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Abstract

Macroautophagy (hereafter referred to as autophagy) can increase or decrease the amount of cell 

death in response to various stimuli. To test if autophagy also controls the characteristics 

associated with dying cells, we studied tumor cell killing by Epidermal Growth Factor Receptor 

(EGFR)-targeted diphtheria toxin (DT-EGF). DT-EGF kills epithelial and glioblastoma tumor 

cells with similar efficiency but by different mechanisms that depend on whether the cells activate 

autophagy when treated with the drug. Dying cells in which autophagy is induced selectively 

release the immune modulator HMGB1 without causing lysis of the cell membrane and classical 

necrosis. Conversely, cells that are killed by DT-EGF where autophagy is blocked, activate 

caspases but retain HMGB1. These data suggest that it may be feasible to manipulate the 

immunogenicity of dying cells by increasing or decreasing autophagy.

INTRODUCTION

Autophagy (1) regulates the amount of cell death that occurs in response to specific stimuli 

(2, 3) e.g. by blocking apoptosis after growth factor depletion (4, 5) or exposure of cells to 

various other apoptotic stimuli (6), protecting against caspase-independent death (7) or 

preventing necrosis in apoptosis-incompetent cells that are subjected to severe metabolic 

stress (8). Although it is still unclear under which conditions autophagy leads to cell death 

(9), autophagic cell death (3) has been reported in response to external insults including 

DNA damaging agents (10), caspase inhibitors (11) (although a more recent study raised 

questions about this conclusion (12)), and a large variety of anti-cancer drugs (13). 

Autophagy can also contribute to cell death during normal development (14). Thus 

autophagy can both positively and negatively regulate the amount of cell death that occurs in 

response to a stimulus.

The biological response to cell death stimuli such as treatment with anti-cancer drugs is 

determined both by the absolute amount of cell death and the characteristics of the dying 
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cells. For example, apoptosis is usually non-inflammatory while necrosis usually causes an 

immune response. This difference is determined by the release of immunogenic stimulators 

especially the DNA-binding protein high-mobility group B1 (HMGB1), which is usually 

(but not always (15)) retained in apoptotic nuclei but released during necrosis (16). While it 

is well established that autophagy can regulate the amount of cell death in response to a 

death stimulus, it is less clear how autophagy regulates characteristics of dying cells such as 

the release of HMGB1. To address this question, we asked how autophagy affects cells that 

are destined to die in different ways by treating tumor cells with a targeted toxin (17), DT-

EGF, which blocks protein synthesis and kills tumor cells in an EGFR-dependent manner as 

demonstrated by loss of metabolic activity (18), clonogenicity, and the regression of 

established tumors (19).

RESULTS

We evaluated the cytotoxicity of DT-EGF (18) on EGFR-positive glioblastoma (U87MG 

and U373MG) and epithelial (HeLa and HN12) cancer cells using clonogenic survival (Fig. 

1A) assays by treating with increasing doses of the targeted toxin for 24 hours, then washing 

away the drug and allowing surviving cells to recover and undergo clonogenic growth for up 

to two weeks. In all cases we obtained similar, dose-dependent cell death as demonstrated 

by loss of clonogenic capacity. Previous studies (19) demonstrated that in addition to loss of 

metabolic activity as measured in cell viability assays, treatment with DT-EGF causes the 

regression of established glioblastoma tumors indicating that the drug causes bona fide 

glioblastoma cell death rather than growth arrest. Like many other anti cancer agents, 

targeted toxins usually kill tumor cells by activating caspase-dependent apoptosis (reviewed 

in (20)). However, time-lapse microscopy (Fig. 1B) showed that the morphology of the 

dying cells was markedly different with only the epithelial cells displaying typical 

characteristics of caspase-dependent apoptosis such as membrane blebbing and cellular 

fragmentation, while dying glioma cells rounded up but showed no signs of apoptosis or 

membrane rupture. Western blotting of the caspase substrate PARP (Fig. 1C) and 

measurements of the activity of effector caspases (Supp Fig 1A) showed that DT-EGF 

activated caspases in the epithelial cells but not in the glioblastoma cells. However both 

U87MG and HeLa cells displayed robust caspase activation after treatment with 

lexatumumab, an antibody that activates the TNF-related apoptosis inducing ligand (TRAIL) 

receptor DR5 (Supp Fig. 1B) indicating that both cell types contain functional caspases and 

could undergo apoptosis. Furthermore caspase inhibition protected against DT-EGF in HeLa 

cells but not in U87MG cells (Supp Fig. 1C).

