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Morphological Brain Age Prediction 
using Multi-View Brain Networks 
Derived from Cortical Morphology 
in Healthy and Disordered 
Participants
Joshua Corps1 & Islem Rekik   1,2

Brain development and aging are dynamic processes that unfold over years on multiple levels in both 
healthy and disordered individuals. Recent studies have revealed a disparity between the chronological 
brain age and the ‘data-driven’ brain age using functional MRI (fMRI) and diffusion MRI (dMRI). 
Particularly, predicting the ‘brain age’ from connectomic data might help identify relevant connectional 
biomarkers of neurological disorders that emerge early or late in the lifespan. While prior brain-age 
prediction studies have relied exclusively on either structural or functional connectomic data, here we 
unprecedentedly propose to predict the morphological age of the brain by solely using morphological 
brain networks (derived from T1-weighted images) in both healthy and disordered populations. 
Besides, although T1-weighted MRI was widely used for brain age prediction, it was leveraged from 
an image-based analysis perspective not from a connectomic perspective. Our method includes the 
following steps: (i) building multi-view morphological brain networks (M-MBN), (ii) feature extraction 
and selection, (iii) training a machine-learning regression model to predict age from M-MBN data, 
and (iv) utilizing our model to identify connectional brain features related to age in both autistic and 
healthy populations. We demonstrate that our method significantly outperforms existing approaches 
and discovered brain connectional morphological features that fingerprint the age of brain cortical 
morphology in both autistic and healthy individuals. In particular, we discovered that the connectional 
cortical thickness best predicts the morphological age of the autistic brain.

The development and aging of the human body are complex processes. In particular, individual development 
and aging in both healthy and disordered participants progressively alter the morphology of the brain. There is 
an ample literature investigating how brain structures change with aging including volume loss1–5 and reduction 
in white matter integrity6 in healthy individuals. Unique aging patterns have been associated with different brain 
disorders such as dementia, where specific brain regions undergo an accelerated aging process, implying acceler-
ated brain atropy1,7 More recent studies8–11 on brain development have shown that neurological disorders such as 
Autism Spectrum Disorder (ASD) and Alzheimer’s Disease (AD) can cause a disparity between the chronological 
brain age of a subject, that is the number of years since birth, and a ‘data-driven’ brain age, or how old they seem to 
be, which can be quantified by neuroimaging data, also known as their ‘biological age’ or ‘physiological age’. This 
disparity between chronological and biological age in subjects with a neurological disorder, is often the result of 
accelerated or decelerated aging of their brain caused by the disorder. By using a calculated data-driven brain age 
and its deviation from the chronological age, a prediction can be made on whether an individual has a disordered 
or healthy brain. Additionally, many neurological disorders, such as ASD, currently do not have widely accepted 
biomarkers5 for the disorder, and so by predicting the brain age and calculating delayed or accelerated age, it may 
be possible to link these features to the disorder.
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The majority of studies in recent years for predicting biological age from connectomic brain data tend to 
focus on the use of MRI (Magnetic Resonance Imaging) such as functional MRI (fMRI)12,13 or diffusion MRI 
(dMRI)13,14. However, both of these techniques have limitations which can restrict their usefulness for this task. 
Firstly, fMRI data can be very noisy. Additionally, the high variability in dMRI tractography methods15 can intro-
duce a bias into the data, somewhat skewing the results of any analysis. On the other hand, there is little research 
on biological age prediction using morphological brain networks, despite the fact that recent research16,17 has 
highlighted that there may be a link between morphological features, such as cortical thickness and sulcal depth, 
and different neurological disorders, such as ASD. Previously, Brown et al.14, utilized diffusion MRI data to pre-
dict the biological age of preterm infants and then used this to calculate what they called the ‘Relative Brain 
Network Maturation Index’ (RBNMI), which is defined as the absolute value of the predicted age of the infant 
minus their true age. The results of their research showed that the development of structural connectomes in 
preterm neonates with abnormal, disordered, development was delayed. Shen et al.18, recently proposed a new 
state-of-the-art method for predicting behavioural scores from fMRI data called Connectome-Based Predictive 
Modelling (CPM). CPM works by extracting and summarizing the most relevant features from connectomic data 
into positive or negative features. These features are used to train a machine-learning regression model to predict 
behavioural scores for new subjects. In their evaluation, the model was limited to testing with functional MRI 
data, however, it can be applied to other types of brain imaging data.

