 index. For experiment 2, 14 stocks were pseudorandomly
selected from the S&P 500 index to exclude stocks used in experiment 1,
as well as to avoid incidental autocorrelation within and between stocks.
Specifically, to select stocks for experiment 2, we estimated an ordinary
least-squares regression model for each stock based on the stock prices
of the selected 30 d trading period. Then, stocks were divided into six
bins based on their slope (i.e., b value of the regression model was .0
or ,0) and volatility (i.e., residual sum of squares of the regression
model was either low, medium, or high). Next, two or three stocks were
randomly selected from each of these bins to yield a random but strati-
fied set of 14 stocks that varied in terms of slope and volatility. Stocks
that were included in experiment 1 were excluded from selection in
experiment 2. In both experiments, stock prices were converted to z
scores to fit their trend lines on a common vertical value axis for display.
Importantly, subjects were not informed about which stock identities or
time periods were sampled.

During the task, subjects viewed sequentially updating trend lines
corresponding to each of the 14 stocks (10 trials/stock). Stock price trend
lines were displayed using a “rolling window” format, such that each of

Figure 1. Asset pricing task trial structure. Trials included presentation of a stock trend line (2 s, left); choice to
invest (4 s, middle), and outcome (2 s, right). A central fixation cross (2–6 s), was presented between trials (not
depicted).
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the 10 updates showed a trend line of 20 previous price updates along
with the most recent update at its end (i.e., on the right). For each stock,
subjects began with a $10.00 endowment, after which they made 10 con-
secutive investment choices after the displayed trend line was updated.
Stocks were thus presented in 10-trial blocks, in one of two pseudor-
andomized orders.

During each task trial, subjects initially saw a trend line reflecting the
price history of the stock over 20 previous updates (for 2 s), followed by
a choice prompt to indicate whether they wanted to either invest ($1.00)
in that stock or not via button press (i.e., “Yes” or “No,” laterally spatially
counterbalanced; 4 s). If subjects invested and the stock price then
increased, their balance increased by $1.00 but if subjects invested and
the stock price then decreased, their balance decreased by $1.00. Thus,
given an approximately even probability of stock price increasing or
decreasing, the overall expected value of either investing or not investing
on any trial was approximately $0.00. After choosing whether to invest
or not, a feedback screen revealed whether the stock price had in fact
increased or decreased, along with the amount of money the subject had
gained or lost as a consequence of their choice and their cumulative
overall balance (2 s). Finally, subjects visually fixated on a centrally pre-
sented cross (2–6 s) while awaiting the start of the next trial (Fig. 1).

At the end of each 10-trial block, subjects were instructed to imagine
that they had an opportunity to invest in more shares of that stock as a
trader, and to indicate their choice to buy, sell, or hold (i.e., neither to
buy nor to sell) the stock with a button press (6 s). Subjects then rated
their confidence in their choice (i.e., by selecting one of 0–25%, 26–50%,
51–75%, and 76–100% response options; 6 s). These final choices and
confidence ratings are not further analyzed here since subjects’ trial-to-
trial choices to invest provided the critical behavioral variables of interest
for the current forecasting analyses. The total amount of money gained
(or lost) during each block was added to (or subtracted from) subjects’
initial $10.00 endowment. At the end of each experiment, 4 of the 14
blocks were randomly selected, and the average payment over these four
blocks was added to subjects’ hourly base payment. Thus, both experi-
ments used no deception and were fully incentive compatible. The task
was divided into two scanning runs including seven stocks per run with
trend lines of 10 price updates (trials) each, totaling 140 trials that lasted
32min.

Statistical analysis
fMRI acquisition and analysis. Images were acquired with a 3.0 T

MRI scanner (General Electric) using a 32-channel head coil. Forty-six
2.9-mm-thick slices (in-plane resolution, 2.9 mm; isotropic, no gap,
interleaved acquisition) extended axially from the midpons superiorly to
the crown of the skull to provide whole-brain coverage. Whole-brain
functional scans were acquired with a T2p-weighted gradient-echo pulse
sequence (repetition time, 2 s; echo time, 25ms; flip angle, 77°). High-re-
solution structural scans were acquired after functional scans with a T1-
weighted pulse sequence (repetition time, 7.2ms; echo time, 2.8ms; flip
angle, 12°) to facilitate their localization and coregistration.