We analyzed the proteome of dying U87MG cells treated with lexatumumab or DT-EGF. 

2D-DIGE allows simultaneous analysis of different protein samples by labeling each sample 

with a different CyDye then combining the samples and separating them on the same gel. 

Lexatumumab caused numerous changes to the whole cell proteome, shown by many red 

and green spots that indicate differences between the samples (Fig. 2A). Extensive changes 

in the proteome are expected in apoptotic cells where caspases cleave hundreds of substrates 

(21). In contrast, U87MG cells dying as a result of DTEGF treatment displayed very few 

changes to the whole cell proteome as shown by the lack of green and red spots and the 

abundance of yellow spots (Fig. 2A). When the 2D gels were quantitated using a 2 fold 
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threshold as the cut-off for counting differences; 241 out of 2,464 (9.8%) of spots were 

different between the control and lexatumumab-treated samples whereas only 2.4% of 

proteins were different between the control and DT-EGF-treated cells. These data indicate 

that the U87MG cells treated with DT-EGF cells are not undergoing apoptosis or apoptosis-

like death caused by other proteases that cleave many substrates. Moreover, there was no 

apparent loss of soluble proteins as would be expected if there was abrupt lysis of the cell 

membrane as in typical necrosis.

One notable proteomic change induced by DT-EGF involved an apparent pI shift in a 

protein (Fig. 2A boxed region) that was identified by mass spectrometry as isoforms of the 

translation elongation factor eEF2alpha (eEF2). This protein is the direct catalytic target of 

diphtheria toxin, which ADP ribosylates eEF2 on a unique dipthamide residue. However, the 

pI shift and western analysis (not shown) indicated that the modification caused by DT-EGF 

also involved phosphorylation. Because eEF2 kinase regulates autophagy in glioblastoma 

cells (22), we asked if DT-EGF induces autophagy in U87MG cells. Upon induction of 

autophagy, the microtubule-associated light-chain 3 (LC3) is conjugated to 

phosphatidylethanolamine and incorporated into autophagosomes (1). This can be visualized 

by looking for the formation of foci of a green fluorescent protein tagged version of LC3 

(GFP-LC3) (23). DT-EGF induced GFP-LC3 foci in glioblastoma cells (Fig. 2B, C) similar 

to that seen with the strong autophagy inducer trehalose (24). siRNA knockdown of the 

autophagy regulators Beclin1, Atg 5, Atg 12 or Atg 7 (knockdown was confirmed by 

western blotting, Supp Fig. 2) prevented both trehalose and DT-EGF-induced GFP-LC3 

aggregation in the glioblastoma cells. However, only DT-EGF-induced autophagy was 

inhibited by EGFR knockdown. Autophagic flux was induced by DT-EGF in the U87MG 

cells as demonstrated (Fig. 3A) by increased LC3-II formation relative to the actin control 

when lysosomal protease inhibitors were used together with DT-EGF (25) and processing of 

the autophagy cargo substrate betaine homocysteine methyltransferase (BHMT) using a 

GST-tagged BHMT construct (26) (Fig. 3B). As has been noted in other systems, detection 

of LC3-I was variable. At later times after DT-EGF or trehalose treatment, we detected 

increased numbers of mCherry but not GFP labeled structures from a tandem labeled GFP-

mCherry-LC3 expression construct. This protein displays green and red fluorescence in 

autophagosomes but only shows red fluorescence after the autophagosomes fuse with 

lysosomes (27, 28) indicating that DT-EGF causes the maturation of autophagosomes and 

fusion with lysosomes (Supp Fig. 3). DT-EGF also induced autophagy in U373MG cells 