Additionally, recent works on neurological disorder diagnosis using morphological brain networks19–23 
derived from T1-w MRI have developed a new research direction unifying brain connectomics and morphology. 
Although several works have largely utilized T1-w MRI for estimating the brain age of healthy subjects in children 
and adolescents24,25 as well as elderly subjects with neurodegenerative disorders7,26, these have only investigated 
low-order morphological measurements such as volume or image intensity. This overlooks the high-order com-
plex relationship between brain regions, which work as an interconnected system from early development till 
aging. Hence, investigating brain age on a high-order connectional level using a network representation derived 
from T1-w MRI is overlooked. Particularly, to the best of our knowledge, using morphological brain networks 
on a regression problem, such as predicting age or cognitive scores, remains unexplored. To fill in this gap, we 
unprecedently propose to predict ‘the morphological age of the brain’ by using multi-view morphological brain 
networks (M-MBNs), each view quantifying a specific trait of the cortex morphology (e.g., curvature). Then, the 
most relevant features are selected from the morphological age prediction task, which identifies the morphologi-
cal brain features that best predict the chronological brain age. An ensemble machine learning regression model 
is then built to produce multiple biological age predictions, then combined to give the final age prediction. Finally, 
the most selected features by our model are used to identify features that most correlate with the morphological 
brain age (MBA) and how a neurological disorder, such as ASD, can affect those features. The identified brain 
features can potentially reveal biomarkers of the target disorder.

Finally, while there is extensive work on the topic of using machine-learning and brain neuroimaging data for 
classifying disease types27–29, the majority of these studies approach the problem from the same perspective, sim-
ply using the connectomic data to classify a subject. We will attempt to approach this from a new angle, instead 
of using the connectomic data to directly classify a disease state, we will instead utilize the MBA disparity that 
we will calculate by predicting our ‘data-drive’ brain age, combined with the morphological connectomic data, to 
boost classification accuracy in neurological disorders.

We compare our proposed framework against multiple benchmark methods including the current 
state-of-the-art CPM18 framework. More importantly, using our framework, we investigate the relationship 
between brain connectional morphology and brain development and neurological disorders in two folds: (1) 
identifying the morphological connectional features that are most correlated with the MBA, and (2) classifying 
healthy and disordered brain states using the disparity between predicted morphological age and the true age.

Results
Dataset and parameters.  To evaluate our proposed method, we used 5-fold cross-validation on two differ-
ent populations from the ABIDE data (http://fcon_1000.projects.nitrc.org/indi/abide/) (Supplementary Table 1): 
186 of which were Normal Control (NC) subjects, with a mean age of 16.65 ± 6.06, and 155 Autism Spectrum 
Disorder (ASD) subjects, with a mean age of 16.92 ± 6.38. The data for each subject was composed of a T1-w 
MRI scan. We used FreeSurfer30 to reconstruct both the right and left cortical hemispheres (LH and RH) for each 
subject from their T1-w MRI scan. Using Desikan-Killiany Cortical Atlas, each cortical hemisphere was then par-
cellated into 35 cortical regions. Next, we constructed the multi-view morphological brain network (M-MBN), 
composed of 4 views, each derived from a specific cortical measurement: 1) the maximum principal curvature, 
(2) the mean cortical thickness, (3) the mean sulcal depth, and (4) the mean average curvature.

Comparison methods.  We compared our proposed framework against multiple benchmark methods. The 
first is the state-of-the-art framework, Connectome-Based Predictive Modeling18 (CPM). We also compared 
against Support Vector Regression (SVR), SVR with Recursive Feature Elimination (RFE) for feature selec-
tion, and Random Forest (RF). For these comparisons, we benchmarked each method using the 4 individual 
MBN views, as well as our combined averaged (AVG) and concatenated (CON) MBN, except for in the case 
of CPM where it cannot use the CON MBN due to the input data being limited to an R × R matrix of features, 
where R denotes the number of regions of interest (ROIs). Each comparison method was evaluated using 5-fold 
cross-validation (CV).

Regression random forest parameters.  The range of selected features and increment varied based on 
the data structure used, in the case of single views and averaged views the number of features selected ranged 
from 50 to the maximum and increased in increments of 50. For concatenated views, the selected features ranged 
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from 100 to maximum. For the regression random forest, we varied the number of trees from 20 to 200 with an 
increment of 20 per iteration, and ultimately set to 150 trees. We empirically set the ‘minimum leaf size’ to 5 and 
set the ‘number of predictors to sample’ to one third of the number of variables.

