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A B S T R A C T   

Current thrombolysis for acute ischemic stroke (AIS) treatment strictly relies on the time since stroke (TSS) less 
than 4.5 h. However, some patients are excluded from thrombolytic treatment because of the unknown TSS. The 
diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) mismatch can simply identify 
TSS since lesion intensities are not identical at different onset time. In this paper, we propose an automatic 
machine learning method to classify the TSS less than or more than 4.5 h. First, we develop a cross-modal 
convolutional neural network to accurately segment the stroke lesions from DWI and FLAIR images. Second, 
the features are extracted from DWI and FLAIR according to the segmentation regions of interest (ROI). Finally, 
the features are fed to machine learning models to identify TSS. In DWI and FLAIR ROI segmentation, the 
networks obtain high Dice coefficients with 0.803 and 0.647. The classification test results show that our model 
achieves an accuracy of 0.805, with a sensitivity of 0.769 and a specificity of 0.840. Our approach outperforms 
human reading DWI-FLAIR mismatch model, illustrating the potential for automatic and fast TSS identification.   

1. Introduction 

Stroke ranks as one of the leading causes of death in the world, with 
acute ischemic stroke (AIS) being the most common subtype (Wang, 
2020; Zhu et al., 2020). According to the AIS treatment guidelines, re-
combinant tissue plasminogen activator (rtPA) thrombolysis is strictly 
limited to time since stroke (TSS) less than 4.5 h (Furie and Jayaraman, 
2018). Thrombolysis on TSS more than 4.5 h will increase the risk of 
hemorrhage significantly (Campbell et al., 2019). Hence, some patients 
with unknown TSS are excluded from thrombolysis although they are 
probably within the rtPA time window (Furie and Jayaraman, 2018; 
Jauch et al., 2013). 

A Guideline for Healthcare Professionals from the American Heart 
Association/American Stroke Association (AHA/ASA) recommends that 
DWI-positive FLAIR-negative lesions (DWI-FLAIR mismatch) can be 
useful for selecting patients with unknown TSS who can benefit from 

rtPA administration within 4.5 h of stroke symptom recognition (Powers 
et al., 2019). The DWI-FLAIR mismatch model is constructed based on 
the fact that high intensity appears immediately in DWI at AIS onset 
whereas it takes 3-4 h for AIS to emerge in FLAIR (Ebinger et al., 2010). 
Fig. 1 illustrates two typical DWI-FLAIR mismatch examples of different 
stroke onset time. Some researchers have investigated the DWI-FLAIR 
mismatch in TSS identification. However, human readings of DWI- 
FLAIR mismatch showed the low-to-moderate accuracy in these 
studies (Thomalla et al., 2009; Aoki et al., 2010; Kim et al., 2014; Lee 
et al., 2020). These evaluation studies reported the mismatch model 
could achieve a specificity no more than 0.80 and a sensitivity no more 
than 0.6. Some patients who could benefit from thrombolysis may be 
misclassified since the mismatch model is too stringent. Previous work 
calculated the lesion water uptake from CT and set the water uptake 
threshold to classify patients within or beyond 4.5 h (Broocks et al., 
2020), yet the research of TSS classification on CT is still limited. In 
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order to mine more latent features, machine learning (ML) approaches 
have been applied for stroke imaging analysis (e.g. brain tumor seg-
mentation and classification (Tiwari et al., 2020), stroke tissue outcome 
prediction (Nielsen et al., 2018)). Lee et al. (Lee et al., 2020) extracted 
features (e.g. intensity, gradient, gray level co-occurrence matrices) 
from apparent diffusion coefficient (ADC) map and FLAIR, and con-
structed three ML classifiers to distinguish the patients within or after 
4.5 h of onset. Ho et al. (King Chung et al., 2019) used four-modal im-
aging to generate features, i.e. DWI, ADC, FLAIR, and perfusion 
weighted imaging (PWI). Besides the area, volume, sphericity and some 
statistical features, 384 deep features were also generated by deep 
autoencoder. Then, the features were fed into ML models for TSS clas-
sification. Although these approaches have outperformed human- 
reading mismatch, they still need much effort for ROI generation and 
feature extraction. In this paper, we developed an automatic algorithm 
for TSS classification and evaluated this method on a large dataset which 
is collected from two stroke centers. The main contributions of our work 
can be summarized as follows:  

(1) We proposed an effective segmentation network to segment 
infarct lesions in DWI and FLAIR. In FLAIR segmentation, the 
cross-modal network employed DWI prior information to obtain 
accurate results. The automatic segmentation network can keep 
radiologists from labeling regions of interest (ROIs) with extra 
time.  

(2) Only two-modal MR (DWI and FLAIR) images were used for TSS 
classification and achieved comparable results. Our algorithm 
may be more generalizable than the previous study since PWI was 
not required.  

(3) We constructed five classifiers (i.e., logistic regression (LR), 
support vector machine (SVM), random forest (RF), gradient 
boosted decision tree (GBDT), extra trees (ET)). The final result 
was decided by the voting of five classifiers for robust 
classification. 