(Fig. 3B) as shown using the GST-BHMT assay. DT-EGF treatment of the epithelial cell 

lines that we tested did not increase autophagy as indicated by LC3-II formation (Fig 3A), 

BHMT processing (Fig. 3B) or increased GFP-LC3 foci (Supp Fig. 4). Two other DT-EGF-

sensitive glioblastoma cell lines (8MGBA and SNB19) also activated processing the the 

autophagy cargo BHMT in response to DT-EGF treatment (Supp Fig. 5). These data indicate 

that DT-EGF induces autophagosome formation and autophagic flux in some but not all 

tumor cells suggesting that the different characteristics of the dying cells could be related to 

the drug’s ability to activate autophagy in the different cell types.

To test if autophagy controls the amount of DT-EGF-induced death, we performed siRNA 

knockdown of autophagy regulators, treated with increasing doses of DT-EGF for 24 hours, 

then removed the drug and cultured cells for two weeks to allow colony growth of surviving 
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cells. Alternatively, autophagy was increased by pre-treatment with trehalose and cell death 

after treatment with DTEGF was monitored by time-lapse microscopy or clonogenic 

survival. Inhibition of autophagy increased the efficiency of DT-EGF killing in the 

clonogenic growth assay (Fig. 4A). Conversely, increasing autophagy with trehalose delayed 

(Fig 4B) and slightly inhibited (Fig. 4C) DT-EGF-induced glioblastoma cell death. In the 

U87MG cells, inhibition of autophagy by siRNA knockdown of Atg5 allowed induction of 

caspase 3/7 activity in response to DT-EGF (Fig. 4D). These data indicate that the 

glioblastoma cells do not undergo autophagic cell death but rather are protected by the DT-

EGF-induced autophagy and suggest that this occurs because autophagy prevents more 

efficient caspase-dependent death. Increasing autophagy prior to DT-EGF treatment also 

protected HN12 epithelial cells by clonogenic assay (Supp. Fig. 6A) and time-lapse 

microscopy (Supp. Fig. 6B). The protection conferred by trehalose was greater in the 

epithelial cells than the glioblastoma cells consistent with the idea that in glioblastoma cells, 

trehalose-induced autophagy was merely added to that produced by DT-EGF on its own.

We next asked if the cells that activate autophagy after DT-EGF treatment released 

HMGB1. DT-EGF-treated U87MG cells released HMGB1 into the extracellular media as 

shown by time-lapse microscopy of GFP-HMGB1-transfected cells (Fig. 5A) and western 

blotting (Fig. 5B). Moreover, this release was controlled by autophagy as shown by 

knockdown of Atg5, Atg7 or Atg12, which prevented HMGB1 release in DT-EGF-treated 

U87MG cells as detected by western blotting or time-lapse microscopy of GFP-HMGB1 

(Fig. 5 A,B, Supp Fig. 8A). These data indicate that the formation of autophagosomes is 

required for the release of HMGB1. Release occurred after the GFP-HMGB1 protein 

became localized in a punctate pattern as shown in the magnified image in Fig. 5A. These 

HMGB1-positive structures, co-localized with a few of the LC3-positive dots (see arrows in 

Supp Fig. 7) consistent with the idea that a subset of autophagosomal structures contains 

HMGB1 prior to its release from the cell.

