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Abstract

Background: Hepatocellular carcinoma (HCC) is a common cancer and the leading cause is persistent hepatitis B
virus (HBV) infection. We aimed to identify some core genes and pathways for HBV-related HCC.

Methods: Gene expression profiles of GSE62232, GSE121248, and GSE94660 were available from Gene Expression
Omnibus (GEO). The GSE62232 and GSE121248 profiles were the analysis datasets and GSE94660 was the validation
dataset. The GEO2R online tool and Venn diagram software were applied to analyze commonly differentially
expressed genes between HBV-related HCC tissues and normal tissues. Then, functional enrichment analysis using
Gene Ontology (GO) and the Kyoto Encyclopedia of Gene and Genome (KEGG) as well as the protein-protein
interaction (PPI) network was conducted. The overall survival rates and the expression levels were detected by
Kaplan-Meier plotter and Gene Expression Profiling Interactive Analysis (GEPIA). Next, gene set enrichment analysis
(GSEA) was performed to verify the KEGG pathway analysis. Furthermore, quantitative reverse transcriptase
polymerase chain reaction (qRT-PCR) was performed to validate the levels of these three core genes in tumor
tissues and adjacent non-tumor liver tissues from 12 HBV related HCC patients, HBV-associated liver cancer cell lines
and normal liver cell lines, and HepG2 with p53 knockdown or deletion, respectively.

Results: Fifteen highly expressed genes associated with significantly worse prognoses were selected and CCNB1,
CDK1, and RRM2 in the p53 signaling pathway were identified as core genes. GSEA results showed that samples highly
expressing three core genes were all enriched in the p53 signaling pathway in a validation dataset (P < 0.0001). The
expression of these three core genes in tumor tissue samples was higher than that in relevant adjacent non-tumor liver
tissues (P < 0.0001). Furthermore, we also found that the above genes were highly expressed in liver cancer cell lines
compared with normal liver cells. In addition, we found that the expression of these three core genes in p53
knockdown or knockout HCC cell lines was lower than that in negative control HCC cell lines (P < 0.05).

Conclusions: CCNB1, CDK1, and RRM2 were enriched in the p53 signaling pathway and could be potential biomarkers
and therapeutic targets for HBV-related HCC.
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Introduction
Hepatocellular carcinoma (HCC) is a common cancer
and the third leading cause of cancer death in the world
[1, 2]. It has been reported that Chinese liver cancer pa-
tients account for more than 50% of all cases worldwide
[3]. The major risk factors for HCC include chronic
hepatitis B or C virus infection, alcoholic liver disease,
and liver cirrhosis. The leading cause of HCC is persist-
ent hepatitis B virus (HBV) infection, which happens in
more than half of HCC case s[4, 5]. To date, many re-
searchers have contributed to the identification of the
underlying molecular mechanisms. However, the mo-
lecular pathogenesis and mechanisms of the hepatic car-
cinogenesis triggered by HBV is extremely complex,
involving gene aberrations, mRNA expression, and the
genome [6–8].
Various studies have shown that the occurrence and

progression of liver cancer are closely related to the over-
expression of oncogenes and the inactivation of tumor
suppressor genes. Villanueva et al. [9] discovered many
genes that are aberrantly methylated in HCC and observed
that some signaling pathways are clearly deregulated by
DNA methylation in HCC. Khemlina et al. also reported
that genetic alterations in HCC include mutations in the
TERT promoter [10]. Furthermore, Jiang et al. [11] found
two genetic susceptibility loci for hepatitis B virus-related
HCC. The Janus Kinase (JAK)/STAT pathway and Wnt/
β-catenin pathway may play roles in HCC acting as two
major oncogenic drivers, which might serve as potential
treatment targets [12, 13].
With the rapid development of high-throughput DNA

microarray technology, gene expression microarray ana-
lysis has emerged as a promising and efficient tool to
help with an understanding of the precise underlying
mechanisms in cancer. Biomarkers have been identified
and confirmed to potentially improve the diagnosis and
therapy of HCC [14, 15]. Recently, some gene expression
profiling microarrays have been used to identify various
differentially expressed genes (DEGs) in HCC [16–19].
However, few reliable biomarkers have been identified in
hepatitis B virus (HBV)-related hepatocellular carcin-
oma. It is critical to explore more effective biomarkers
for the development and recurrence of HBV related
HCC. We took the initiative to combine integrated bio-
informatics methods and validation experiments to in-
vestigate some core genes and underlying molecular
mechanisms.
In this study, the common DEGs in datasets