Analyses of fMRI data were conducted using Analysis of Functional
Neural Images (AFNI) software, version AFNI_18.0.25 (Cox, 1996). For
preprocessing, voxel time series were concatenated across runs; sinc
interpolated to correct for nonsimultaneous slice acquisition within each
volume; motion corrected; spatially smoothed to minimize the effects of
anatomic variability while retaining sufficient resolution to visualize
structures of interest (4 mm full-width at half-maximum kernel); nor-
malized to the percentage signal change with respect to the average of
each voxel over the entire task; and high-pass filtered to omit frequencies
with periods.90 s.

To extract brain data for testing the critical predictions, targeted
analyses focused on data extracted from three predefined volumes of in-
terest (VOIs) whose activity previously predicted individual choice in
studies of financial risk-taking (Kuhnen and Knutson, 2005), as well as
forecast market-level behavior (Knutson and Genevsky, 2018). These
meta-analytically derived (Knutson and Greer, 2008) VOIs specifically
centered on predefined bilateral foci (8-mm-diameter spheres) in the
NAcc (Talairach focus: x,610; y,112; z,�2), the AIns (Talairach focus:
x, 628; y, 118; z, –5), and the MPFC (Talairach focus: x, 64; y, 145; z,

0). Activity time courses were first normalized over time within each
voxel, and then averaged over voxels comprising each VOI. For forecast-
ing analyses, brain activity was averaged that corresponded to the pre-
sentation of the stock price update, lagged for the hemodynamic
response by 6 s (i.e., the fourth 2 s volume acquisition after trial onset)
before being entered into models. Activity exceeding �4 SDs was omit-
ted before analyses, in addition to trials in which stock prices remained
stable across 2 d (four trials in experiment 1, and two trials in experiment
2) since they could not be classified as displaying a price increase or
decrease.

To test whether neural activity could forecast stock price dynamics,
logistic regression analyses that forecast next-day aggregate stock price
movement then were conducted on data clustered by stock and averaged
over subjects (i.e., 10 price updates per stock averaged over all subjects in
the sample; all regression analyses were conducted using the lme4 pack-
age version 1.1–21 of the R statistical language; R Core Team, 2018).
These models included fixed effects of the following: (1) stock indicators
(Market model); (2) average choice to invest or not (Behavioral model);
(3) neural activity averaged over VOIs (the NAcc, AIns, and MPFC) in
response to presentation of stock price updates (Neural model); and (4)
all of these components combined (Combined model). For the Market
and Combined models, stock indicators included stock price movement
on the previous day (i.e., price increase vs decrease), and the slope and
volatility indicators of each updated trend line. To calculate slope and
volatility indicators, we estimated an ordinary least-squares regression
model for each updated trend line (10 updates/stock, so 10 regression
models/stock). The slope and volatility indicators reflected, respectively,
the b and residual sum of squares of each regression model that was
estimated using the updated trend line presented on a given trial. For
outcome variables, price direction indexed continuation (i.e., the price
increased after increasing on the previous trial or decreased after
decreasing on the previous trial), whereas price inflection indexed rever-
sals (i.e., the price decreased after increasing on the previous trial or
increased after decreasing on the previous trial). Likelihood ratio tests
were used to test whether the Combined model performed significantly
better or worse than the other models (using the lrtest function of the R
lmtest package version 0.9–34).

To establish whether neural forecasts could generalize across mar-
kets, we trained a linear support-vector-machine classifier on the behav-
ioral, neural, and stock indicator data from experiment 1 (or experiment
2), and tested whether this classifier could predict stock price movement
of the stocks used in experiment 2 (or experiment 1) above chance
(using the e1071 R package, version 1.7–2; R Core Team, 2018).
Classifiers were trained on the Combined model as well as on a reduced
model that only included anticipatory AIns activity, stock price move-
ment on the previous trial, and their interaction. Since subsequent stock
price movement was the outcome variable, data were downsampled to
include 50% increases and 50% decreases of stock prices. Binomial tests
then evaluated whether classifiers could forecast stock price movement
out-of-sample above chance (i.e., 50%, consistent with the Efficient
Market Hypothesis). To further verify whether classifiers could forecast
stock prices, classifiers were additionally trained on randomized stock
prices of experiment 1 (or experiment 2) and then tested on non-
randomized data of experiment 2 (or experiment 1), with the assump-
tion that training on random data should produce a null result. Stock
prices were randomized within each experiment 500 times to reduce
estimation dependence on any particular randomized order. One-sam-
ple t tests were used to compare whether test accuracies of models
trained on randomized stock prices significantly exceeded chance.