HMGB1 release usually occurs in cells that are undergoing classical necrotic cell death 

marked by abrupt membrane lysis and the release of soluble proteins (16). However, unlike 

the necrotic, H2O2-treated U87MG cells, which also released lactate dehydrogenase (LDH) 

(Fig. 6C) and were stained with propidium iodide (Fig. 6A,B) indicating that their 

cytoplasmic membranes were lysed, the DT-EGF-treated cells did not display other necrotic 

characteristics. Indeed there was greater propidium iodide staining in DT-EGF-treated cells 

where autophagy had been inhibited by Atg5 knockdown, due to cells in late stages of 

apoptosis. Together with the limited changes in the whole cell proteome in the dying DT-

EGF-treated U87MG cells (Fig 2A), these data indicate that the HMGB1 release from these 

dying cells is not associated with membrane lysis and necrosis but instead represents 

selective release of the HMGB1 protein from the cell. Conversely, DT-EGF-treated 

epithelial cells (which activate caspases and undergo apoptosis) did not release significant 

amounts of HMGB1 (Fig. 6D and Supp Fig. 8). However, when we stimulated autophagy 

with trehalose, then treated HN12 epithelial cells with DT-EGF, this caused HMGB1 release 

from the dying cells (Fig. 6D) without significant release of LDH (Fig. 6E). This release is 

due to the autophagy itself because similar levels of HMGB1 release occur with treatment 

by trehalose alone (Fig. 6D).
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DISCUSSION

Manipulation of autophagy and necrosis may be useful in cancer therapy (29, 30). For 

example, it may be possible to increase the efficiency of tumor cell killing in response to 

chemotherapeutic drugs by simultaneously inhibiting autophagy (31). Our data support these 

ideas but add a new level of complexity by showing that in addition to regulating the amount 

of cell death, autophagy can control the characteristics of the dying cells by regulating the 

selective release of HMGB1 and thus selectively controlling an important characteristic of 

dying cells that is usually associated with necrosis. DT-EGF induces autophagy more 

effectively in the glioblastoma cell lines that we tested compared with the epithelial tumor 

cell lines tested, however further studies will be needed to determine if this is a generally 

consistent difference between cell types, and, if it is to uncover the basis for the difference. 

Our data show that even in cells such as U87MG cells, which die through a mechanism that 

displays characteristics of neither apoptosis or necrosis, the autophagy that occurs in the 

dying cells protects the tumor cells from the drug (i.e. causes a leftward shift in the dose 

response curve); i.e. although the drug induces autophagy and then the cells die, this is not a 

case of autophagic cell death. In fact, the autophagy that is induced by DT-EGF in U87MG 

cells inhibits caspase activation and thus explains why they don’t activate apoptosis. Tumor 

cells that are dying with increased autophagy (either caused by DT-EGF alone in the case of 

the glioblastoma cells or when autophagy is further increased with trehalose in epithelial 

tumor cells) selectively release the nuclear HMGB1 protein but do so without displaying 

other characteristics of necrosis such as LDH release or loss of membrane integrity such that 

propoidium iodide can stain DNA. Although HMGB1 release is usually considered to be a 

marker of necrosis, activated monocytes and macrophages can secrete HMGB1 without 

undergoing necrosis (32) and some apoptotic stimuli can result in the release of HMGB1 

under some conditions (15, 33). We speculate that these instances of HMGB1 release may 

occur when the apoptotic cells also have high levels of autophagy.

HMGB1 enhances the immune response to poorly immunogenic apoptotic cells (34) and, 

when dying tumor cells release HMGB1, they activate a Toll-like Receptor 4-dependent, 

tumor-specific, immune response (33). This has led to the idea that by manipulating the 

death mechanisms to promote immunogenic tumor cell killing, it may be feasible to increase 

the long term effectiveness of anti-cancer treatment by inducing an immune response that 

subsequently seeks out and destroys tumor cells that have avoided being killed by the drug 

(35-37). To achieve such a response it is necessary that tumor cells die (so that tumor 

antigens can be generated and recognized) and that the immune system is stimulated by the 

HMGB1. Our data suggest a way to achieve this manipulation by increasing autophagy in 

cells that are destined to die and thus cause the dying cells to release HMGB1. In situations 

where the drug not only kills the cells but also induces autophagy (as with DT-EGF 

treatment of the U87MG cells), the same agent may achieve both objectives. Alternatively, 

one could imagine adopting a strategy where one might inhibit autophagy to switch the 

tumor cell death mechanism towards caspase-dependent apoptosis without release of 

HMGB1. Further studies will be necessary to determine which scenario may be more 

effective to maximize anti tumor treatment in the long term and to determine whether the 

ability of autophagy to reduce the amount of tumor cell killing is a benefit or a handicap 
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compared with the ability of autophagy to cause HMGB1 release and potentially increase 

the immunogenicity of the dying cells.