GSE62232 and GSE121248 were used in the analysis.
Core genes were identified based on bioinformatic ana-
lysis. Then, gene set enrichment analysis (GSEA) was
performed in the validation dataset GSE94660. Subse-
quently, we validated the expression of core genes in
liver cancer tissue samples and liver cancer cell lines

using quantitative reverse transcriptase polymerase chain
reaction (qRT-PCR).

Materials and methods
Microarray data
GSE62232, GSE121248, and GSE94660 gene expression
profiles were downloaded from the Gene Expression
Omnibus [20] (GEO, https://www.ncbi.nlm.nih.gov/geo),
which included 10 HBV-related HCC tissues and 10
normal tissues, 70 HBV-related HCC tissues and 37 nor-
mal issues, and 21 pairs of tumor and non-neoplastic
liver tissues of HBV-HCC patients, respectively. The
GSE62232 and GSE121248 profiles were the analysis
datasets and GSE94660 was the validation dataset.

Data processing of differentially expressed genes (DEGs)
The identification of DEGs between HCC specimens and
normal specimens was performed in GEO2R (https://
www.ncbi.nlm.nih.gov/geo/geo2r/) [20]. The DEGs were
screened according to adjusted P values < 0.05 and
|logFC| > 2. Then, the common DEGS expressed jointly
in the two data files were detected with Venn software.
The DEGs with log FC < 0 were considered downregu-
lated genes, while the DEGs with log FC > 0 were consid-
ered upregulated genes.

Gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis
The Database for Annotation, Visualization, and Inte-
grated Discovery (DAVID Version 6.8, https://david.
ncifcrf.gov/) [21] and KOBAS 3.0 (http://kobas.cbi.pku.
ed-u.cndate) [22], which are online bioinformatic tools
with a threshold of FDR < 0.05 and P < 0.05, were used
to analyze the DEGs of GO [23], enrichment of BP (bio-
logical process), MF (molecular function), and CC (cellu-
lar component) and KEGG pathways [24]. Data
processing and the creation of graphics were performed
with “ggplot2” R package in R software (Version 3.4.0,
https://www.r-project.org/).

Construction of protein-protein interaction (PPI) network
STRING online database (http://string-db.org )[25] was
applied to detect core candidate genes. Cytoscape soft-
ware [26] (Version 3.4.0, http://www.cytoscape.org/) was
used to construct a PPI relationship network. In
addition, the plugin MCODE in Cytoscape was utilized
to identify crucial genes of highly intraconnected nodes
(degree cutoff ≥ 2, node score cutoff ≥ 0.2, Kcore ≥ 2,
and max depth = 100).

Survival analysis and expression level of core genes
Kaplan Meier-plotter [27] (http://www.kmplot.com) was
applied to perform a survival analysis of the core genes.
The hazard ratio (HR) with 95% confidence intervals
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and logrank p value were calculated and displayed on
the plot. We also used the GEPIA website [28] (Gene
Expression Profiling Interactive Analysis, http://gepia.
cancer-pku.cn/index.html) to analyze the data of RNA
sequencing expression on the basis of samples from the
GTEx and TCGA (https://cancergenom e.nih.gov/).