2. Materials 

2.1. Dataset 

A dataset of 268 anonymized AIS patients from January 2016 to 
December 2020 was collected from two stroke centers in China for 
retrospective evaluation. 180 cases are from the Nanjing First Hospital, 
Nanjing Medical University and 88 cases are from the Affiliated 
Jiangning Hospital of Nanjing Medical University. Each AIS patient has 
recorded time of stroke symptom onset and time of MR imaging. These 
patients were categorized into two classes according to TSS: negative 
(⩽4.5 h) and positive (>4.5 h). The characteristics of the patient cohort 
are shown in Table 1. All scans were performed using 3-Tesla echo 
planar scanner of Philips. The pixel dimension of DWI varies from 
0.893 × 0.893 × 6.6 to 1.198 × 1.198 × 7.3 mm3. The pixel dimension 
of FLAIR varies from 0.411 × 0.411 × 7 to 0.599 × 0.599 × 7.3 mm3. 
DWI and FLAIR images of each patient have 18 slices to cover the ce-
rebrum from top to bottom. 

2.2. Image preprocessing 

For each patient, the DWI images were first registered to FLAIR 
images using Elastix rigid registration tool in 3D Slicer. Secondly, the 
FLAIR and registered DWI images were respaced to 1 × 1 × N mm3. The 
images were not respaced in the z-dimension. Afterwards, we cropped 
each DWI and FLAIR volume to the size of 224× 224× 18. Finally, the 
stroke lesions were drawn manually by one radiologist with 6-year 
experience and then checked by another radiologist with 15-year 
experience in the sagittal-sectional slices. We divided the 268-patient 
dataset into training, validation, test sets by a ratio of 3:1:1. 

3. Methods 

For DWI-FLAIR mismatch analysis, stroke lesion ROIs should be first 
delineated. However, accurate labeling will take a lot of manpower. 
Considering the deep convolutional neural networks have been widely 
utilized in MR image segmentation (Chen et al., 2017; Zhang et al., 
2018; Pinto et al., 2018), we propose an EfficientNet-B0 based U-Net to 
segment ROIs from DWI and FLAIR. A multi-scale atrous convolution 
(MSAC) block was first introduced for fine segmentation. Then, ROI 
features of DWI and FLAIR were generated using PyRadiomics. Finally, 
we constructed five ML models and identified TSS based on five-model 
voting. The whole process of our method is shown in Fig. 2. All the 
experiments were carried out on our PC (Intel Core i5 CPU, 1080Ti 11 
GB GPU, 16 GB RAM). 

3.1. Stroke Lesion Segmentation 

U-Net has shown great potential in medical image segmentation 
(Ronneberger et al., 2015). U-Net and its variants have achieved 
remarkable results in some medical challenges, such as Kidney Tumor 
Segmentation (KiTS) Challenge (Isensee and Maier-Hein, 2019), Brain 
Tumor Segmentation (BraTS) Challenge (Zeineldin et al., 2020), and so 
on (Yin et al., 2019; Ge et al., 2019). The encoder of vanilla U-Net has 
the limitation that the depth of the consecutive 3 × 3 convolutional 
layers should be increased to capture comprehensive features. This will 
bring in too many parameters which need large memory. To balance the 
segmentation accuracy and memory use, we proposed to replace the 3 ×

3 convolutional encoder with EfficientNet-B0 (Tan and Le, 2019). 
EfficientNet-B0 is mainly composed of 7 mobile inverted bottleneck 

Fig. 1. Two examples of DWI-FLAIR mismatch (TSS  = 2 h) and no DWI-FLAIR mismatch (TSS  = 6 h).  

Table 1 
AIS patient characteristics.   

Patients (n = 268) 

Female 90 
Male 178 
Age 67.7 ± 13.2  
Time since stroke (hour) 10.26 ± 18.11  
NIHSS on admission 9.65 ± 7.01  
Stroke location: left 123 
Stroke location: right 145 
Classification label (cases) ⩽4.5 h (173); >4.5 h (95)   

H. Zhu et al.                                                                                                                                                                                                                                     



NeuroImage: Clinical 31 (2021) 102744

3

(MBConv) blocks and 2 convolutional layers. The parameter amount of 
EfficientNet-B0 is only about one third of that of the vanilla U-Net’s 
encoder (5.3 million vs. 14.1 million). Compared with DWI, lesion ROIs 
in FLAIR have lower contrast and are more easily interfered by other 
hyperintensities. These barriers will impede the pace of accurate FLAIR 
ROI segmentation. We constructed a cross-modal segmentation network 
for FLAIR segmentation, which is shown in Fig. 3. The encoding features 
of DWI were fused with the features of FLAIR level by level. DWI can 
provide the lesion location prior information which supervises FLAIR 
segmentation. To further concentrate on discriminative regions, a multi- 
scale atrous convolution block combined with attention mechanism 
(MSAC) was first proposed (Fig. 4). The MSAC block had four parallel 
convolutional paths to generate multi-scale features. Receptive fields of 
multiple sizes were realized by setting the dilation rates of three paths as 
2,4,8. The attention scale was computed from the previous layer and 
then applied to multi-scale convolutional operations. 

The segmentation models were trained by minimizing the proposed 
loss function using Adam optimization (Kingma and Ba, 2014). The loss 
function consisted of weighted cross entropy (WCE) and Dice loss, which 
is illustrated in Eq. (1). xci is the i-th pixel prediction probability of c-th 
class, yci is the ground truth label value, wc is the weight for c-th class. 
φ(θ) computes the L2-norm loss of the model parameters to prevent 

Fig. 2. The workflow of automatic TSS identification method. SVM: support vector machine, LR: logistic regression, RF: random forest, GBDT: gradient boosted 
decision tree, ET: extra trees. 

Fig. 3. The architecture of cross-modal segmentation network. The input and output size are 224× 224.  