Evaluation results.  Tables 1 and 2 report the MBA prediction results for ASD LH and NC LH, respectively. 
Supplementary Tables 2 and 3 report the MBA prediction results for ASD RH and NC RH, respectively. As can be 
seen in these tables, when using single views, view 2 (i.e., cortical thickness) performs substantially better than the 
other views. Figure 1 displays the results for only concatenated (CON) and averaged (AVG) views by all methods. 
Overall, the best accuracy was achieved using CON views. As shown in Fig. 1 our method achieved the highest 
age prediction accuracy using both Pearson correlation and MAE as evaluation criteria with an improvement of 
~3–5% for ASD data and ~2–3% for NC data.

Morphological brain connections fingerprinting the biological brain age.  We also evaluated our 
method for the discovery and identification of morphological connectional features that are most correlated 
with the MBA. We identify the top K features, in this case we selected the top 5, 10, and 15 ranked features and 
visualized their connections using circular graphs. Since our aim was to find the most discriminative features, 
we utilized CON for combining the multiple views instead of AVG. From this, we noted that when using CON, 
the majority of top highly ranked features were selected from view 2 (i.e., cortical thickness) when selecting a 
smaller number of features. Due to this, for all hemispheres and datasets (ASD LH, ASD RH, NC LH, NC RH) we 
identified view 2 as the view with the highest discriminative power and as such the top connections we visualized 
in Fig. 2 are all from this view. Figure 3 shows the brain regions referred to in the circular graphs. This allows us 
to identify potentially which regions of the brain and which measurements correlate most with MBA, as well as 
potentially identifying the different highly correlated features between the healthy (NC) and disordered (ASD) 
subjects and how ASD manifests itself in these connections. The thickness of each edge connecting two ROIs 
represents the rank of the connection as given by RFE in the feature selection step. The higher ranked, more dis-
criminative, a feature is then the thicker the connection between the ROIs and conversely, the lower ranked, less 
discriminative, a feature is a thinner connection line is then used.

Method Dataset R P MAE

CPM

View 1 0.43 1.61E-08 4.31

View 2 0.68 9.90E-23 3.57

View 3 0.56 5.00E-14 3.92

View 4 0.43 2.40E-08 4.46

Averaged Views 0.70 1.48E-24 3.39

SVR

View 1 0.45 3.55E-09 4.10

View 2 0.70 2.29E-24 3.46

View 3 0.48 1.94E-10 4.09

View 4 0.06 4.34E-01 4.65

Averaged Views 0.70 7.00E-24 3.38

Concatenated Views 0.67 3.07E-21 3.72

SVR + RFE

View 1 0.46 2.41E-09 4.10

View 2 0.71 4.78E-25 3.41

View 3 0.56 2.95E-14 3.80

View 4 0.06 4.34E-01 4.65

Averaged Views 0.70 6.91E-24 3.38

Concatenated Views 0.72 1.65E-26 3.29

RF

View 1 0.54 4.12E-13 4.01

View 2 0.73 7.62E-27 3.56

View 3 0.54 5.38E-13 3.97

View 4 0.43 3.02E-08 4.48

Averaged Views 0.72 1.43E-25 3.53

Concatenated Views 0.74 7.76E-28 3.45

RF + RFE 
(ours)