To verify task engagement and accurate selection of the predefined
volumes of interest, two whole-brain analyses were conducted. A first
whole-brain analysis contrasted individual brain activity in response to
different outcomes. For this analysis, increased NAcc activity was
expected in response to gains (i.e., price increases after choosing to
invest) as well as to avoided loss outcomes (i.e., counterfactual price
decreases after choosing not to invest; Kuhnen and Knutson, 2005;
Lohrenz et al., 2007). Whole-brain regression models analyzing neural
activity in response to outcomes included 15 regressors. Twelve regres-
sors were not of interest [i.e., six regressors indexing residual motion,
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two that indexed activity associated with CSF and white matter intensity
(Chang and Glover, 2009), and four that modeled each of the trial peri-
ods]. The following two orthogonal regressors of interest contrasted: (1)
outcomes following investment choices (i.e., price increase and financial
gain vs price decrease and financial loss after choices to invest; onset, feed-
back screen; duration, 2 s); and (2) outcomes following choices not to invest
(i.e., price decrease or counterfactual gain vs price increase or counterfactual
loss after choices not to invest; onset, feedback screen; duration, 2 s).

A second whole-brain analysis confirmed that average activity in pre-
dicted regions forecast next-day aggregate stock price movement. This
model included 12 regressors that were not of interest, including regres-
sors indexing the following: residual motion, regressors 1–6; activity
associated with CSF and white matter intensity (Chang and Glover,
2009), regressors 7–8; each of the trial periods, regressors 9–12. Two or-
thogonal regressors of interest contrasted upcoming stock price, as fol-
lows: (1) direction (price increase vs decrease; onset, stimulus screen;
duration, 4 s); and (2) inflection (i.e., price direction changes vs continu-
ation; onset, stimulus screen; duration, 4 s). For both whole-brain analy-
ses, all regressors of interest were convolved with a single g -variate
function modeling a canonical hemodynamic response function. Maps
of t statistics for the regressors of interest were transformed into maps of
z scores, coregistered with structural maps, spatially normalized by
warping to Talairach space, and resampled as 2 mm3 voxels. Whole-
brain voxelwise statistical thresholds were set to p, 0.001, uncor-
rected, as suggested for exploratory characterization (Cox et al.,
2017). A minimum cluster size of 18 contiguous, face-to-face 2.9
mm3 voxels yielded a corrected whole-brain correction of p, 0.05
(after applying the 3dClustSim algorithm to a gray matter mask
from AFNI version 18.0.25).

Data availability. The preregistration for experiment 2 (https://osf.
io/7pwnq) as well as relevant deidentified data and analytic code for
both experiments (https://osf.io/yd8gn) are available on the Open
Science Framework.

Results
In both experiments, we initially tested whether subjects’ choice
behavior and stock indicators could forecast actual stock price
dynamics. Next, we tested whether subjects’ brain activity could
forecast actual stock price dynamics—both before and after con-
trolling for relevant behavioral and stock indicators. Finally, we
conducted whole-brain analyses to confirm subjects’ engagement
and involvement of activity in predicted regions of interest in
stock price movement forecasts.

Choice behavior and stock indicators
Consistent with traditional finance theory (e.g., the efficient
market hypothesis; Fama, 1970), we predicted that subjects’
choices would not forecast stock price movements. Logistic
regression analyses accordingly indicated that subjects’ choice
behavior could not significantly forecast the next-day stock
price (Behavioral model; experiment 1: z= 1.60, p= 0.110;
experiment 2: z= 0.51, p= 0.609; Table 1). Additionally, sub-
jects behaved similarly across experiments (percentage of trials
in which subjects chose to invest: experiment 1: mean =
54.89%, SD= 13.155%; experiment 2: mean = 53.45%, SD =
13.04%). Furthermore, subjects appeared to be similarly
engaged across both experiments, since regression analyses pre-
dicting choice based on block number indicated that subjects’
choices did not change over time (i.e., behavior did not differ
among all 14 10-trial blocks: experiment 1: t(441) = –1.23, b = –
0.25, p= 0.221; experiment 2: t(506) = 0.91, b = 0.020, p= 0.336).

Another logistic regression analysis including stock indicators
as predictors (i.e., the Market model with stock slope, volatility,
and price movement on the previous day as fixed effects)
revealed that the stock price direction of the previous day

inversely forecast the stock price direction of the next day in
experiment 1 (Market model; z = –2.62, p, 0.009; Table 1). This
negative autocorrelation in stock prices may have provided sub-
jects with information to aid their predictions. Thus, we pseudor-
andomly selected a set of stocks for experiment 2 to remove the
potential confound of daily autocorrelation in prices (Market
model; z = –0.60, p= 0.548; Table 2; see Materials and Methods)
and thus support more robust verification of the generalizability
of findings from experiment 1.