Fig. 4. The proposed multi-scale atrous convolution (MSAC) block. Attention 
mechanism is contained in the purple box. 
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overfitting. θ denotes the trainable parameters of model. α is L2 loss 
weight and was set as 1e-6. X is predicting map, Y is ground truth map. 
We utilized data augmentation, i.e., random flip, rotation, scaling, to 
prevent overfitting during the training period. The initial learning rate 
was set to 1e-4 and then decayed by multiplying 0.98 in each epoch. 

Loss = LWCE + LDice

LWCE = −
∑n

i=1
wc[yci⋅logxci + (1 − yci)⋅log(1 − xci)] + α⋅φ(θ)

LDice = 1 −
2|X ∩ Y| + 1
|X| + |Y| + 1

(1)  

3.2. Feature extraction 

Radiomics is an important method in medical image analysis, which 
digitally describes the images containing lesion information with high- 
dimensional morphological features (Shi et al., 2019). Radiomics has 
been widely employed in tumor feature generalization (Aerts et al., 
2014; Coroller et al., 2015; Lambin et al., 2017). In this work, we pro-
posed to extract the stroke infarct lesion features automatically with 
PyRadiomics (Van Griethuysen et al., 2017). PyRadiomics is an open- 
source radiomics package in Python, which can be applied on both 
two and three-dimensional images. We extracted 107 features from DWI 
ROIs and 107 features from FLAIR ROIs. The 107 features can be divided 
into seven categories, i.e. first-order statistics features, shape-based 
features, gray level co-occurrence matrix features, gray level run 
length matrix features, gray level size zone matrix features, gray level 
dependence matrix features, and neighbouring gray tone difference 
matrix features. For training data and test data, we generalized features 
using radiologist’s labeling and segmentation ROI respectively. The 
features were then normalized to zero mean and unit variance. Features 
of DWI and FLAIR were concatenated as 214-dimension for TSS 
classification. 

3.3. TSS classification 

Five machine learning classifiers were constructed for TSS classifi-
cation (TSS ⩽4.5h or TSS > 4.5 h). The five models were logistic 
regression (LR), support vector machine (SVM), random forest (RF), 
gradient boosted decision tree (GBDT), extra trees (ET). LR is a statistical 
model that uses a logistic function to model a binary dependent variable 
(Bewick et al., 2005). SVM can learn a hyperplane from training ex-
amples for classification (Cortes and Vapnik, 1995). RF is an ensemble 
learning method which constructs a multitude of decision trees and 
averages the probabilities of different trees in classification tasks 
(Breiman, 2001). GBDT also constructs different trees but optimizes the 
model by using derivatives (Friedman, 2001). ET is similar to RF but has 
a stronger generalization ability than RF (Geurts et al., 2006). Consid-
ering the small amount of data, the deep neural network was not 
developed in this study. To improve the classification robustness, we 
integrated the five models by voting to obtain the final prediction. 

4. Results 

4.1. DWI segmentation 

The vanilla U-Net was utilized as a baseline model. We trained the 
proposed EfficientNet-B0 based U-Net combined with MSAC block, 
abbreviated as B0-UNet w/ MSAC, to segment the infarct lesions on 
DWI. The hyper-parameters were chosen according to the segmentation 
results on DWI validation set. Finally, the pre-trained model was eval-
uated on DWI test set. We also used High-Resolution Network (HRNet) 
as a comparison. HRNet is one of the state-of-the-art methods on Cit-
yspaces, COCO, ImageNet datasets, and achieved impressive results in 
segmentation, classification, detection tasks (Wang et al., 2020). Table 2 

presents the evaluation metrics of different models. The proposed 
method obtained the best sensitivity (0.791), specificity (0.999), and 
Dice coefficient (0.803). B0-Unet acquired the best specificity (0.999) 
and precision (0.862). The B0-Unet made use of much less parameters 
than U-Net (12.3 million vs. 28.9 million) but achieved close dice to U- 
Net (0.785 vs. 0.795). HRNet outperformed U-Net in terms of sensitivity 
and specificity. The specificities were all greater than 0.995 since most 
of the brain images were non-infarct pixels. 

Fig. 5 demonstrates several sample results that visually compare our 
method with the other three methods. True positive pixels were denoted 
in red, false positive pixels were given in green, and false negative pixels 
were in blue. The results of B0-UNet w/ MSAC show less missing 
detection and false detection pixels. Compared with the three models, 
the segmentation precision of infarct boundary and isolated little lesions 
can be significantly improved by employing MSAC, as shown in the last 
column. 

4.2. FLAIR segmentation 

Considering the difficulties in FLAIR infarct lesion segmentation, we 
trained a cross-modal network based on B0-UNet w/ MSAC, abbreviated 
as CM_B0-UNet w/ MSAC. The corresponding DWI images were input 
for training synchronously as supplementary information. The hyper- 
parameters were also chosen according to the results on FLAIR valida-
tion set. Afterwards, the pre-trained model was evaluated on FLAIR test 
set. We also built a cross-modal HRNet (CM_HRNet) and a cross-modal 
U-Net (CM_U-Net) for comparison. Table 3 gives the evaluation results 
on FLAIR images. The one-modal networks (U-Net and B0-UNet) using 
FLAIR only achieved low metrics, with Dice both less than 0.3. The 
cross-modal B0-UNet w/ MSAC achieved the best sensitivity (0.561), 
specificity (0.999), precision (0.763) and Dice coefficient (0.647). By 
introducing the MSAC block to CM_B0-UNet, the Dice coefficient and 
other metrics can be improved around by 0.1. Some cases of FLAIR 
segmentation using cross-modal networks are exhibited in Fig. 6 for 
visual inspection. CM_B0-UNet w/ MSAC obtained comparatively ac-
curate segmentation results in most cases. CM_B0-UNet did not detect 
the lesion in case 3 and CM_HRNet did not detect the lesion in case 4. In 
case 3, the isolated little lesion was also undetected by CM_U-Net. 

