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Head and neck cancer is a highly genetic and metabolic heterogeneous collection of malignancies of the lip, oral cavity, salivary
glands, pharynx, esophagus, paranasal sinuses, and larynx with five-year survival rates ranging from 12% to 93%. Patients with
head and neck cancer typically present with advanced stage III, IVa, or IVb disease and are treated with comprehensive modality
including chemotherapy, radiotherapy, and surgery. Despite advancements in treatment modality and technique, noisome
recurrence, invasiveness, and resistance as well as posttreatment complications severely influence survival rate and quality of life.
Thus, new therapeutic strategies are urgently needed that offer enhanced efficacy with less toxicity. ROS in cancer cells plays a
vital role in regulating cell death, DNA repair, stemness maintenance, metabolic reprogramming, and tumor microenvironment,
all of which have been implicated in resistance to chemo-/radiotherapy of head and neck cancer. Adjusting ROS generation and
elimination to reverse the resistance of cancer cells without impairing normal cells show great hope in improving the therapeutic
efficacy of chemo-/radiotherapy of head and neck cancer. In the current review, we discuss the pivotal and targetable redox-
regulating system including superoxide dismutases (SODs), tripeptide glutathione (GSH), thioredoxin (Trxs), peroxiredoxins
(PRXs), nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/keap1), and mitochondria electron
transporter chain (ETC) complexes and their roles in regulating ROS levels and their clinical significance implicated in chemo-
/radiotherapy of head and neck cancer. We also summarize several old drugs (referred to as the non-anti-cancer drugs used in
other diseases for a long time) and small molecular compounds as well as natural herbs which effectively modulate cellular ROS of
head and neck cancer to synergize the efficacy of conventional chemo-/radiotherapy. Emerging interdisciplinary techniques
including photodynamic, nanoparticle system, and Bio-Electro-Magnetic-Energy-Regulation (BEMER) therapy are promising
measures to broaden the potency of ROS modulation for the benefit of chemo-/radiotherapy in head and neck cancer.

1. Introduction

Head and neck cancer (HNC) is the seventh most frequently
occurring malignancy worldwide in 2018 (accounting for
4.9% of all cancer sites) [1]. It is reported that lip, oral cavity,
and pharyngeal cancers could be responsible for the 529,500
new cancer cases (accounting for about 3.8% of all cancer
cases) and the 292,300 cancer-related deaths (accounting
for about 3.6% of all cancer deaths) in 2012 globally, and
the incidence is predicted to increase by 62% to 856,000 cases
in 2035 [2]. Due to the tenacious resistance of cancer cells to
therapy, the five-year survival rate has not been significantly

improved during past decade [3]. Commonly used radiation
and chemotherapy drugs affect the prognosis of HNC
through reactive oxygen species (ROS) regulation directly
and indirectly [4]. The balance of cellular ROS is levered by
ROS generators including mitochondrial ROS, NADPH
oxidases, and other enzymes and ROS eliminators such as
superoxide dismutases (SODs), tripeptide glutathione
(GSH), and nuclear factor erythroid 2-related factor
2/Kelch-like ECH-associated protein 1 (Nrf2/Keap1) [5].
ROS has been implicated in cancer initiation, formation,
and development as well as therapy resistance [6]. In spite
of some inspiring clinical trials concerning ROS modulation
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in comprehensive treatment of HNC, the personalized treat-
ments call for multiple therapeutic strategies. During the past
years, genetic or pharmaceutic methods for modulating ROS
in HNC are showing great preclinical and clinical signifi-
cance in the combined modality of chemo-/radiotherapy.
Ongoing researches from other groups and our own are
making efforts in modulating the cellular ROS level to
enhance the efficacy of chemo-/radiotherapy and to decrease
side effects and toxicity without compromising therapeutic
efficacy in the treatment of HNC.