There are numerous mechanistic connections between apoptosis, necrosis and autophagy 

(38, 39) suggesting that different death mechanisms are intimately related. We suggest that a 

spectrum of characteristics can be displayed by a dying cell and that this is regulated in part 

by the amount of autophagy that occurs as they die. When autophagy is not activated, it is 

easier to activate caspases and dying cells undergo apoptosis; conversely, when autophagy is 

high, caspase activation is blocked but cells that are destined to die can release HMGB1 

without membrane lysis and true necrosis. Thus, we propose that autophagy can regulate the 

amount of death in response to a particular stimulus and the characteristics associated with 

the dying cells and that the overall biological effect of autophagy manipulation during 

treatment with targeted anti-cancer drugs like DT-EGF that kill tumor cells may depend on 

both aspects.

MATERIALS & METHODS

Cells and reagents

HN12 cells were provided by Andrew Yeudall, other cells were obtained from ATCC. 

Lexatumumab, was provided by Human Genome Sciences and used as previously described 

(40). Trehalose, a potent autophagy inducer (24), was obtained from Sigma (St. Louis, MO) 

and used at 100 mM. zVAD.fmk was used at 50μM.

Cell death and autophagy assays

For clonogenic growth assays, cells in triplicate treated with 3 fold dilutions up to 10 ng/ml 

DT-EGF for 24 hours, drug was removed, cells were washed and maintained in growth 

media for 10-14 days, fixed and stained with 0.4% crystal violet. Because the glioma cells 

do not form tight colonies, stained cells were solubilized in 33% acetic acid and absorbance 

was read at 540nm. Values were normalized to non-treated sample. Clonogenic assays and 

HMGB1 release experiments with siRNA knockdown were performed 3 days after siRNA 

knockdown using siRNAs and transfection reagents from Dharmacon (Lafayette, CO). For 

time-lapse microscopy and other experiments with a single dose of DT-EGF, the toxin was 

used at 50 or 100ng/ml. Caspase assays were performed using Promega Caspase-Glo 3/7 

reagent. LDH release was measured using LDH Cytotoxicity Detection Kit from Takara Bio 

Inc. (Seta 3-4-1, Otsu, Shiga, Japan). Time-lapse microscopy was performed on a Zeiss 

Axiovert 200 microscope equipped with an environmental chamber to maintain cells at 

37°C/5%CO2. Images were captured with a Hamamatsu Orca CCD camera every 15-30 

minutes using the Improvision Volocity program. Formation of autophagic vesicles was 

monitored by GFP-LC3 aggregation in stably expressing polyclonal cell lines, for 

quantitation the percentage of cells with >10 GFP-LC3 dots were scored as positive after 

counting ∼100 randomly chosen cells from two separate experiments. Autophagic flux 

assays were performed by western blotting for LC3-II formation after treatment with DT-

EGF in the presence or absence of lysosomal protease inhibitors as recommended by 

Mizushima and Yoshimori (25), by monitoring the processing of a GST-tagged version of 

the autophagy cargo protein betaine homocysteine methyltransferase as described by Mercer 
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et.al. (26) and by stably expressing a tandem GFP, mCherry-labeled LC3 protein that retains 

both green and red fluorescence in autophagosomes but retains only red fluorescence after 

fusion with lysosomes as described by Kimura et.al. (27).

Immunoblotting

PVDF membranes were blotted with antibodies that recognize PARP, eEF2, peEF2 (Thr 

56), Beclin 1, Atg 5, which recognizes the Atg5-12 conjugate protein (Cell Signaling 

Technologies, Danvers, MA), EGFR, HMGB1 (Abcam, Cambridge, MA), Atg7 (Santa Cruz 

Biotechnology, Santa Cruz, CA), βActin (Sigma, St. Louis, MO) or LC3 (MBL, Woburn, 

MA), Myc (9B11) (Cell Signaling), GST (Z5) (Santa Cruz Biotechnology).