Gene set enrichment analysis (GSEA)
Gene Set Enrichment Analysis (GSEA) is a computa-
tional method that assesses whether an a priori de-
fined set of genes shows statistically significant,
concordant differences between two biological states.
We used the version of the Java based software
(GSEA-P 2.0) [29] (http://software.broadinstitute.org/
gsea/index.jsp) to detect functional analysis between
the two groups derived from DEGs. In this study,
briefly, samples of HBV-HCC in validation set
GSE94660 were divided into two groups according to
the expression level of the three core genes (CCNB1,
CDK1, and RRM2) [30]. For groups, HBV-HCC sam-
ples were divided into subgroups with high or low ex-
pression of three core genes based on Reads Per Kilo
bases per Million reads (RPKM) data. Gene symbol
and RPKM data were sorted in descending order to

create the ranking list. The top 20 samples were ex-
tracted as the high expression while the others as low
expression [31]. Then, GSEA was applied to detect
whether the p53 signaling pathway was enriched in
the highly expressed core gene of HBV-HCC samples.
Terms with P < 0.01 were identified.

Cell culture and transfection of RNA
All three HBV-related liver cell lines (HepG2.215,
HepG-AD-38, and HepG-DE-19) were obtained from
the cell bank of the Chinese Academy of Sciences
(Shanghai, China). HepG2 and HepG2-KO-p53 cell lines
were gifts from Professor Lianghu Qu (State key Labora-
tory of Biocontrol, Sun Yat-sen University, Guangzhou,
China). Cells were cultured in MEM medium containing
10% fetal bovine serum plus antibiotics (GIBICO). Cells
were maintained in a 5% CO2 atmosphere at 37 °C.
HepG2 cells were transfected with p53 siRNAs at a final
concentration of 50 nM using Lipofectamine 2000 (Invi-
trogen) according to the manufacturer’s instructions.
The p53 siRNAs used in this study were purchased from
GenPharma, and the sequence of the p53-siRNA was
AGACCTATGGAAACTACTT.

Table 1 Clinical characteristic of the hepatocellular carcinoma patients

Patient ID Age Sex Pathological type Size of tumor BCLC stage HBsAg
(IU/mL)

HBV-DNA
(IU/mL)

AFP
(ng/mL)

ALT
(U/L)

AST
(U/L)

1 58 M Moderately differentiated 32 × 22 mm A > 180 8.69E+3 1073 40.7 33.3

2 47 M Poorly differentiated 28 × 25 mm A 29.86 1.06E+2 1.43 248.2 183.2

3 64 M Moderately differentiated 77 × 71 mm B > 180 1.08E+5 110 25.8 55.1

4 60 M Moderately to poorly differentiated 106 × 73mm C 159.58 3.24E+2 16.09 33.6 46

5 61 M Moderately differentiated 16 × 17 mm O > 250 5.89E+2 766.5 16 12.9

6 46 M Moderately to poorly differentiated 27 × 28 mm A > 180 2.60E+5 4371 37.2 25.7

7 38 M Moderately differentiated 25 × 24 mm A 251.9 < 100 0.746 35 43

8 76 M S8:Well-differentiated
S7:Moderately to poorly differentiated

15 × 13 mm O 1.17 < 100 unknown 28 28

9 57 M Moderately differentiated 27 × 19 mm A > 250 5.05E+03 3.129 20 16

10 64 M Well-differentiated 24 × 20 mm A 2165 < 100 5.06 24 22

11 53 M Moderately differentiated 62 × 63 mm B 1070 4.21E+05 3.516 32 53

12 45 M Moderately differentiated 81 × 51 mm B > 180 1.21E+2 855.5 23.5 19.2

Table 2 Sequences of primers and oligos

Gene name Forward Reverse

GAPDH CCATGGGGAAGGTGAAGGTC GAAGGGGTCATTGATGGCAAC

CCNB1 GTGGATGCAGAAGATGGAGC CCGACCCAGTAGGTATTTTGG

CDK1 AGGAAGGGGTTCCTAGTACTGC TGGAATCCTGCATAAGCACA

RRM2 TCTATGGCTTCCAAATTGCC GACACAAGGCATCGTTTCAA

p53 TAACAGTTCCTGCATGGGCGGC AGGACAGGCACAAACACGCACC

p21 TGGAGACTCTCAGGGTCGAA GGATTAGGGCTTCCTCTTGG
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The collection of human liver tissue samples
This study was approved by the Ethics Committee of
the Third Affiliated Hospital of Sun Yat-sen Univer-
sity ([2015]2-206 No.1). Paired HBV-HCC tissues (T)
and their corresponding adjacent non-tumor liver
tissues (NT) were obtained from HBV-related HCC
patients at the Third Affiliated Hospital of Sun
Yat-Sen University. The main characteristics of the
patients’ clinical data are shown in Table 1, which