2. The Epidemiology of Head and Neck Cancer
and Leading Therapeutic Challenges

Head and neck cancer incorporates multiple organs from
complex anatomical topographies which include the lip
(C00), oral cavity (C02-06), salivary glands (C07-08), oro-
pharynx (C01, C09-C10), nasopharynx (C11), hypopharynx
(C12-14), esophagus (C15), paranasal sinuses (C30-31), and
larynx (C32) [1, 2, 7–9] (Figure 1(a)). About 85-90% of
HNC are squamous carcinoma that originated from epithe-
lial cells (HNSCC) [9, 10]. There are more than 800,000
new cases and 500,000 deaths of esophageal, lip, oral cavity,
and nasopharyngeal cancers worldwide [11, 12]. In 2020,
there are 84,070 estimated new cases and 30,670 estimated
deaths of HNC in the United States. The oral cavity and
pharynx cancers rank first among the new cases of HNC,
while they rank eighth (4%) among all cancer sites in males.
The esophageal cancers top the list of HNCmortality [13]. In
general, males are more inclined to suffer from HNC [1].
Advancing age is a disadvantage to HNC prognosis. HPV
status of HNC influences the therapeutic outcome; HPV-
positive HNC are associated with a better response to chemo-
therapy and radiotherapy even with stage IV disease [8, 14].
The five-year survival rates of HNC range from 12% to 93%
from among different ages, gender, educational levels, race,
and geographical locations as well as different cancer sites,
pathological grades, and received therapy [2, 3, 12, 15, 16].

Due to the special anatomical position, HNC are prone to
exert a negative impact on language, respiration, eating, swal-
lowing, and digestion. Besides, rapid blood supply and lym-
phatic regurgitation render HNC to be inclined to cervical
lymph node metastasis [14]. The treatment strategy depends
on individual factors concerned with the site of the cancer
and tumor/node/metastasis (TNM) stage, as well as patient
preference [14, 16]. In general, HNC at an early stage
(TNM: I and II) are well controlled after surgery or radio-
therapy. HNC at an advanced stage (TNM: III, IVa, and
IVb) are locally invasive and accompanied by metastasis of
cervical lymph nodes. It is difficult to completely remove
the cancer. They call for comprehensive treatment of surgery,
radiotherapy, and chemotherapy to reduce the original lesion
or control the postoperative period [17–19] (Figure 1(b)).
Unfortunately, two-thirds of patients with HNC are
advanced cases (T3-T4 and/or cervical adenopathy) when
they are first examined, at which point they have lost the
optimum time for surgery [20]. Cisplatin- (CDDP-) based
chemotherapy and adjuvant radiotherapy are still the first-
line treatment options for advanced patients [14]. In spite

of the advancement of diagnosis and treatment modality,
such as minimally invasive transoral surgery, intensity-
modulated radiotherapy (IMRT), gene-targeting drugs
(anti-EGFR therapy), and immunotherapy (anti-PD-1 ther-
apy) of HNC, the long-term survival rate of patients is not
substantially improved [21]. Disappointingly, more than
50% of patients develop recurrence in either local or distant
sites within two years of treatment [22, 23]. Recurrence and
posttherapy complications (marrow depression, immune
suppression, muscle fibrosis, renal toxicity, mucosal damage,
salivary gland secretion disorders, mandibular fractures, and
necrosis) severely affect the quality of life and lead to a high
morbidity of HNC patients [8, 24]. Resistance to treatment
is correlated with recurrence and morbidity. Thus, develop-
ing new treatment strategies to surmount recurrence and
complications is vital for improving the long-term survival
and quality of life of patients with HNC [25, 26]. Cancer cells
are prone to increase oxidative stress and switch the metabo-
lism pattern to aerobic glycolysis called the Warburg effect
[27–29]. Targeting these unique biochemical alterations in
cancer cells might be a feasible strategy to prevent therapy
resistance and ameliorate the prognosis [30].