4.3. TSS classification 

After segmenting the infarct lesions, we extracted the features from 
DWI and FLAIR with PyRadiomics. Afterwards, we trained the LR, SVM, 
RF, GBDT, ET using the features of the training set. The hyper- 
parameters of each method, e.g. iterations and tree depth, were opti-
mized on the validation set. At last, the methods were evaluated on test 
set. The feature extraction ROI of training cases were delineated by ra-
diologists and the ROIs of validation and test cases were model seg-
mentation results. The receiver operating characteristic (ROC) curves of 
five classifiers are depicted in Fig. 7. 

The ET model showed the highest area under the curve (AUC) while 
LR showed the lowest AUC (0.824 vs. 0.765). The radiologist perfor-
mance using DWI-FLAIR mismatch model is also marked in Fig. 7. All 
ROCs of the five classifiers can cover the red cross, indicating the clas-
sifiers had higher sensitivities than human-derived DWI-FLAIR 
mismatch when having the same specificities. The sensitivity, specificity 
and accuracy of human-derived DWI-FLAIR mismatch were 0.817, 

Table 2 
Evaluation results of DWI segmentation. Best results are marked in bold.   

Sensitivity Specificity Precision Dice 

HRNet 0.783 0.998 0.792 0.788 
U-Net 0.772 0.995 0.815 0.795 
B0-UNet 0.721 0.999 0.862 0.785 
B0-UNet w/ MSAC 0.791 0.999 0.817 0.803  
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0.590, 0.704 respectively. The metrics of different classifiers are listed in 
Table 4. 

The GBDT, RF and ET had relatively low sensitivity (< 0.7) but high 
specificity (> 0.8), while LR and SVM had relatively low specificity (<
0.8) but high sensitivity (> 0.7). All the accuracies of the five separate 
models were under 0.77. However, the voting of five models achieved 
the best specificity (0.840) and accuracy (0.805), which are evidently 
higher than those of human-derived DWI-FLAIR mismatch. The sensi-
tivity of voting was slightly below human-derived DWI-FALIR mismatch 
(0.769 vs. 0.817). Table 5 reports the AUCs of the five classifiers using 
DWI features only, FLAIR features only, and DWI+FLAIR features for 
TSS identification. For most of the classifiers, using only FLAIR image 
had the lowest AUCs while using FLAIR + DWI had the best AUCs. We 
also noticed that the SVM AUC of DWI was higher than DWI+FLAIR to a 
small extent. This is probably because too many dimensions of image 
feature led SVM to locally optimal during training. The AUCs of five 
models using segmentation ROI DWI+FLAIR features in the test set were 
very close to the AUCs using man-made labeling features, all around 0.8. 
The sensitivities, specificities, and accuracies of segmentation ROI DWI 
+ FLAIR features were close to those of radiologist’s labeling features 
using the voting of five classifiers, as shown in Fig. 8. 

5. Discussion 

Determining the unknown TSS from medical imaging is a chal-
lenging but meaningful task in acute stroke treatment. As a common 
method in TSS identification, DWI-FLAIR mismatch was showed safe in 
rtPA selection (Schwamm et al., 2018). To reduce the radiologist’s 
workload and improve the accuracy of TSS classification, we proposed 
an automatic TSS identification method using machine learning. The 
method is composed of 3 steps. First, using convolutional networks to 
segment stroke lesions from DWI and FLAIR. Second, extracting 
morphological features of segmentation ROIs in DWI and FLAIR. Third, 
using the voting of five classifiers to identify TSS. Our method achieved 
relatively high sensitivity (0.769) and specificity (0.840) in our dataset 
TSS identification, which are obviously superior to the results of DWI- 
FLAIR mismatch reported in (Thomalla et al., 2009; Aoki et al., 2010; 
Kim et al., 2014; Lee et al., 2020). 

FLAIR usually needs more time to present infarct lesion hyper-
intensity than DWI. Most lesions of cases ⩽4.5h do not appear hyper-
intensity in FLAIR. The characteristic will make the lesion ROI and the 
other tissues more imbalanced. Although using CE loss combined with 
Dice loss can ease the problem of class imbalance to some extent, the 
segmentation results using FLAIR only are still unsatisfactory, with Dice 
less than 0.3. Besides, more factors, e.g. brain tumor and cerebrospinal 
fluid, are highlighted in FLAIR. It will also make the FLAIR segmentation 
more difficult. Infarct lesion has high contrast in DWI. The Dice of DWI 
infarct lesion segmentation can be up to 0.8. Hence, the cross-modal 
network can provide lesion location information from DWI for FLAIR 
segmentation. In Fig. 9, case 1 typically presents the single modal FLAIR 
segmentation failure due to class imbalances, and case 2 exhibits the 
segmentation failure because of low lesion contrast. However, the le-
sions in DWI can be easily identified as shown in the second column. 
Introducing DWI features into the cross-modal networks, the FLAIR 
segmentation can be more accurate (Column 4 vs. Column 5). We also 
recognized that the lesion ROIs drawn by one radiologist and then 

Fig. 5. Visualization of the prediction ischemic core by using the proposed method and other three methods in DWI. True positive pixels are denoted in red, false 
positive pixels in green and false negative pixels in blue. 

Table 3 
Evaluation results of FLAIR segmentation. Best results are marked in bold.   