included their age, sex, pathological type, size of
tumor, BCLC stage, HBsAg, HBV-DNA, alpha feto-
protein (AFP), alanine aminotransferase (ALT), and
aspartate aminotransferase (AST). Informed consent
was obtained from all participants included in the
study, and experimental procedures were performed
according to the guidelines of the non-profit, state-
controlled HTCR (Human Tissue and Cell Research)
foundation.

Fig. 1 Volcano plots and Venn diagrams of differentially expressed genes. a Volcano plots of GSE62232. b Volcano plots of GSE121248. Each colored
dot represents an up or downregulated gene, where blue indicates genes with low levels of expression, red indicates genes with high levels of
expression, and gray indicates genes with no differential expression based on the criteria of P< 0.05 and |log FC| > 2. c 27 DEGs were upregulated in
the two datasets (logFC> 0). d 89 DEGs were downregulated in two datasets (logFC< 0). Different color meant different datasets
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RNA extraction and quantitative reverse transcriptase
polymerase chain reaction (qRT-PCR)
The total RNA was isolated from the cell lines and the
HBV related liver tissues using Trizol reagent (Invitro-
gen). cDNA was synthesized using a PrimeScript™ RT
Reagent Kit with a gDNA Eraser Kit (Takara). Human
normal liver tissue RNA was purchased from Clontech.
PCR amplifications were constructed with the SYBR®
Premix Ex Taq™ II (Takara) and normalized GAPDH for

comparison. The ΔΔCt method for the relative quantita-
tion (RQ) of gene expression was used to determine
CCNB1, CDK1, RRM2, p53, p21, and PUMA expression
levels. The corresponding primers used in this study are
listed in Table 2.

Statistical analysis
Statistical analysis was conducted using GraphPad Prism
8 and P < 0.05 was considered statistically significant.

Table 3 Commonly DEGs in GSE62232 and GSE121248

DEGs Gene name

Upregulated CDK1 SPINK1 CAP2 DTL RACGAP1 CTHRC1 RRM2 IGF2BP3 CCNB TOP2A ASPM HMMR CDKN3 AKR1B10 PBK GPC3 ROBO1 SPP1 ZIC2
NEK2 ANLN ACSL4 CRNDE BUB1B COL15A1 ECT2 PRC1

Downregulated CYP4A22///CYP4A11 CYP26A1 BBOX1 CYP2A6 CNTN3 TENM1 LINC01093 CXCL14 SLC22A1 IGF1 SULT1E1 CYP39A1 HAO2 FAM134B
MT1F SLC25A47 MFSD2A ZG16 FLJ22763 HHIP KCNN2 ZGPAT///LIME1 SLCO1B3 CYP1A2 CNDP1 BCO2 ACSM3 FCN3 GBA3 TTC36
CLEC4G C3P1 CDH19 CYP2B6 GYS2 FOLH1B KMO LPA CD5L GHR CLEC1B MIR675///H19 CXCL2 LIFR FAM65C CLRN3 CYP2C9
CYP2A7 LCAT CLEC4M VNN1 ESR1 LOC101928916///NNMT PLAC8 ALDOB HAMP DNASE1L3 DCN NAT2 BCHE IL1RAP AKR1D1
CXCL12 TMEM27 CRHBP TACSTD2 WDR72 THRSP IDO2 HGFAC IGFALS ADGRG7 ZGPAT FREM2 ADH4 GPM6A OIT3 HGF MT1M GLYA
T CYP2B7P///CYP2B6 GLS2 SRD5A2 ADRA1A APOF C9 SRPX FCN2 LINC00844