3. Redox Adaptation in Cancer Cells and Its
Implicated Modulation in Chemo-
/Radiotherapy of HNC

Reactive oxygen species (ROS) is a term that denotes a series
of intermediate products produced during the oxidative
metabolism of cells, including two-electron (nonradical)
ROS such as hydrogen peroxide (H2O2), organic hydroperox-
ides (ROOH), singlet molecular oxygen (1O2), hypochlorous
acid (HOCl), hypobromous acid (HOBr), and ozone (O3);
free radical ROS include the superoxide anion radical (O2

-),
the hydroxyl radical (·OH), the peroxyl radical (ROO·), and
the alkoxyl radical (RO·) [5]. Mitochondrial electron trans-
port chain (ETC) complex [31] and nicotinamide adenine
dinucleotide phosphate oxidases (NOXs) [32] are the major
endogenous sources of ROS. To protect lipids, proteins, and
nucleic acids from indiscriminate damage induced by free
radicals, cells arrange a complex network of antioxidant
systems to maintain genomic stability and proper cellular
function [6]. SODs andGSH are the predominant antioxidant
systems [30] (Figure 2). Other ROS generators including cyto-
chrome p450, lipoxygenase, and xanthine oxidase and scaven-
gers such as catalase (CAT), peroxiredoxins (PRXs),
glutathione peroxidases (GPXs), vitamin C, and vitamin E
closely participate in the redox system [6, 33]. Nrf2/Keap1
complex regulates redox hemostasis by sensing oxidative
stress and then activating downstream antioxidant elements
such as glutathione-S-transferases (GST), NAD(P)H:quinone
oxidoreductase (NQO1), PRXs, GPXs, and CAT [34–36].
Other redox-sensitive transcription factors such as nuclear
factor-κB (NF-κB), p53, and hypoxia inducible factor 1
(HIF-1) lead to elevation of ROS-eliminating enzymes like
SOD andGSH, activating survival factors such as myeloid cell
leukaemia-1 (Mcl-1) and B-cell lymphoma-2 (Bcl-2), and
inhibition of cell death factors [30].
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In normal cells, redox balance is well orchestrated via
antioxidant defense systems. Once exposed to continuous
exogenous stimuli such as radiation and carcinogens and
endogenous oncogene activation such as H-Ras, the normal
cells fail to leverage the redox balance, thus forming cancer
cells [37]. To adapt to the oxidative stress, the initiated can-
cer cells will tactfully enhance the antioxidant enzymes
accordingly. Consequently, both the ROS level and ROS-
scavenging enzymes are increased to benefit cancer cell
survival, metastasis, and even resistance [6, 38]. In other
words, ROS represents a double-edged sword [39]. Basal
levels of ROS can maintain the homeostasis of normal cells;

chronic and low levels of ROS promote cell mitosis and
increase genomic instability to induce the occurrence and
progression of tumors;moderate concentrations of ROS cause
temporary or permanent cell cycle arrest and may induce cell
differentiation [39]; acute and high concentrations of ROS
damage macromolecules and thus induce apoptosis, necrosis,
and ferroptosis [40]. Therefore, the high concentration of
ROS in cancer cells and the defects of their antioxidant dam-
age defense system render cancer cells more susceptible to
ROS modulation. In the case of the same concentration of
ROS, cancer cells first undergo apoptosis while normal cells
can tolerate it [41–43]. Adjusting intracellular ROS levels to
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Figure 1: Anatomical sites and treatment of HNC. (a) Head and neck cancers incorporate multiple anatomical regions concerning the lip
(C00), oral cavity (C02-06), salivary glands (C07-08), oropharynx (C01, C09-C10), nasopharynx (C11), hypopharynx (C12-14), esophagus
(C15), paranasal sinuses (C30-31), and larynx (C32). International Classification of Diseases 10th revision, website: http://www.who.int/
classifications/icd/icdonlineversions/en/. (b) HNC patients with early stages (stages I and II) are recommended for single modality
including surgery or radiotherapy. Comprehensive modality including surgery, radiotherapy, and chemotherapy is guided for advanced
cases (stages III, IVa, and IVb).Note. NCCNClinical Practice Guidelines inOncology: Head andNeckCancers, website: https://www.nccn.org.

3Oxidative Medicine and Cellular Longevity

http://www.who.int/classifications/icd/icdonlineversions/en/
http://www.who.int/classifications/icd/icdonlineversions/en/
https://www.nccn.org


efficiently kill cancer cells and reduce the side effect of chemo-
/radiotherapy is currently considered as the fundamental
means of cancer treatment [30, 40, 44] (Figure 3).