View 1 0.56 2.09E-14 3.92

View 2 0.75 9.51E-29 3.49

View 3 0.52 4.48E-12 3.96

View 4 0.33 2.24E-05 4.48

Averaged Views 0.66 2.27E-20 3.73

Concatenated Views 0.78 1.47E-33 3.21

Table 1.  Comparison of age prediction using ASD LH data with 5-fold cross-validation by our method and 
comparison methods. R is the correlation between the predicted ages and the ground truth ages, and P is the 
p-value of their statistical difference. MAE denotes the mean absolute error between the predicted ages and the 
ground truth ages.
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As revealed in Fig. 2 the most discriminative morphological connectional features for NC LH connected the 
Insula Cortex (IC) (Region 35) and the Temporal Pole (TP) (Region 33), IC and Frontal Pole (FP) (Region 32), 
IC and Unmeasured Corpus Callosum (UCC) (Region 4), TP and Rostral Anterior Cingulate Cortex (RACC) 
(Region 26), and IC and Bank of the Superior Temporal Sulcus (BSTS) (Region 1). Interestingly for the RH, the 
rankings of the top 5 discriminative features were the same as with the LH on the NC subjects. As for ASD, with 
the LH the most discriminative morphological connectional features connected IC and TP, IC and FP, IC and 
UCC, TP and Caudal Anterior-cingulate Cortex (CAC) (Region 2), and TP and RACC. For the RH, the most 
discriminative morphological connectional features connected IC and TP, IC and FP, TP and (Region 6), IC and 
UCC, and TP and RACC. With only 5 of the top features selected we note mostly the same connections visualized 
across different datasets. However, with more selected connectional features correlating best with the MBA, a dis-
criminative pattern emerges between healthy and disordered brains (e.g., connection between posterior cingulate 
cortex and temporal/frontal poles) and can begin to identify hubs for many different connections.

Discussion
We presented the seed work on predicting the morphological brain age using multi-view morphological brain 
networks in healthy and autistic populations. Although our method is simple, our findings are unprecedented and 
give insights into how the brain age is encoded in multi-view morphological brain networks derived from solely 
T1-w MRI. Existing studies aiming to predict the brain age have so far relied on functional or diffusion MRI. 
Our design arose from a need to use T1-w data for investigating the brain morphological connectivity using MRI 
sequences conventionally acquired in clinical hospitals.

Our proposed framework substantially outperformed the comparison methods when using our multi-view 
networks. For ASD, the best prediction results were produced by CON in both left and right hemispheres. For 
NC, in the LH CON marginally outperformed AVG and in the RH AVG performed the best. When using ASD 
data, the difference between CON and AVG was more substantial. This could suggest that ASD affects mor-
phological features in ways that can only be captured with the complementary information that concatenation 
retains over averaging. We also noted that the 2nd view (i.e., cortical thickness) achieved significantly higher 
accuracy than the other individual views (Table 1 and 2, Supplementary Tables 2, 3). Additionally, the top 5, 10, 

Method Dataset R P MAE

CPM

View 1 0.45 1.08E-10 4.05

View 2 0.67 2.02E-25 3.32

View 3 0.37 2.72E-07 4.25

View 4 0.39 3.66E-08 4.29

Averaged Views 0.66 3.42E-24 3.40

SVR

View 1 0.45 3.55E-09 4.10

View 2 0.70 2.29E-24 3.46

View 3 0.48 1.94E-10 4.09

View 4 0.06 4.34E-01 4.65

Averaged Views 0.70 7.00E-24 3.38

Concatenated Views 0.67 3.07E-21 3.72

SVR + RFE

View 1 0.28 1.17E-04 4.12

View 2 0.69 1.78E-27 3.23

View 3 0.42 2.56E-09 3.97

View 4 0.15 4.74E-02 4.33

Averaged Views 0.71 1.16E-29 3.10

Concatenated Views 0.71 1.96E-29 3.09

RF

View 1 0.53 1.24E-14 3.84

View 2 0.73 8.08E-32 3.11

View 3 0.35 7.28E-07 4.14

View 4 0.43 7.21E-10 4.14

Averaged Views 0.74 8.10E-31 3.05

Concatenated Views 0.74 4.82E-33 3.17

RF + RFE 
(ours)