Brain activity
Volume of interest analyses: forecasting stock price dynamics
To test the critical hypothesis that brain activity could forecast
stock price dynamics, further logistic regression analyses forecast
next-day stock price movements using neural data alone (Neural
model), as well as after combining neural variables with choice
behavior and stock indicators (Combined model).

In experiment 1, the Neural model indicated that average
NAcc activity positively forecast next-day stock price (z= 2.20,

Table 1. Logistic regression models forecasting aggregate stock price dynamics
(experiment 1)

Market model
Behavioral
model Neural model Combined model

Intercept 1.157 (0.470)* �1.041 (0.723) �0.046 (0.195) �0.135 (1.041)
Slope �1.895 (1.689) �2.943 (1.845)
Volatility �0.055 (0.033) �0.035 (0.036)
Previous trial �0.954 (0.364)** �1.262 (0.464)**
Choice 2.060 (1.291) 1.980 (1.519)
NAcc activity 6.227 (2.827)* 8.892 (4.151)*
NAcc*Prv Trial �2.513 (7.136)
AIns activity �2.610 (2.658) 5.038 (4.099)
AIns*Prv
trial

212.748 (6.101)*

MPFC activity �0.659 (1.932) �0.939 (3.216)
MPFC*Prv
trial

�1.656 (4.622)

R2 ‡ 0.057 0.014 0.030 0.136
x 2 model 10.834* 2.612 5.554 25.596**
AIC 185.438 189.659 190.717 184.675

Statistics are coefficients with SEMs in parentheses. Predicted associations in bold.
**p, 0.01; *p, 0.05.
‡R2 is McFadden’s pseudo-R2.

Table 2. Logistic regression models forecasting aggregate stock price dynamics
(experiment 2)

Market model Behavioral model Neural model Combined model

(Intercept) 0.525 (0.494) �0.275 (0.727) 0.122 (0.184) 0.365 (0.951)
Slope �1.397 (1.725) �1.634 (1.791)
Volatility �0.028 (0.033) �0.030 (0.035)
Previous trial �0.207 (0.344) �0.740 (0.412)
Choice 0.678 (1.324) 0.944 (1.517)
NAcc activity 0.146 (2.852) 20.625 (4.332)
NAcc*Prv Trial 1.552 (6.061)
AIns activity �0.996 (3.004) 6.143 (4.433)
AIns*Prv trial 215.032 (6.534)*
MPFC activity 2.122 (1.779) 2.899 (2.714)
MPFC*Prv trial �0.973 (3.701)
R2‡ 0.008 0.001 0.010 0.058
x 2 model 1.670 0.263 1.947 11.099
AIC 197.378 194.785 197.101 201.949

Statistics are coefficients with SEMs in parentheses. Predicted associations in bold.
*p, 0.05.
‡R2 is McFadden’s pseudo-R2.
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p=0.028; Table 1). The Combined model indicated that prior
price movement (z = –2.72, p=0.007), NAcc activity (z=2.14,
p=0.032), and the interaction of prior price movement with
AIns activity (z = –2.09, p = 0.037) significantly forecast next-day
stock price (Combined model; Table 1). This interaction also
remained significant when including only AIns neural activity,
prior price movement, and their interaction in a reduced model
(z = –2.47, p=0.013). Direct model comparisons indicated that
the Combined model forecast stock price movements better than
the Market model (x 2 = 14.76, p= 0.039), the Behavioral model
(x 2 = 22.98, p= 0.006), and the Neural model (x 2 = 20.04,
p=0.005).

To decompose the interaction of price movement and AIns
activity, we conducted post hoc t tests comparing AIns activity
for price inflections (i.e., price decreased following an increase or
vice versa) versus noninflections (i.e., price increased following
an increase or vice versa). Generally, AIns activity forecast price
inflections versus noninflections (meaninflection = –0.011,
SDinflection = 0.080; vs meannoninflection = –0.039, SDnoninflection =
0.070; t(120) = 2.12, p = 0.036; Fig. 2). More specifically,
AIns activity forecast price decreases that followed
increases rather than price decreases that followed de-
creases (meanincrease!decrease = –0.003, SDincrease!decrease =
0.059; vs Mdecrease!decrease = –0.044, SDdecrease!decrease =
0.060; t(53) = 2.70, p = 0.009). Although both NAcc and AIns
activity forecast stock price dynamics (in the Combined
model) when choice did not (in the Behavioral model), the
significant autocorrelation in the stock prices in this experi-
ment (in the Market model) motivated a preregistered sec-
ond experiment which included stock prices without
autocorrelation.