2D-DIGE

Supplies and protocols were from Amersham Biosciences/GE Healthcare (Piscataway, NJ). 

50 μg of protein were minimally labeled with Cy3 or Cy5 Dye on ice for 30 minutes, 

combined and brought to a final volume of 450μl in 7 M urea, 2 M thiourea, 4% CHAPS, 

40mM DTT, 0.002% bromophenol blue and 0.5% pharmalytes, rehydrated overnight onto a 

24 cm immobilized pH gradient strip (IPG 3-10 NL) and isoelectric focused at 500 V for 

100 Vhr, 1,000 V for 1,000 Vhr, and 8,000 V for 62,500 Vhr on a IPGphor apparatus. IPG 

strips were equilibrated for 15 minutes in a DTT solution, followed by reaction with 

iodoacetamide solution and applied to a precast 8-16% SDS-PAGE gel (Jule Inc., Milford, 

CT) for electrophoresis at a constant 20 W/gel at 25°C in an Ettan DALT 12 electrophoresis 

unit. Labeled proteins were visualized by scanning the gels on a Typhoon 9400 scanner. 

DeCyder software (v. 5.0) was used for spot detection and relative quantification of proteins 

based on the fluorescence images. Peak volumes and ratios were measured for each protein 

spot in the two fluorescent channels (Cy3 and Cy5). Proteins to be excised and identified 

were selected using the DeCyder Differential In-gel Analysis (DIA) Module. Individual 

DIGE gels were matched using the Biological Variation Analysis (BVA) Module. Protein 

spot excision and in-gel enzymatic digestion were performed automatically. Digests were 

analyzed by MALDI-TOF MS (Voyager DE-PRO, Applied Biosystems, Foster City, CA) 

and spectra were collected over the range m/z 500-5000. Spectra were processed using 

ProTS Data (Efeckta Technologies, Steamboat Springs, CO) to generate centroided peak 

lists that were submitted to Mascot (v 2.1, Matrix Science, Boston, MA) and Protein 

Prospector (v 4.21.1, UCSF, CA) for database searching.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. DT-EGF kills glioblastoma and epithelial tumor cells by different mechanisms
Panel A, quantification of clonogenic growth assay after treatment of HeLa, HN12, U87MG 

and U373MG cells for 24 hours with increasing doses of DT-EGF. All the cell lines die with 

similar dose responses (mean +/- SD from three experiments). Panel B shows frames from 

time-lapse movies of DT-EGF-treated HeLa cells and U87MG cells, showing that the 

morphological characteristics of the dying cells differs with only the epithelial cells 

displaying characteristics of apoptosis. Panel C, western analysis of PARP cleavage after 24 

hours of DT-EGF treatment. Only the epithelial cells contain caspase-cleaved PARP.
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Figure 2. DT-EGF induces autophagy in glioblastoma cells
Panel A, 2D-DIGE of lexatumumab or DT-EGF-treated U87MG cells compared with 

untreated controls. Lexatumumab treatment causes many changes to the proteome whereas 

DT-EGF treatment shows few changes. The boxed area identifies a post-translational change 

involving phosphorylation of eEF2 that is induced by DT-EGF treatment. Panel B, U87MG 

cells stably expressing GFP-LC3 were treated with DT-EGF or trehalose after transfection 

of siRNAs as indicated. Aggregation of LC3 was monitored by fluorescence microscopy 

after 24 hours and quantitated (Panel C) by counting the percentage of cells with > 10 GFP-

labeled dots, data shown is the mean +/- SD from two experiments. Both DT-EGF and 

trehalose induce LC3 aggregation that is abolished by knockdown of autophagy regulators; 