During chemotherapy and/or radiotherapy in HNC, fre-
quent resistance and accompanying side effects are the head-
scratching puzzles. Despite the development of gene-targeted
drugs such as bortezomib, sorafenib, and cetuximab for the
treatment of HNC, evasion of therapy remains the main
obstacle to cure [21]. The implicated regulation of ROS is
of great significance for cancer treatment, because commonly
used radiation and chemotherapy drugs affect the prognosis
of HNC through ROS regulation directly and indirectly [4]
(Figure 4). Physiological mechanisms which mediate the
chemotherapy efficacy by ROS are as follows: (1) cell death
regulation [45–48], (2) deoxyribonucleic acid (DNA) damage

repair [49–51], (3) drug metabolism [30, 52, 53], (4) tumor
microenvironment [54, 55], and (5) cancer stem cell (CSC)
characteristics [56]. In radiation biology, an “oxygen effect”
is an important phenomenon which refers to the enhanced
killing effect in the presence of oxic conditions. Irradiation
exposure can induce mitochondrial-dependent ROS genera-
tion [57]. ROS-modulated DNA damage repair [58–61], cell
death regulation [62–65], tumor microenvironment [66, 67],
and CSC characteristics [67, 68] greatly affect the radiother-
apy efficiency. Among these biological factors, cell death
and DNA damage are the most common aspects regulated
by cellular redox status.

Currently, it is recognized that CSC presenting self-
renewal and pluripotent differentiation capabilities are more
inclined to obtain heterogeneous, aggressive, and resistant
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phenotypes [69, 70]. Especially in poorly vascularized
hypoxic tumor niches, CSC characteristics can be well main-
tained with a high level of ROS-eliminating enzymes, drug
resistance transporter proteins, DNA repair enzymes, and
antiapoptotic proteins such as Bcl-2 [71, 72]. A lower ROS
concentration is found in CSC-enriched populations from
irradiated head and neck cancers, compared with nontu-
morigenic cells [73]. With prolonged exposure to low oxygen
levels, CSC cells may undergo epithelial-to-mesenchymal
transition (EMT) and acquire the ability to invade and
metastasise to local lymph nodes and distant organs [71].
ROS have been implicated in EMT via the activation of
EMT-inducing transcription factors including Snail/Slug,
ZEB1/2, Twist1/2, HIF-1, and Dlx-2 by modulating
upstream signaling pathways such as epidermal growth
factor (EGF), Wnt/β-catenin, transforming growth factor-
β (TGF-β), mitogen-activated protein kinase (MAPK),
phosphatidylinositol 3-kinse/protein kinase B (PI3K/Akt),
Hedgehog, and Notch [68, 74, 75]. Moreover, EMT is
closely linked to CSC and the metabolic alteration of can-
cer cells to avoid hostile environments [76, 77]. Tumor
cell-derived low level of ROS inhibits caveolin-1 expression
in cancer-associated fibroblasts (CAFs) which is implicated
in the stabilization and nuclear accumulation of EMT-
inducing transcription factor HIF-1 [78, 79]. The tightly
oxygen-regulated subunit HIF-1α effectively induces angio-
genic genes such as VEGF [80] and shifts glucose metabolism
from aerobic respiration to anaerobic glycolysis via transacti-
vation of glucose transporter GLUT-1 and lactate dehydroge-
nase (LDH) [81, 82]. An enhanced HIF-1α level has been
observed in the CSC subpopulation of HNSCC [67] and
linked to poor prognosis and resistance to chemotherapy
and radiotherapy [83, 84]. Pharmacological depletion of

ROS scavengers reduces the colony-forming capacity of CSC
and then increases the radiosensitivity of HNC [73]. More-
over, the capacity of cellular ROS to sensitize the chemo-
/radiotherapy of cancer cells depends on the basal level of
ROS in such cells. Below a certain threshold, ROS can facilitate
survival, but if a certain limit is broken through, cells will die
due to intolerance [40]. Adjusting the appropriate ROS level
can synergize conventional therapy while reducing the dosage
of chemotherapeutic drugs and/or radiation in the clinical
condition and thereby alleviating the potential side effects.