(A)

(B) (C)

Fig. 2 GO and KEGG pathway analysis of differentially expressed genes. a GO analysis of DEGs. GO analysis included enrichment of BP
(biological process), MF (molecular function), and CC (cellular component). The gray bracket below indicates analysis of upregulated DEGs,
while bracket on the top indicates analysis of downregulated genes. b KEGG pathway analysis of upregulated DEGs. c KEGG pathway
analysis of downregulated DEGs
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(A)

(B)

Fig. 3 Protein-protein interaction (PPI) network of DEGs. Common DEGs PPI network constructed by STRING online database and Module
analysis. a There were a total of 78 DEGs in the DEGs PPI network complex. The nodes meant proteins, the edges meant the interaction of
proteins, blue circles meant downregulated DEGs, and red circles meant upregulated DEGs. b Module analysis via Cytoscape software (degree
cutoff = 2, node score cutoff = 0.2, k-core = 2, and max. Depth = 100)
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All results were expressed as the mean ± standard error
of the mean (SEM). A paired Student’s t test was applied
for comparisons between the two experimental groups.
All experiments were performed at least three times.

Results
Identification of DEGs in hepatitis B virus-related
hepatocellular carcinoma
A total of 606 DEGs were extracted from GSE62232 and
GSE121248 between HBV-related HCC tissues and nor-
mal tissues with adjusted P < 0.05 and |logFC| > 2. The
volcano plots of DEGs in the two datasets are shown in
Fig. 1. The top 10 genes that were up- or downregulated
were marked with text in the volcano plots. The Venn
diagram showed that a total of 116 common DEGs were
detected, including 89 downregulated genes and 27 up-
regulated genes in the datasets (Table 3, Fig. 1c, d).

GO and KEGG pathway enrichment analysis
The candidate DEGs were classified into three functional
groups, consisting of the biological process (BP) group,

cellular component (CC) group, and molecular function
(MF) group with FDR < 0.05 and P < 0.05. The results dem-
onstrated that for the upregulated DEGs, the BPs included
“regulation of attachment of spindle microtubules to kineto-
chore.” For downregulated DEGs, the top 5 BPs were “epox-
ygenase P450 pathway,” “oxidation-reduction process,”
“exogenous drug catabolic process,” “xenobiotic metabolic
process,” and “monocarboxylic acid metabolic process.” In
the CC analysis, it was revealed that upregulated DEGs were
predominantly involved in “midbody,” while downregulated
DEGs were involved in “organelle membrane” and “extracel-
lular region.” Moreover, in the MF analysis, downregulated
DEGs were associated with “heme binding,” “iron ion bind-
ing,” “oxidoreductase activity,” and “arachidonic acid epoxy-
genase activity” while upregulated DEGs were in no
significant signaling pathways (Fig. 2a and Supplementary
Table 1)
KEGG analysis results indicated that the top five

KEGG pathways for upregulated DEGs were “p53 signal-
ing pathway,” “Cell cycle,” “ECM-receptor interaction,”
“Progesterone-mediated oocyte maturation,” and

(A) (B) (C)

(D) (E) (F)

Fig. 4 The prognostic information and expression level of three core genes. a, d CDK1. b, e CCNB1. c, f RRM2
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“Oocyte meiosis,” while for downregulated DEGs, they
were “Retinol metabolism,” “Caffeine metabolism,”
“Drug metabolism-cytochrome P450,” “Metabolism of
xenobiotics by cytochrome P450,” and “chemical car-
cinogenesis” (P < 0.05, Fig. 2b, c).

Protein-protein interaction (PPI) network of DEGs
Seventy-eight of the 116 DEGs were filtered into the
construction of a PPI network, including 56 downregu-
lated and 22 upregulated genes (Fig. 3a). The network
contained 78 nodes and 209 interactions. To detect the
most significant module in the PPI network, the results
of the Cytotype MCODE analysis demonstrated that 15
central nodes that had the highest degree genes were
identified among the 78 nodes. These 15 central nodes
were as follows: CDK1, PRC1, NEK2, DTL, ANLN, PBK,
RACGAP1, CDKN3, ECT2, HMMR, CCNB1, RRM2,
BUB1B, TOP2A, and ASPM, which were all upregulated
DEGs (Fig. 3b).