Unlike experiment 1, the Neural model in experiment 2 did
not show significant associations of NAcc activity with stock
price dynamics (Neural model: NAcc, z= 0.05, p= 0.959; Table
2). Similar to experiment 1, though, the Combined model
(which included choice, stock indicators, and neural data as
predictors) in experiment 2 continued to show a significant
interaction of prior price movement with AIns activity (z =
–2.30, p= 0.021; Table 2). This interaction again remained sig-
nificant when including only AIns neural activity, prior price
movement, and their interaction in a reduced model (z = –2.39,
p= 0.017). Direct model comparisons, however, did not reveal
that the Combined model significantly outperformed the other
models.

As in experiment 1, AIns activity generally forecast price
inflections versus noninflections (meaninflection = –0.011,
SDinflection = 0.065; meanno inflection = –0.037, SDno inflection =
0.058; t(136) = 2.59, p= 0.011; Fig. 2). Again, AIns activity specif-
ically forecast price decreases that followed increases versus
decreases that followed decreases (meanincrease!decrease = –
0.011, SDincrease!decrease = 0.055; meandecrease!decrease = –0.041,
SDdecrease!decrease = 0.053; t(62) = 2.31, p= 0.024). Although the
Combined model appeared to account for the most variance in
experiment 2 (i.e., larger pseudo-R2), the fit was less robust
than other models (i.e., larger AIC), suggesting potential over-
fitting. Therefore, we sought to more robustly test the generaliz-
ability of the interaction of AIns activity with previous trial
price movement with classifier tests.

Classifier tests of generalization
A classifier trained on data from the Combined model of experi-
ment 1 forecast stock price movement in data from experiment 2
with 59.42% accuracy (95% CI = 68.19%), which exceeded
chance (or 50% accuracy; p= 0.033, binomial test). A reduced
version of this classifier trained on a model only including AIns
neural activity, prior price movement, and their interaction in
data from experiment 1 showed that this interaction continued
to forecast the stock prices of experiment 2 with 57.97% accuracy
(95% CI = 68.23%), which exceeded chance at a trend level
(p=0.073, binomial test; Fig. 2). Further, classifiers trained on
randomized stock prices from experiment 1 could not forecast
next-day stock prices in experiment 2 (Combined model: t(499) =
1.39, p=0.165; reduced model including only AIns neural activ-
ity, prior price movement, and their interaction: t(499) = �1.134,
p= 0.257).

Conversely, a classifier trained on data from the Combined
model of experiment 2 forecast stock price movement in data
from experiment 1 with 63.97% accuracy (95% CI = 68.06%),
which exceeded chance (p=0.001, binomial test). A reduced ver-
sion of this classifier trained only on AIns neural activity, prior
price movement, and their interaction in experiment 2 continued
to forecast stock prices from experiment 1 with 66.18% accuracy
(95% CI = 67.95%), which exceeded chance (p, 0.001, bino-
mial test; Fig. 2). Again, classifiers trained on randomized stock
prices from experiment 2 could not forecast next-day stock pri-
ces in experiment 1 (Combined model: t(499) = �0.292, p= 0.77;
reduced model including only AIns neural activity, prior
price movement, and their interaction: t(499) = 0.758,

Figure 2. Anterior insula activity forecasts stock price inflections. Left, AIns VOIs; middle, AIns VOI activity is higher in trials involving an inflection (i.e., stock price decreases after a previous
increase or increases after a previous decrease). Error bars depict SEM. Nexp 1 = 34; Nexp 2 = 39. Right, The interaction of AIns activity by previous stock price movement classifies out-of-sample
stock price movement. First (second) bar depicts the accuracy of a reduced model trained on AIns activity, previous stock price movement, and their interaction in experiment 1 (2), and tested
on experiment 2 (1). Dotted line indicates chance performance. Error bars depict 95% confidence intervals. Nexp 1 = 34, Nexp 2 = 39. exp, Experiment.
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p = 0.449). Together, these findings suggest that the interac-
tion of group AIns activity with the stock price of the previ-
ous day contains information capable of forecasting next-day
stock price movement, even out-of-sample.