Sensitivity Specificity Precision Dice 

U-Net – – – 0.286 
B0-UNet – – – 0.299 
CM_HRNet 0.494 0.999 0.754 0.597 
CM_U-Net 0.489 0.999 0.665 0.564 
CM_B0-UNet 0.462 0.999 0.674 0.548 
CM_B0-UNet w/ MSAC 0.561 0.999 0.763 0.647  
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checked by another one may be not accurate enough because the ground 
truth is essentially determined by one person. The shortcoming could 
influence the model segmentation accuracy. 

As indicated in Fig. 7, the machine learning models all outperformed 
DWI-FLAIR mismatch. Overall, the classification accuracy has been 
greatly improved by applying our method (Table 4). We also noticed 

that the AUCs of five classifiers using DWI features only or FLAIR fea-
tures only are significantly lower than DWI + FLAIR features in Table 5. 
Only one single modal image may not be adequate for TSS identification. 
Leveraging both DWI and FLAIR features is necessary in TSS identifi-
cation. Although PWI might influence the prediction accuracy of TSS 
identification (Wouters et al., 2016), it is difficult to obtain PWI images 
due to the severe condition of stroke patients, the longer scan time or the 
difficulty of achieving PWI imaging in many primary hospitals, etc. In 

Fig. 6. Visualization of the prediction ischemic core in FLAIR by using cross-modal segmentation networks. True positive pixels are denoted in red, false positive 
pixels in green and false negative pixels in blue. 

Fig. 7. The ROCs of five classifiers. The red cross marker indicates the false 
positive rate and true positive rate of DWI-FLAIR mismatch model by 
radiologists. 

Table 4 
The sensitivities, specificities and accuracies of human-reading DWI-FLAIR 
mismatch and different models using segmentation ROI DWI-FLAIR features. 
Best results are marked in bold.   

Sensitivity Specificity Accuracy 

DWI-FLAIR mismatch 0.817 0.590 0.704 
LR 0.846 0.643 0.745 
SVM 0.769 0.765 0.765 
GBDT 0.654 0.841 0.745 
RF 0.692 0.800 0.749 
ET 0.692 0.840 0.768  

Voting 0.769 0.840 0.805  

Table 5 
The AUCs of five classifiers using different modal features. Best results are 
marked in bold.    

LR SVM GBDT RF ET 

Manual labeling DWI+FLAIR 0.797 0.795 0.802 0.789 0.807  
DWI 0.755 0.840 0.781 0.782 0.743  
FLAIR 0.682 0.693 0.701 0.665 0.680  

Segmentation ROI DWI+FLAIR 0.765 0.811 0.799 0.786 0.792  
DWI 0.706 0.693 0.728 0.669 0.668  
FLAIR 0.652 0.698 0.619 0.630 0.674  
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this study, we only utilized DWI and FLAIR without PWI images but can 
achieve higher AUCs than that reported in (King Chung et al., 2019). Our 
model may have better generalization capability than previous works 
since PWI imaging is not required. The AUC of SVM using DWI + FLAIR 
feature is lower than AUC using DWI only. The dimension disaster in 
SVM training is a point we need to concern about. Different classifica-
tion models have shown different performance in TSS classification 
(Fig. 8). The LR and SVM tend to obtain high sensitivity but low speci-
ficity, while the GBDT, RF and ET tend to obtain high specificity but low 
sensitivity. The accuracies of voting are the highest while the sensitiv-
ities and specificities are not too low. The voting of five classifiers can 
achieve robust sensitivity, specificity and accuracy regardless of manual 
labeling or segmentation ROI feature. The classification accuracies of 
voting were both higher than that of one single classifier. The sensitivity 
and specificity can strike a balance instead of too high or too low. The 
sensitivities, specificities and accuracies of the five classifiers using 
segmentation ROI DWI + FLAIR features have no significant difference 
when compared with using radiologist’s labeling features (P-value =
0.209). It suggests that using the segmentation ROI for TSS identification 
can achieve comparable performance to manual labeling. Furthermore, 
after training the segmentation models and the classification models, the 
average processing time for each test patient was less than 3s (1.5s for 
segmentation and 0.8s for classification) on our PC. Although the voting 

of five classifiers will increase the model complexity and take more time 
for training, the fast testing speed and high classification accuracy of our 
method may make it practical for computer-aided diagnosis in the 
future. 

Our machine learning model has shown outstanding performance in 
TSS classification, which is better than human-derived DWI-FLAIR 
mismatch to some extent, the prediction results of ML model still have 
some problems. Fig. 10 reveals some false positive and false negative 
cases of the proposed method. In case 1, there is no significant hyper-
intensity mismatch between DWI and FLAIR. The TSS of case 1 is 4.4 h, 
hence the lesion in FLAIR is conspicuous which leads to the misclassi-
fication. In case 2, there is only a little match between DWI and FLAIR on 
slices of left cerebellum. The match is too small to guide the correct 
classification. Case 3 and 4 reveal the misclassification because of the 
lesion segmentation failure. The lesion in the FLAIR of case 3 is unde-
tected owing to the low lesion contrast. Thus, the segmentation ROIs on 
DWI and FLAIR of case 3 are mismatched. Case 4 demonstrates the 
misclassification due to the segmentation failure on both DWI and 
FLAIR. The unclear lesions in DWI and FLAIR tend to be neglected by the 
trained segmentation networks. Besides, the collateral flow will 
diminish the dependency of FLAIR signal on time from symptom onset. 
Future work could be concentrated on discriminating the patients whose 
TSS are close to 4.5 h, improving the accuracy of DWI and FLAIR 

Fig. 8. The sensitivities, specificities and accuracies of different models using DWI+FLAIR features. The columns with different texture are results of manual labeling 
features and segmentation ROI features. 