Survival analysis and expression level of selected genes
The prognostic information of the fifteen selected genes
was available in the Kaplan Meier Plotter database. As
shown in Fig. 4 and Supplementary Figure 1, the fifteen
selected genes were all associated with a poor prognosis
for HCC (P < 0.05). To further identify the genes expres-
sion level, GEPIA was used to validate the expression

levels of the genes. The results showed that all 15 se-
lected genes had high expression levels in HCC samples
(P < 0.05; Fig. 4 and Supplementary Figure 2).

KEGG pathway enrichment re-analysis of 15 selected genes
Furthermore, we re-analyzed these 15 genes in KEGG
pathway enrichment via KOBAS 3.0. The results showed
that the p53 signaling pathway was the most significant
pathway (P = 2.55E−06, Fig. 5) and three core genes
(CCNB1, CDK1, and RRM2) were significantly enriched
in this pathway.

Gene set enrichment analysis (GSEA) in GSE94660
To verify whether the p53 signaling pathway was
enriched in the highly expressed core gene samples,
GSEA was used in the validation dataset GSE94660. We
divided the samples from HBV-HCC into two groups ac-
cording to the expression levels of the three core genes.
The results showed that samples highly expressing
CCNB1, CDK1, and RRM2 respectively were all enriched
in the p53 signaling pathway in a validation dataset (P <
0.001; Fig. 6).

Validation gene expression in liver cancer tissues and cell
lines
In order to verify the expression of the core genes,
we used qPCR to detect their expression in liver

Fig. 5 Re-analysis of 15 selected genes via KEGG pathway enrichment analysis. Fifteen high expressed genes in liver cancer with poor prognosis
were re-analyzed by KEGG pathway enrichment. Three genes (CCNB1, CDK1, and RRM2) were significantly enriched in the p53 signaling pathway
(P = 2.55E-06). Cyclin B means CCNB1. CDC2 means CDK1. P53R2 means RRM2
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cancer tissues and cells. The qRT-PCR results showed
that CCNB1, CDK1, and RRM2 were significantly up-
regulated in liver cancer tumor samples (P < 0.0001;
Fig. 7a–c) and cell lines (P < 0.05; Fig. 7d–f) com-
pared with the relevant adjacent non-tumor liver tis-
sues and normal liver cell LO2. Furthermore, we
found that knockdown or knockout p53 could signifi-
cantly inhibit the expression of p53, classical p53 tar-
get genes (p21 and PUMA) [32, 33], and these three
genes (Fig.7g, h). These results indicated that CCNB1,
CDK1 and RRM2 were highly expressed in liver

cancer tissues and liver cancer cell lines and enriched
in the p53signaling pathway.

Discussion
In the present study, we explored a total of 116 common
DEGs comprising 27 upregulated and 89 downregulated
DEGs. Then, DAVID together with KOBAS was used to
analyze GO and KEGG pathways, and PPIs of these
DEGs were visualized with Cytoscape. The PPI network
complex of 78 nodes and 209 edges was constructed.
According to the results of Cytotype MCODE, 15

Fig. 6 Gene set enrichment analysis (GSEA) in GSE94660. Highly expressed HBV-HCC samples of three core genes were all enriched in p53 signaling
pathway (P < 0.0001). a CCNB1. b CDK1. c RRM2
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upregulated genes were identified from the PPI network
complex. We found that CDK1, PRC1, NEK2, DTL,
ANLN, PBK, RACGAP1, CDKN3, ECT2, HMMR,
CCNB1, RRM2, BUB1B, TOP2A, and ASPM had a sig-
nificantly worse survival rate and high expression in the
HCC samples. Furthermore, KEGG pathway enrichment
re-analysis results of the 15 selected genes indicated
that CCNB1, CDK1, and RRM2 were significantly
enriched in the p53 signaling pathway. In GSEA

analysis, highly expressed HBV-HCC samples of three
core genes were enriched in the p53 signaling path-
way in the validation dataset. Our bioinformatics ana-
lysis results predicted that CCNB1, CDK1, and RRM2
may be closely related to the development of HBV-
related HCC. The verification results in liver cancer
tissues and cells showed that expression of the core
genes was higher than in the normal tissues and cells,
while transfection of si-p53 and knockdown of p53