In view of the strong reactivity, short life, and opposing
roles of ROS, specific quantification and localization of ROS
are an important cornerstone for a thorough understanding
of its role in cancer initiation, development, and therapy.
There are small molecule probes and gene-encoded probes
designed to detect whole-cell ROS and mitochondrial ROS.
The advantages and disadvantages of these probes are listed
in Table 1. Only by clearly understanding the characteristics
and defects of these probes can we obtain the accurate
research outcomes concerning cellular stress response and
therapeutic dose. Besides, methods designed for real-time
monitoring of the kinetic changes in the cellular redox state
in vivo may further facilitate a comprehensive understanding
of the mechanisms of redox biology [85].

4. Modulate ROS Generation and Elimination to
Improve the Efficacy of Chemo-
/Radiotherapy in HNC

Once cancer cells are exposed to chemotherapy, radiation,
and other treatments, the readaption of the redox status is
launched. This in turn provides us a platform to modulate
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ROS scavengers and generators in order to improve the effi-
cacy of chemo-/radiotherapy.

4.1. Targeting the SOD Antioxidant System in HNC. Superox-
ide dismutases (SODs) are the main antioxidants which can
rapidly and specifically convert O2

- to hydrogen peroxide
(H2O2). Three isoforms of SODs are found in mammals:
SOD1 (Cu/ZnSOD) in the cytoplasm, SOD2 (MnSOD) in
the mitochondria, and SOD3 (Cu/ZnSOD) in the extracellu-
lar matrix [6]. Noteworthy, the homotetramer SOD2
(MnSOD) which is the most researched SOD in cancer is
found exclusively in the mitochondrial matrix [99]. MnSOD
acts as a double-edged sword in cancer development [100].
Some researches show that the expression level of MnSOD
is decreased compared with normal tissues in breast cancer,
pancreatic cancer, and ovarian cancer [101–103]. On the
contrary, other researches reveal the higher expression of
MnSOD in the malignant progression of gastric cancer, lung
cancer, and esophageal cancer [104–106]. During radiation,
MnSOD plays a vital role modulating cellular redox balance
towards the good and bad sides known as radiosensitization
and redioresistance [107]. This dual effect may be ascribed
to differences in the expression and/or activity of other anti-

oxidant enzymes like GSH/GSSH, thioredoxins, and catalases
in different types of cancers.

SOD mimics such as MnTnBuOE-2-PyP5+ (BMX-001)
and Mn (II) pentaaza macrocycle (GC4419) possessing high
SOD-like activity show great hope in multiple clinical appli-
cations [108]. Ashcraf et al. found that MnTnBuOE can a-
lleviate mucositis (manifested as xerostomia and fibrosis in
salivary glands) induced by radiation in non-tumor-bearing
female C57BL/6 mice with a dose-modifying factor of 0.77.
Human pharyngeal squamous carcinoma cell FaDu xeno-
graft nude mice treated with a combination of RT and
MnBuOE showed greater radiosensitivity than a single RT
group. The dose adjustment factor is analyzed as 1.3 [109].
Another report from this team discovered that lower doses
of MnBuOE mitigated cisplatin-induced oral ulcer forma-
tion, bleeding, and furfuration in the radiation area.
MnBuOE did not meddle with RT/cisplatin-regulated neo-
plasm growth [110]. BMX-001 is undergoing phase I clinical
trials concerning its safety and pharmacokinetic and radia-
tion protection in conditions of locally advanced head and
neck cancer (clinical trial number: NCT02990468).

A randomized, double-blind phase IIb clinical trial of the
effects of GC4419 on radiation-induced mucositis in patients
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with head and neck cancer was completed on 29 August
2019. 223 patients with HNC from 44 institutions who were
planning to receive definitive or postoperative IMRT plus cis-
platin were randomly allocated into the 30 mg GC4419, 90
mg GC4419, and placebo groups. The outcomes are inspir-
ing. Compared with the placebo group, 90 mg GC4419 treat-
ment showed a decreasing incidence, duration, and severity
of oral mucositis induced by 60-72 Gy IMRT (at least two
oral mucosal sites) and concurrent cisplatin. No significant
toxicity specified or enhanced by GC4419 in IMRT plus cis-
platin treatment was observed. A phase III clinical trial (clin-
ical trial number: NCT03689712) to investigate the effects of
GC4419 on radiation-induced oral mucositis in patients with
head and neck cancer is currently in progress [111].