Fig. 9. The effectiveness of cross-modal network in FLAIR ROI segmentation. The true positive pixels are denoted in red, false positive pixels in green and false 
negative pixels in blue. 
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segmentation, and analyzing the predictive value of collateral flow on 
TSS identification. 

6. Conclusion 

In this work, we developed an automatic workflow to identify TSS 
only using two-modal images (DWI and FLAIR). We first proposed an 
EfficientNet-B0 based U-Net combined with MSAC block for DWI ROI 
segmentation. To resolve the barriers in FLAIR segmentation, we also 
proposed a cross-modal network. Afterwards, the features of DWI and 
FLAIR were generated in the segmentation ROIs and input to five clas-
sification models. In the experiment, we verified that integrating the five 
classifiers by voting can achieve robust accuracy in TSS identification. 
We anticipate that such a method will be useful for TSS unknown pa-
tients in acute stroke treatment decision-making. 

CRediT authorship contribution statement 

Haichen Zhu: Methodology, Software, Validation, Writing - original 
draft. Liang Jiang: Conceptualization, Data curation, Formal analysis. 
Hong Zhang: Data curation, Visualization. Limin Luo: Supervision, 
Conceptualization. Yang Chen: Resources, Project administration, 
Funding acquisition. Yuchen Chen: Writing - review & editing, Funding 
acquisition. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This work was supported in part by the State’s Key Project of 
Research and Development Plan [Grant Nos. 2017YFC0109202, 
2017YFA0104302], the National Natural Science Foundation of China 
[Grant Nos. 61871117], Natural Science Foundation of Jiangsu Province 
[Grant Nos. BK20201118], and the Science and Technology Program of 
Guangdong [Grant Nos. 2018B030333001]. 

References 

Aerts, H.J., Velazquez, E.R., Leijenaar, R.T., Parmar, C., Grossmann, P., Carvalho, S., 
Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D., et al., 2014. Decoding 
tumour phenotype by noninvasive imaging using a quantitative radiomics approach. 
Nature Communications 5 (1), 1–9. https://doi.org/10.1038/ncomms5006. 

Aoki, J., Kimura, K., Iguchi, Y., Shibazaki, K., Sakai, K., Iwanaga, T., 2010. Flair can 
estimate the onset time in acute ischemic stroke patients. Journal of the Neurological 
Sciences 293 (1–2), 39–44. https://doi.org/10.1016/j.jns.2010.03.011. 

Bewick, V., Cheek, L., Ball, J., 2005. Statistics review 14: Logistic regression. Critical 
Care 9 (1), 1–7. https://doi.org/10.1186/cc3045. 

Breiman, L., 2001. Random forests. Machine Learning 45 (1), 5–32. https://doi.org/ 
10.1023/A:1010933404324. 

Broocks, G., Leischner, H., Hanning, U., Flottmann, F., Faizy, T.D., Schön, G., Sporns, P., 
Thomalla, G., Kamalian, S., Lev, M.H., et al., 2020. Lesion age imaging in acute 
stroke: Water uptake in ct versus dwi-flair mismatch. Annals of Neurology 88 (6), 
1144–1152. https://doi.org/10.1002/ana.25903. 

Campbell, B.C., Ma, H., Ringleb, P.A., Parsons, M.W., Churilov, L., Bendszus, M., Levi, C. 
R., Hsu, C., Kleinig, T.J., Fatar, M., et al., 2019. Extending thrombolysis to 4⋅5–9 h 
and wake-up stroke using perfusion imaging: a systematic review and meta-analysis 
of individual patient data. The Lancet 394 (10193), 139–147. https://doi.org/ 
10.1016/S0140-6736(19)31053-0. 

Chen, L., Bentley, P., Rueckert, D., 2017. Fully automatic acute ischemic lesion 
segmentation in dwi using convolutional neural networks. NeuroImage: Clinical 15, 
633–643. https://doi.org/10.1016/j.nicl.2017.06.016. 

Coroller, T.P., Grossmann, P., Hou, Y., Velazquez, E.R., Leijenaar, R.T., Hermann, G., 
Lambin, P., Haibe-Kains, B., Mak, R.H., Aerts, H.J., 2015. Ct-based radiomic 
signature predicts distant metastasis in lung adenocarcinoma. Radiotherapy and 
Oncology 114 (3), 345–350. doi:10.1016/j.radonc.2015.02.015. 

Cortes, C., Vapnik, V., 1995. Support-vector networks. Machine Learning 20 (3), 
273–297. https://doi.org/10.1007/BF00994018. 

Ebinger, M., Galinovic, I., Rozanski, M., Brunecker, P., Endres, M., Fiebach, J.B., 2010. 
Fluid-attenuated inversion recovery evolution within 12 hours from stroke onset: a 
reliable tissue clock? Stroke 41 (2), 250–255. https://doi.org/10.1161/ 
STROKEAHA.109.568410. 

Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. 
Annals of Statistics 1189–1232. https://doi.org/10.1214/aos/1013203451. 

Furie, K.L., Jayaraman, M.V., 2018. guidelines for the early management of patients with 
acute ischemic stroke. Stroke 49 (2018), 509–510. https://doi.org/10.1161/ 
STROKEAHA.118.020176. 

Ge, R., Yang, G., Chen, Y., Luo, L., Feng, C., Ma, H., Ren, J., Li, S., 2019. K-net: Integrate 
left ventricle segmentation and direct quantification of paired echo sequence. IEEE 
Transactions on Medical Imaging 39 (5), 1690–1702. https://doi.org/10.1109/ 
TMI.2019.2955436. 