Whole-brain confirmatory analyses
A first whole-brain analysis confirmed predicted responses to in-
centive outcomes and task engagement. As predicted, NAcc ac-
tivity increased both in response to gains (i.e., price increases
after choosing to invest) and to avoided losses (i.e., counterfac-
tual price decreases after choosing not to invest). Conversely,
NAcc activity decreased both in response to losses (i.e., price

decreases after choosing to invest) and to
missed gains (i.e., counterfactual price
increases after choosing not to invest; Table 3).

A second whole-brain analysis confirmed
the selection of VOIs whose activity forecast
stock price direction and inflection (Fig. 3,
Table 4). In experiment 1, whole-brain analyses
of neural activity associated with subsequent
stock price direction (i.e., when the price
increases after increases or decreases after
decreases) suggested that left NAcc activity fore-
cast stock price increases, but only at a predicted
small-volume threshold (i.e., 2 voxels at
p, 0.005, uncorrected; 7 voxels at p, 0.01,
uncorrected). Whole-brain analyses of neural
activity associated with stock price inflection (i.
e., when the price decreased after a previous
increase or increased after a previous decrease)
indicated that increased right AIns, bilateral
dorsal striatum, occipital cortex, and dorsal
MPFC activity preceded stock price movement
inflections (p, 0.001, uncorrected). In experi-

ment 2, while left NAcc activity did not forecast stock price
direction [instead, activity in the occipital cortex, posterior cin-
gulate cortex, and the MPFC (four voxels) forecast stock price
direction at p, 0.001, uncorrected], increased right AIns activity
still forecast stock price inflections (p, 0.001, uncorrected;
Fig. 3).

Discussion
In two neuroimaging experiments, we examined whether brain
activity could forecast next-day movements in stock prices.

Table 3. Whole-brain responses to actual and counterfactual gain versus loss outcomes

Gain versus loss outcomes Counterfactual gain versus loss outcomes

Region x y z Peak z #V Region x y z Peak z #V

Experiment 1 Experiment 1
L NAcc 210 7 23 6.23 339 L NAcc 213 10 26 5.88 100
R NAcc 13 10 26 6.12 335 R NAcc 13 12 23 5.08 94
L angular gyrus �45 �57 35 4.55 300 R putamen 30 �8 3 4.69 85
L sup frontal gyrus �19 21 46 4.98 206 R lingual gyrus 22 �89 �3 4.47 62
L inf frontal gyrus �45 33 8 5.22 192 R supramarginal gyrus 54 �40 35 4.33 43
L cingulate gyrus �4 �37 38 4.97 182 R mid frontal gyrus 30 33 35 4.03 35
L med frontal gyrus �19 �8 49 4.09 73 R anterior cingulate 1 42 14 4.06 30
L inf temp gyrus �48 �19 �18 4.48 64 R precentral gyrus 48 10 6 3.82 18
R inf temp gyrus 56 �28 �15 4.23 53 Experiment 2
L ant cingulate �2 42 12 4.10 51 R NAcc 13 10 29 5.91 398
R angular gyrus 36 �60 32 4.20 48 R inf temp gyrus 39 �69 �0 5.44 243
R sup frontal gyrus 25 33 43 4.49 45 L mid occipital gyrus �33 �74 �0 5.21 181
R inf parietal lobule 48 �46 43 3.97 42 R inf parietal lobule 36 �43 43 4.07 152
L med frontal gyrus �2 27 38 3.75 39 L NAcc 216 10 26 5.69 113
L inf frontal Gyrus �22 24 �12 4.59 25 Right precentral gyrus 39 �2 26 4.43 91
R cerebellar tonsil 42 �54 �38 3.87 24 L cerebellum �25 �63 �26 4.70 53
R mid frontal gyrus 28 53 3 3.73 22 R fusiform gyrus 45 �51 �9 4.25 31
Experiment 2 R mid frontal gyrus 36 �2 55 3.82 31
R (1L) NAcc 16 7 23 7.51 14381 L precuneus �22 �51 46 4.10 28
R cerebellar tonsil 42 �54 �41 6.00 214 L supramarginal gyrus �39 �37 38 3.93 26
R sup temp gyrus 56 �57 23 5.30 163 R mid frontal gyrus 36 39 6 3.70 19
R parahippocampal gyrus 25 �31 �6 4.53 51 R precentral gyrus 45 21 35 3.94 19
R mid frontal gyrus 30 30 29 4.03 46
R culmen 25 �31 �20 4.56 35

Threshold: z= 3.29, p, 0.001, uncorrected. Cluster, minimum 18 voxels; voxel size = 2.9 mm3; Talairach coordinates: L, left; R, right; mid, middle; temp, temporal; sup, superior; inf, inferior; #V, number of voxels. Predicted
associations in bold.