only DT-EGF-induced aggregation is blocked by EGFR knockdown.
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Figure 3. 
Panel A, western analysis of LC3 processing in the presence or absence of lysosomal 

protease inhibitors pepstatin A and E64D. DT-EGF causes increased LC3-II, which was 

further stimulated by treatment with pepstatin and E64D in the glioblastoma cells but not in 

the HN12 epithelial cells. The histogram shows quantitation of the ratio of LC3-II compared 

to actin for U87MG cells. Panel B, processing of the autophagy cargo protein betaine 

homocysteine methyltransferase (BHMT). The arrow indicates the processed form of the 

protein that is produced in autophagolysosomes. U87MG and U373MG glioblastoma cells 

display DT-EGF-induced BHMT processing, HN12 epithelial cells do not. GFP-Myc 

indicates the loading control, which was expressed from the GST-BHMT by an IRES 

sequence (26).
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Figure 4. Autophagy protects against DT-EGF-induced death
Panel A, clonogenic survival assay in U87MG cells after siRNA knockdown as indicated 

and treatment with increasing doses of DT-EGF, data represents the mean +/- SD of four 

experiments each performed in triplicate. Knockdown of autophagy regulators increases DT-

EGF-induced cell death. Panel B, frames from a time-lapse microscopy experiment of 

U87MG cells treated with DT-EGF with or without 24 hours pre-treatment with trehalose to 

further increase autophagy; increased autophagy delays DT-EGF-induced death. Panel C, 

clonogenic survival assays in U87MG cells treated with DT-EGF in the presence or absence 

of trehalose to increase autophagy (mean +/- SD from three experiments). Increased 

autophagy inhibits DT-EGF-induced death. Panel D, caspase 3/7 activity in DT-EGF-treated 

U87MG cells after siRNA treatment (mean +/- SD from three replicates). Control and EGFR 

siRNA, DT-EGF-treated cells show no caspase activity, DT-EGF causes caspase activity in 

Atg5 siRNA-treated cells that is similar to the level achieved by treatment with Fas ligand 

plus cycloheximide.
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Figure 5. Autophagy regulates selective release of HMGB1 from DT-EGF-treated cells
Panel A, U87MG cells transfected with GFP-HMGB1 and control (non-specific) or Atg12 

siRNAs were monitored by time-lapse microscopy after treatment with DT-EGF. DT-EGF 

causes release of HMGB1 in control cells, Atg12 knockdown causes the retention of 

HMGB1 in fragmented apoptotic nuclei. Panel B, western blot analysis of cell extract and 

media for HMGB1 protein after DT-EGF treatment for 48 hours. HMGB1 is not released 

into the media in DT-EGF-treated cells when autophagy regulators are knocked down. 

Control shows cells treated for 3.5 hours with 10mM H2O2.
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Figure 6. DT-EGF treatment causes HMGB1 release without causing membrane lysis and 
necrosis
Panel A, propidium iodide staining of U87MG cells after treatment with DT-EGF, 10mM 

H2O2, or DT-EGF after knockdown of Atg5. DT-EGF alone does not cause increased 

propidium iodide staining compared with living, untreated cells and displays less propidium 

iodide staining than in DT-EGF cells with Atg5 knockdown. Panel B, Quantitation of 

percentage of propidium iodide positive nuclei after treatment with DT-EGF, H2O2, or DT-

EGF after knockdown of Atg5 (mean +/- SD from 3 replicates). Panel C, lactate 

dehydrogenase (LDH) release in U87 MG cells treated with DT-EGF or 10mM H2O2, no 

LDH is released in DT-EGF-treated cells (mean +/- SD from three replicates). Panel D, 

western analysis of HMGB1 in cells and media from HN12 epithelial cells treated with DT-

EGF in the presence or absence of trehalose to stimulate autophagy; trehalose treatment 

promotes HMGB1 release into the media. Panel E, LDH release in the HN12 cells after 

treatment with DT-EGF with or without trehalose cells; trehalose treatment does not 

increase LDH release (mean +/- SD from three replicates).
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