Geurts, P., Ernst, D., Wehenkel, L., 2006. Extremely randomized trees. Machine Learning 
63 (1), 3–42. https://doi.org/10.1007/s10994-006-6226-1. 

Isensee, F., Maier-Hein, K.H., 2019. An attempt at beating the 3d u-net, arXiv preprint 
arXiv:1908.02182. 

Jauch, E.C., Saver, J.L., Adams Jr, H.P., Bruno, A., Connors, J., Demaerschalk, B.M., 
Khatri, P., McMullan Jr, P.W., Qureshi, A.I., Rosenfield, K., et al., 2013. Guidelines 
for the early management of patients with acute ischemic stroke: a guideline for 

Fig. 10. The failure examples of the proposed ML model. In the segmentation columns, the true positive pixels are denoted in red, false positive pixels in green and 
false negative pixels in blue. 

H. Zhu et al.                                                                                                                                                                                                                                     

https://doi.org/10.1038/ncomms5006
https://doi.org/10.1016/j.jns.2010.03.011
https://doi.org/10.1186/cc3045
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1002/ana.25903
https://doi.org/10.1016/S0140-6736(19)31053-0
https://doi.org/10.1016/S0140-6736(19)31053-0
https://doi.org/10.1016/j.nicl.2017.06.016
https://doi.org/10.1007/BF00994018
https://doi.org/10.1161/STROKEAHA.109.568410
https://doi.org/10.1161/STROKEAHA.109.568410
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1161/STROKEAHA.118.020176
https://doi.org/10.1161/STROKEAHA.118.020176
https://doi.org/10.1109/TMI.2019.2955436
https://doi.org/10.1109/TMI.2019.2955436
https://doi.org/10.1007/s10994-006-6226-1


NeuroImage: Clinical 31 (2021) 102744

9

healthcare professionals from the american heart association/american stroke 
association. Stroke 44 (3), 870–947. https://doi.org/10.1161/ 
STR.0b013e318284056a. 

Kim, B.J., Kim, Y.-H., Kim, Y.-J., Ahn, S.H., Lee, D.H., Kwon, S.U., Kim, S.J., Kim, J.S., 
Kang, D.-W., 2014. Color-coded fluid-attenuated inversion recovery images improve 
inter-rater reliability of fluid-attenuated inversion recovery signal changes within 
acute diffusion-weighted image lesions. Stroke 45 (9), 2801–2804. https://doi.org/ 
10.1161/STROKEAHA.114.006515. 

King Chung, H., Speier, W., Zhang, H., Scalzo, F., El-Saden, S., Arnold, C.W., 2019. A 
machine learning approach for classifying ischemic stroke onset time from imaging. 
IEEE Transactions on Medical Imaging 38 (7), 1666–1676. doi:10.1109/ 
TMI.2019.2901445. 

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization, arXiv preprint 
arXiv:1412.6980. 

Lambin, P., Leijenaar, R.T., Deist, T.M., Peerlings, J., De Jong, E.E., Van Timmeren, J., 
Sanduleanu, S., Larue, R.T., Even, A.J., Jochems, A., et al., 2017. Radiomics: the 
bridge between medical imaging and personalized medicine. Nature Reviews 
Clinical Oncology 14 (12), 749–762. https://doi.org/10.1038/nrclinonc.2017.141. 

Lee, H., Lee, E.-J., Ham, S., Lee, H.-B., Lee, J.S., Kwon, S.U., Kim, J.S., Kim, N., Kang, D.- 
W., 2020. Machine learning approach to identify stroke within 4.5 hours. Stroke 51 
(3), 860–866. doi:10.1161/STROKEAHA.119.027611. 

Nielsen, A., Hansen, M.B., Tietze, A., Mouridsen, K., 2018. Prediction of tissue outcome 
and assessment of treatment effect in acute ischemic stroke using deep learning. 
Stroke 49 (6), 1394–1401. https://doi.org/10.1161/STROKEAHA.117.019740. 

Pinto, A., Mckinley, R., Alves, V., Wiest, R., Silva, C.A., Reyes, M., 2018. Stroke lesion 
outcome prediction based on mri imaging combined with clinical information. 
Frontiers in Neurology 9, 1060. https://doi.org/10.3389/fneur.2018.01060. 

Powers, W.J., Rabinstein, A.A., Ackerson, T., Adeoye, O.M., Bambakidis, N.C., Becker, K., 
Biller, J., Brown, M., Demaerschalk, B.M., Hoh, B., et al., 2019. Guidelines for the 
early management of patients with acute ischemic stroke: 2019 update to the 2018 
guidelines for the early management of acute ischemic stroke: a guideline for 
healthcare professionals from the american heart association/american stroke 
association. Stroke 50 (12), e344–e418. https://doi.org/10.1161/ 
STR.0000000000000211. 

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for 
biomedical image segmentation. In: International Conference on Medical Image 
Computing and Computer-assisted Intervention, pp. 234–241. https://doi.org/ 
10.1007/978-3-319-24574-4_28. 

Schwamm, L.H., Wu, O., Song, S.S., Latour, L.L., Ford, A.L., Hsia, A.W., Muzikansky, A., 
Betensky, R.A., Yoo, A.J., Lev, M.H., et al., 2018. Intravenous thrombolysis in 
unwitnessed stroke onset: Mr witness trial results. Annals of Neurology 83 (5), 
980–993. https://doi.org/10.1002/ana.25235. 