Figure 3. Whole-brain confirmation that activity in predicted regions forecasts stock price direction and inflec-
tion. Left, White circles indicate VOIs. Top, Stock price direction: NAcc activity forecast stock price direction in
experiment 1 (middle), but not experiment 2 (right). Bottom, Stock price inflection: AIns activity forecast stock
price inflection in experiments 1 (middle) and 2 (right). Whole-brain analysis, Nexp 1=34, Nexp 2=39. Statistical
overlay thresholded at p= 0.01, uncorrected for display. exp, Experiment.
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Results indicated that group AIns activity could forecast stock
price inflections (i.e., changes in price direction) across two dif-
ferent stock markets. Group NAcc activity could also forecast
price direction (i.e., continuing price movement), but only in a
market with autocorrelation in stock prices. Importantly, group
choice behavior could not forecast stock prices, implying that the
findings could not be attributed to learning over time or to corre-
lated stock price histories. These findings suggest that neural ac-
tivity associated with anticipatory affect can forecast aggregate
choice—even in dynamic and competitive environments like
stock markets. The results extend previous research using brain
activity to predict risky choices of individuals, in which NAcc ac-
tivity has been associated with positive arousal and risk-seeking
choices, but AIns activity has been associated with general or
negative arousal and risk-averse choices (Kuhnen and Knutson,
2005; Preuschoff et al., 2006; Lohrenz et al., 2007).

These findings are also consistent with a “partial scaling”
account of aggregate choice, in which some components under-
lying individual choice generalize to forecast aggregate choice
better than others, including subsequent behavior (Knutson and
Genevsky, 2018). The partial scaling account lies between “total
scaling” accounts in which individual choices simply add up to
generate aggregate choice (e.g., expected value) and “no scaling”
accounts in which individual choices yield no information about
aggregate choice (e.g., the efficient market hypothesis; Fama,
1970). If no scaling accounts posit that choice behavior should
not consistently forecast stock price movements, then, by exten-
sion, neither should its components. Yet, in both experiments,
the interaction of group AIns activity with previous stock price
movements forecast stock price inflections. Further, cross-valida-
tion analyses demonstrated that this neural marker generalized
across markets (which varied in terms of subjects, stock identity,
and price dates). Thus, these findings provide an initial demon-
stration that experimentally sampled AIns activity can forecast
aggregate stock price dynamics.

While AIns activity forecast stock price inflections, it remains
unclear which features of stock prices previously influenced AIns
activity. Behavioral researchers have found that individuals can
distinguish stock price sequences from randomized but other-
wise similar sequences, but have not identified which stock

features facilitate this distinction (Hasanhodzic et al., 2019). The
present analyses suggested that AIns responses to conventional
stock indicators (e.g., the direction of price movement on the
previous day, the direction of slope, or the volatility of current
stock price movements) could not forecast price inflections in a
straightforward way. AIns activity might instead respond to
more complex or even mutually exclusive dynamics in stock pri-
ces. Based on previous neuroimaging research implicating AIns
activity in arousal and uncertainty (Critchley et al., 2001; Clark et
al., 2014), various stock features that induce surprise or doubt
might generally increase AIns activity. The present findings do
not specify, however, exactly which input patterns induce the
psychological uncertainty and associated neural activity that con-
tributed to forecasts, a topic that remains ripe for further inquiry.
The degree to which rapid and dynamic neural correlates of an-
ticipatory affect are accessible to conscious report is also unclear,
but deserves further targeted investigation.

Although medial prefrontal cortical activity often predicts
individual choice, including financial investments (De Martino
et al., 2013; Frydman et al., 2014), MPFC activity did not forecast
aggregate stock price movements in these experiments. A partial
scaling account posits that neural components related to antici-
patory affect (e.g., the NAcc) lie lower in the brain and are more
evolutionarily conserved, whereas components related to value
integration (e.g., the MPFC) lie higher and nearer to behavioral
output (Haber and Knutson, 2010). While neural activity related
to anticipatory affect might generalize more broadly across peo-
ple to forecast aggregate choice (Knutson and Genevsky, 2018),
neural activity related to value integration might instead extend
more narrowly within individuals across time to promote perso-
nal choice consistency (Camille et al., 2011).