Fig. 7 qRT-PCR results in liver tissues and liver cancer cell lines. The expression level of CCNB1, CDK1, and RRM2 in liver cancer tissues (a–c). All of
three genes were significantly upregulated in tumor tissues compared with adjacent normal tissues (P < 0.0001). The expression level of CCNB1,
CDK1, and RRM2 in HBV-related liver cancer cell lines (d–f). g Cells were transfected with negative control siRNA (si-NC) or siRNAs against p53(si-
p53). h Knockdown of p53 HepG2 cells and HepG2 cells. Results indicated significant difference between groups (*P < 0.05, **P < 0.01, ***P < 0
.001, ****P < 0.0001).
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led to lower expression, indicating that three core
genes in the p53 signaling pathway may play a signifi-
cant role in the occurrence and development of HBV-
related HCC.
CCNB1, G2/Mitotic-specific cyclin B1, was shown to

play an important role in the occurrence and develop-
ment of tumors. Mussnich reported that downregulation
of CCNB1 could reduce cell proliferation [34]. Zhao [35]
reported that upregulation of CCNB1 played a part in
the pathology of pituitary adenomas in the cell cycle.
CDK1, cyclin-dependent kinases A, was suggested to
play a role in the development of HCC. Some results
strongly suggested that CDK1 acts as a tumor-specific
mediator, affecting apoptin-induced cytotoxicity in HCC
cells. CDK1 could be an important factor in cell division
[36], and several CDK1 substrates, such as histone H1
and PI3K/AKT, play crucial roles in cell cycle modula-
tion [37, 38].
RRM2, ribonucleotide reductase regulatory subunit

M2, is one of the protein genes encoding ribonucleore-
ductase (RR) [39]. RRM2 can be used as a prognostic
biomarker for a variety of cancer types, such as colon
cancer and breast cancer [40–42], and overexpression of
RRM2 also stimulates the migration, invasion, and pro-
liferation of many other solid tumor cells. A previous
study showed that RRM2 is directly regulated by p53 to
supply nucleotides to repair damaged DNA [43]. A study
also showed that p53 R2-dependent DNA synthesis plays
a pivotal role in cell survival by repairing damaged DNA
in the nucleus and that dysfunction of this pathway
might result in activation of p53-dependent apoptosis to
eliminate dangerous cells [44]. Small-interfering RNA-
mediated knockdown of RRM2 can depress HCC cell
proliferation [45]. Furthermore, Lee [46] indicated that
high expression of RRM2 could be a useful marker to
predict early recurrence of HCC following curative
hepatectomy.
Moreover, the p53 signaling pathway was a potent

barrier for tumor progression and it plays important
roles in hepatocarcinogenesis [47–50]. Tu [51] found
that the activation of F-box and WD repeat domain-
containing 7 (Fbxw7) via adenoviral delivery of p53
caused increased proteasomal degradation of cyclin E
and c-Myc, thus recombinant human adenovirus-p53
injection could be a possible therapeutic agent for
HCC.
A large number of studies have shown that these three

genes and p53 signaling pathway were related to the
progression of various cancers. However, few studies
have proved the role of these three genes in HBV related
hepatocellular carcinoma. Therefore, our study can pro-
vide useful information and direction for the study of
liver cancer and needs further research and experimental
verification.

Conclusions
Considering the above, using a series of bioinformatics
analysis and validation experiments, our results sug-
gested that CCNB1, CDK1, and RRM2 may be key genes
and the p53 signaling pathway may play a vital role in
the development of HBV-related HCC.
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