Shi, Z., Traverso, A., van Soest, J., Dekker, A., Wee, L., 2019. Ontology-guided radiomics 
analysis workflow (o-raw). Medical Physics 46 (12), 5677–5684. https://doi.org/ 
10.1002/mp.13844. 

Tan, M., Le, Q., 2019. Efficientnet: Rethinking model scaling for convolutional neural 
networks. In: International Conference on Machine Learning, pp. 6105–6114. 

Thomalla, G., Rossbach, P., Rosenkranz, M., Siemonsen, S., Krützelmann, A., Fiehler, J., 
Gerloff, C., 2009. Negative fluid-attenuated inversion recovery imaging identifies 
acute ischemic stroke at 3 hours or less. Annals of Neurology: Official Journal of the 
American Neurological Association and the Child Neurology Society 65 (6), 
724–732. https://doi.org/10.1002/ana.21651. 

Tiwari, A., Srivastava, S., Pant, M., 2020. Brain tumor segmentation and classification 
from magnetic resonance images: Review of selected methods from 2014 to 2019. 
Pattern Recognition Letters 131, 244–260. doi:10.1016/j.patrec.2019.11.020. 

Van Griethuysen, J.J., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets- 
Tan, R.G., Fillion-Robin, J.-C., Pieper, S., Aerts, H.J., 2017. Computational radiomics 
system to decode the radiographic phenotype. Cancer Research 77 (21), e104–e107. 
https://doi.org/10.1158/0008-5472.CAN-17-0339. 

Wang, L., 2020. Brief report on stroke prevention and treatment in china 2019. Chinese 
Journal of Cerebrovascular Diseases 17, 272–280. https://doi.org/10.3969/j. 
issn.1672-5921.2020.05.008. 

Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, 
X., et al., 2020. Deep high-resolution representation learning for visual recognition. 
IEEE Transactions on Pattern Analysis and Machine Intelligence doi:10.1109/ 
TPAMI.2020.2983686. 

Wouters, A., Dupont, P., Christensen, S., Norrving, B., Laage, R., Thomalla, G., Albers, G., 
Thijs, V., Lemmens, R., 2016. Association between time from stroke onset and fluid- 
attenuated inversion recovery lesion intensity is modified by status of collateral 
circulation. Stroke 47 (4), 1018–1022. https://doi.org/10.1161/ 
STROKEAHA.115.012010. 

Yin, X., Zhao, Q., Liu, J., Yang, W., Yang, J., Quan, G., Chen, Y., Shu, H., Luo, L., 
Coatrieux, J.-L., 2019. Domain progressive 3d residual convolution network to 
improve low-dose ct imaging. IEEE Transactions on Medical Imaging 38 (12), 
2903–2913. https://doi.org/10.1109/TMI.2019.2917258. 

Zeineldin, R.A., Karar, M.E., Coburger, J., Wirtz, C.R., Burgert, O., 2020. Deepseg: deep 
neural network framework for automatic brain tumor segmentation using magnetic 
resonance flair images. International Journal of Computer Assisted Radiology and 
Surgery 15 (6), 909–920. https://doi.org/10.1007/s11548-020-02186-z. 

Zhang, R., Zhao, L., Lou, W., Abrigo, J.M., Mok, V.C., Chu, W.C., Wang, D., Shi, L., 2018. 
Automatic segmentation of acute ischemic stroke from dwi using 3-d fully 
convolutional densenets. IEEE Transactions on Medical Imaging 37 (9), 2149–2160. 
https://doi.org/10.1109/TMI.2018.2821244. 

Zhu, H., Tong, D., Zhang, L., Wang, S., Wu, W., Tang, H., Chen, Y., Luo, L., Zhu, J., Li, B., 
2020. Temporally downsampled cerebral ct perfusion image restoration using deep 
residual learning. International Journal of Computer Assisted Radiology and Surgery 
15 (2), 193–201. https://doi.org/10.1007/s11548-019-02082-1. 

H. Zhu et al.                                                                                                                                                                                                                                     

https://doi.org/10.1161/STR.0b013e318284056a
https://doi.org/10.1161/STR.0b013e318284056a
https://doi.org/10.1161/STROKEAHA.114.006515
https://doi.org/10.1161/STROKEAHA.114.006515
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1161/STROKEAHA.117.019740
https://doi.org/10.3389/fneur.2018.01060
https://doi.org/10.1161/STR.0000000000000211
https://doi.org/10.1161/STR.0000000000000211
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1002/ana.25235
https://doi.org/10.1002/mp.13844
https://doi.org/10.1002/mp.13844
https://doi.org/10.1002/ana.21651
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.3969/j.issn.1672-5921.2020.05.008
https://doi.org/10.3969/j.issn.1672-5921.2020.05.008
https://doi.org/10.1161/STROKEAHA.115.012010
https://doi.org/10.1161/STROKEAHA.115.012010
https://doi.org/10.1109/TMI.2019.2917258
https://doi.org/10.1007/s11548-020-02186-z
https://doi.org/10.1109/TMI.2018.2821244
https://doi.org/10.1007/s11548-019-02082-1

	An automatic machine learning approach for ischemic stroke onset time identification based on DWI and FLAIR imaging
	1 Introduction
	2 Materials
	2.1 Dataset
	2.2 Image preprocessing

	3 Methods
	3.1 Stroke Lesion Segmentation
	3.2 Feature extraction
	3.3 TSS classification

	4 Results
	4.1 DWI segmentation
	4.2 FLAIR segmentation
	4.3 TSS classification

	5 Discussion
	6 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References