View 1 0.53 4.05E-15 3.82

View 2 0.73 1.90E-32 3.08

View 3 0.36 3.96E-07 4.14

View 4 0.44 3.81E-10 4.11

Averaged Views 0.75 1.88E-35 2.92

Concatenated Views 0.74 2.48E-33 3.03

Table 2.  Comparison of age prediction using NC LH data with 5-fold cross-validation by our method and 
comparison methods. R is the correlation between the predicted ages and the ground truth ages, and P is the 
p-value of their statistical difference. MAE denotes the mean absolute error between the predicted ages and the 
ground truth ages.
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and 15 connections shown in Fig. 2 were all derived from the 2nd view. Our finding is in line with the brain age 
literature, where reduction in cortical thickness was linked to age in elderly populations with healthy brains31,32. 
Additionally, studies17,33 have shown an increase in cortical thickness in subjects with ASD. Our finding sug-
gests that the link between cortical thickness-derived morphological connections and brain development can be 
applied to more than just elderly populations. More importantly, this might indicate that ‘connectional cortical 
thickness’ fingerprints the morphological age of the brain. This is supported by our findings that cortical thickness 
is a key identifier of age, with cortical thickness increasing during early development and decreasing during later 
aging21. Due to this, younger ASD subjects show as being older due to the increased cortical thickness caused by 
ASD which is supported by Hardan et al.33, where ASD subjects had an increase in cortical thickness over NC sub-
jects. With older ASD subjects, due to the originally increased cortical thickness, the decrease in cortical thickness 
caused by normal aging is less noticeable and so identifies the subject as being younger. A more recent study22 
showed that ASD affects the morphological structure of the cortex in both right and left hemispheres on different 
connectional levels. In support of our findings, the cortical thickness was identified as the most discriminative 
feature of the autistic cortex, particularly in the left hemisphere.

From our circular graphs, Fig. 2, we identified the most discriminative features for brain age. We noticed 
many connections involving the Insular Cortex (IC) in both Healthy and ASD subjects making this a central hub. 
This agrees with previous findings34, which identified relationships between age and emotional development and 
decision-making and linked these to changes in age and IC. Additionally, we also noticed hubs that appeared 
more prominent in ASD when compared with NC subjects. One of these hubs is the Rostral Anterior Cingulate 
Cortex (RACC) which we identified as showing more connections in ASD subjects with the connections also 
appearing higher in the ranking (Fig. 2). This links to previous research35, which identified that ASD subjects 
showed increased activation of the RACC over Healthy Control (HC) participants in their study. These differ-
ences in hubs of connections between ASD and NC subjects may potentially identify biomarkers of the disorder.

As previously shown, our method greatly outperforms the tested state-of-the-art method CPM18 for all data-
sets, which suggests that our method can also be used to predict other clinical scores such as behavioural or cog-
nitive scores in the future and is not just limited to brain age prediction. One limitation of our method is that we 
use simple methods for combining the data multiple views. To overcome this, in our future work we could inves-
tigate more complex methods of combining the views. Additionally, the overall method can be considered as quite 
simple. This can be perceived as both a limitation, in that there may be potential to get improved results using 

Figure 1.  Age prediction accuracy for each of the 4 datasets (ASD Left Hemisphere, ASD Right Hemisphere, 
NC Left Hemisphere, and NC Right Hemisphere) using 4 benchmark methods against our proposed method 
(far right). Each method was evaluated on both averaged views and concatenated views.
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more complex methods and in the future, this is a research direction that can be investigated. Furthermore, we 
can also use a-priori feature selection based on biological knowledge to further boost our MBN-based predictive 
model. However, our original goal was to avoid extremely time-consuming methods for potential use with near 
real-time results in a clinical setting. Finally, we only utilised data from a single time point. It may be interesting 
to investigate how longitudinal brain development influences the predicted MBA.

Methods
In this section, we present the proposed framework for predicting the biological brain age using morphological 
brain networks. Figure 4 illustrates the four main steps of the proposed framework: (1) building multi-view 
morphological brain networks (M-MBN), each network capturing the dissimilarity in cortical shape between 
two anatomical regions using a specific cortical view (e.g., sulcal depth), (2) morphological connectional feature 
extraction and selection to reduce the dimensionality and remove irrelevant features, (3) training an ensemble 
machine-learning regression model, in this case Regression Random Forest, to predict age from M-MBN data, 
and (4) using the predicted morphological brain age to identify connectional morphological features that corre-
late highly with the chronological brain age and discover morphological brain age trends in disordered popula-
tions, specifically ASD subjects. Furthermore, to investigate the discriminative power of the predicted MBA, we 
used 5-fold CV to train a classifier using the disparity between the predicted MBA age and the chronological age 
combined with the original M-MBN data to classify disordered and healthy subjects.

Multi-view morphological brain network (M-MBN) construction.  For each cortical surface Sk recon-
structed for the kth subject in our cohort, we build a tensor  …[ , , ]k k

M1  stacking M morphological networks 
(Fig. 4A). Each MBN k

m, of size R × R quantifies the dissimilarity in morphology between two cortical regions 
of interest (ROIs) using a specific cortical attribute m (e.g., cortical thickness). R denotes the number of nodes in 
the morphological brain network (or cortical ROIs) and M is the number of different cortical attributes. Each 
element  i j( , )k

m  represents the absolute difference between the average value of the cortical attribute in two ROIs 
i and j.