Few studies have examined NAcc or AIns activity in the con-
text of aggregate stock market events (Barton et al., 2014),
although in one study, experimentally sampled NAcc activity
tracked experimentally produced market bubble formation, and
individuals who showed greater AIns activity tended to exit ex-
perimental market bubbles earlier and reap higher returns
(Smith et al., 2014). With the exception of a single patient case
study of NAcc dopamine release (Kishida et al., 2011), however,
research has not yet used experimentally sampled brain activity

Table 4. Whole-brain activity forecasting stock price direction (price continues) and inflection (i.e., price changes)

Stock price direction Stock price inflection

Region x y z Peak z #V Region x y z Peak z #V

Experiment 1 Experiment 1
L cuneus �10 �95 8 3.85 31 R precuneus 25 �66 32 5.80 632
R mid occipital gyrus 25 �86 0 �5.01 21 L sup occipital gyrus �30 �72 29 5.28 519
Experiment 2 R medial frontal gyrus 1 33 40 4.31 105
L cingulate gyrus �2 �46 35 4.19 74 L inf temporal gyrus �57 �37 �18 5.02 69
R mid occipital gyrus 39 �74 3 �4.58 37 R pallidum 10 �2 3 4.54 66
L precuneus �2 �66 26 3.57 22 L cuneus �13 �74 12 4.46 64
L cerebellar lingual gyrus �13 �83 �6 4.07 20 L pallidum �13 1 3 4.31 37

R ant insula 39 18 0 4.64 29
L precuneus �13 �74 43 5.05 28
R thalamus 10 �14 14 4.82 26
L thalamus �7 �16 12 4.30 25
L cerebellar declive �30 �57 �12 4.43 21
R cingulate gyrus 1 �34 26 4.59 21
R cuneus 10 �69 14 3.90 19
Experiment 2
R ant insula 28 18 23 3.97 22

Whole-brain analysis: threshold z= 3.29, p, 0.001, uncorrected. Cluster, Minimum 18 voxels; voxel size, 2.9 mm3; Talairach coordinates: L, left; R, right; mid, Middle; temp, temporal; sup, superior; inf, inferior; #V=number
of voxels. Predicted associations in bold.
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to forecast actual stock price dynamics. Further, although several
neuroforecasting studies have implicated NAcc activity in fore-
casting aggregate choice (Knutson and Genevsky, 2018), only
one study of an Internet attention market (i.e., https://youtube.
com) has implicated AIns activity in lower video engagement
(Tong et al., 2020).

In the current experiments, AIns activity provided the
most generalizable forecasts. The ability of AIns activity to
forecast aggregate choice in this research may depend on the
types of choices that predominate in stock markets in con-
trast to other markets. While previous research has primarily
focused on markets involving purchases of goods, stock mar-
kets require investors to weigh uncertain gains (or “goods”)
against uncertain losses (or “bads”). Outside the laboratory,
forecasting stock price inflections (or reversals) may present
a more formidable challenge than forecasting stock price
direction (or momentum). Despite the practical challenges
inherent in applying neuroimaging data to forecasts of stock
price dynamics (e.g., the difficulty of sampling neural data
immediately before price changes), neural measures may
eventually yield valuable “hidden information” that is other-
wise difficult to obtain (Ariely and Berns, 2010).

This research features a number of novel strengths,
including the use of actual stock price data, direct quantita-
tive comparisons of qualitatively distinct predictors (e.g.,
stock indicators, behavior, and neural activity), out-of-sam-
ple cross-validation, and a replication experiment that con-
trolled for temporal structure in stock prices. Limitations,
however, include necessarily constrained sets of stock sce-
narios (necessitated by time limits typical of scanning
experiments), simplified presentation of information (e.g.,
distilled from more conventional but variable trading infor-
mation interfaces and timescales), and use of historical
(though recent) data. All of these variables deserve system-
atic exploration in future research. Many interesting ques-
tions also remain with respect to individual differences (e.
g., whose behavior and brain activity best forecast stock
price movement), generalizability to more complex trading
environments, potential influence of prior trading experi-
ence, and conditions under which behavior adds value to
neural forecasts.

Overall, this research extends neuroeconomic theory by
implying that brain activity associated with anticipatory affect
can forecast aggregate choice—even in complex markets involv-
ing dynamic strategic interactions between actors (Kirman,
1992). Additionally, the current findings challenge traditional
theoretical accounts that imply elements of choice cannot inform
financial forecasts (Fama, 1970) by demonstrating that previ-
ously hidden neural activity might provide uniquely valuable in-
formation about stock price dynamics.
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