Remark: In the spirit of functional brain networks that model the correlation between firing neurons and not 
their physical connection, our morphological brain networks model the dissimilarity in morphology between 

Figure 2.  Identification of morphological connectional features fingerprinting brain age. Circular graphs showing 
the top ranked 5 (A,B), 10 (C,D), and 15 (E,F) morphological connectional features that correlate most with age 
when using concatenation to combine the morphological views. Thicker edges indicate higher correlation with 
brain age.
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anatomical brain regions36. The only physical brain connectivity is traditionally quantified using diffusion MRI, 
from which structural brain networks are derived. Nonetheless, both functional and morphological connections 
mirror ‘real’ connections, as there is a relationship between brain function, morphology and structure, which 
requires further investigation37.

Morphological connectional feature extraction and selection.  For each training subject, we extract 
a feature vector from each MBN by taking the lower triangular part of the matrix. At this point, we propose two 
different strategies for combining the multi-view networks: (1) concatenation of the different views (CON), and 
(2) averaging the views (AVG). Firstly, we concatenate the features extracted from all MBNs into a single feature 
vector. Then, we define the training data Mtr (Fig. 4-B). Alternatively, we combine the views by averaging them 
together. This has the advantage of having a reduced dimensionality; however, can lead to a loss of complemen-
tary information and may not allow us to discover information about individual view-specific features of the 
brain. Next, to further reduce the dimensionality of the feature vector representing each subject as well as remove 
features that do not relate to the prediction of age, we propose to use Recursive Feature Elimination (RFE)38–40 to 
rank and select the most relevant features. Specifically, RFE is a supervised wrapper feature selection method, 
which evaluates different combinations of features then ranks their predictive accuracy. Next, the ranks of these 
combinations are used to eliminate a subset of the features ranked the lowest. This process is repeated recursively 
using smaller and smaller amounts of features until all features are ranked. Ultimately, RFE returns a complete 
ranked vector of the features across all training subjects M̂tr (Fig. 4), which can then be used to train our regres-
sion model. Additionally, the feature selection process identifies features that are consistently ranked highly across 
training folds and can then be used to discover features which highly correlate with the MBA.

Training a machine-learning regression model to predict morphological age from M-MBN 
data.  Next, we train a regression random forest to predict a subject’s age from the M-MBN (Fig. 4C). 

Figure 3.  Cortical brain regions of interest used for morphological brain network reconstruction. The numbers 
with corresponding names can be linked to the circular graphs in Fig. 2.
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Regression Random Forest is an ensemble regression method that works by creating many decision trees. Each 
decision tree is then trained using a different random subset of subjects from the initial training data for each tree. 
Once each tree has completed and has a prediction value then results are aggregated by calculating the mean of all 
the trees’ prediction values. This mean value is then returned as the predicted age. To learn the model, we divide 
the data into training and testing sets. This is achieved in two ways. First, a first model is learned individually for 
healthy and disordered populations. Secondly, a second model is trained using only healthy brains to produce a 
‘baseline healthy model’. Then, we test the learned healthy model on disordered subjects to predict their morpho-
logical brain age. The absolute difference between the predicted morphological age and the chronological age for 
disordered brains can be potentially used as a disorder biomarker41.

Identification of morphological connectional features fingerprinting brain age.  The final step in 
the proposed framework is three-fold. First, we investigate if certain morphological features are more affected by 
age in disordered brains compared with healthy brains. Specifically, we aim to identify connectional morpholog-
ical features which are most linked to biological age. To do so, we define a relevance score for each connectional 
morphological feature by averaging its rank across different folds of cross-validation. Next, we identify the top K 
features associated with morphological brain age.

We would like to note that all methods and experimental protocols were carried out using the public Autism 
Brain Imaging Data Exchange (ABIDE) dataset. Informed consent was obtained from all ABIDE subjects or, if 
subjects are under 18, from a parent and/or legal guardian.

Data Availability
The data that support the findings of this study are available from ADBIDE data (http://fcon_1000.projects.nitrc.
org/indi/abide/). The Matlab code is also available from the authors upon request.
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Figure 4.  Proposed framework for predicting morphological brain age in healthy and disordered brains. (A) 
Construction of the multi-view brain networks from cortical morphology for each subject and the construction 
of the initial feature vector. For each subject ∈ …k N{1, , }, we derive a morphological network k

m from the 
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