4.2. Targeting the GSH Antioxidant System in HNC. Tripep-
tide Glutathione (GSH) is an important intracellular antiox-
idant that powerfully transfers hydrogen peroxide to H2O
and plays a role in the detoxification of many peroxides
and electrophilic compounds [112]. Cysteine-glutamate anti-
porter (System xc-; xCT) encoded by SLC7A11 acts as cyste-
ine importer to the cellular ROS which is essential for GSH
biosynthesis [113]. Glutamate-cysteine ligase (GCL) synthe-
sizes substrate cysteine, glycine, and glutamate to GSH [6].
That is to say, cysteine availability and GCL activity
determine the synthesis of GSH. GPXs and GST oxidize
reduced GSH to glutathione disulfide (GSSG). GSSG can be
reduced by glutathione reductase (GR) back to GSH [114].
Meanwhile, nicotinamide adenine dinucleotide phosphate

Table 1: The advantages and disadvantages of several ROS probes.

Name Advantages Disadvantages Reference

DCFH-DA Convenient to use
Photosensitivity and autoxidation; not specified to

detect H2O2; oxidized by cytochrome c
[86, 87]

DHE Convenient to use; specified to detect O2
-

Produces two products with similar fluorescence
characteristics which need to be resolved by HPLC and

other means; photosensitivity and autoxidation
[88]

DHR Convenient to use; specified to detect ONOO- Intermediates can be reduced by mercaptan and vitamin
C; autoxidation

[89]

FlAmBE Convenient to use; stable fluorescence
Not specified to detect ONOO-; high background

fluorescence
[90]

HKSOX-1/1r
Specified to detect superoxide; stable fluorescence;

specified to detect O2
-; insensitive to low pH

Not clear [91]

MitoSOX
TPP group localized in mitochondria; convenient

to use; specified to detect O2-

Interferes with mitochondrial metabolism;
mitochondrial membrane; potential-dependent
location; produces two products with similar

fluorescence characteristics which need to be resolved by
HPLC; photosensitivity and autoxidation

[92]

MitoPY1
TPP group localized in mitochondria; convenient

to use; stable fluorescence

Mitochondrial membrane potential-dependent location;
not specified to detect ONOO-; high

background fluorescence
[93]

MitoAR/HR
Rhodamine group localized in mitochondria;

convenient to use; specified to detect ·OH/HClO
Mitochondrial membrane potential-dependent location [94]

HKSOX-1m
TPP group localized in mitochondria; specified to

detect O2
-; stable fluorescence; insensitive to low pH

Mitochondrial membrane potential-dependent location [91]

FRR2
Rhodamine group localized in mitochondria;

convenient to use; reversible real-time detection;
stable fluorescence

Nonspecific; mitochondrial membrane potential-
dependent location

[95]

Pep1-NP
Cationic styrene localized in mitochondria; convenient
to use; specified to detect H2O2; stable fluorescence

Not clear [96]

Hyper
Highly specific to H2O2; reversible real-time detection;
stable fluorescence; MLS group localized in subcellular

structure; independent of membrane potential
pH sensitive; limitation of cell transfection efficiency [97]

RoGFP2-
Orp1

Highly specific to H2O2; reversible real-time detection;
stable fluorescence; MLS group localized in subcellular
structure; independent of membrane potential; pH

insensitivity

Limitation of cell transfection efficiency [98]

Note. DCFH-DA: 2,′7′-dichlorofluorescein diacetate; H2O2: hydrogen peroxide; DHE: dihydroethidium; O2
-: superoxide anion radical; DHR:

dihydrorhodamine; ONOO-: peroxynitrite anion; FlAmBE: boric acid ester derivative; HKSOX-1/1r/1m: novel O2- probes using carboxy
tetrafluorofluorescein as fluorescence group (HKSOX-1/1r for cellular retention, HKSOX-1m for mitochondria-targeting); pH: potential of hydrogen;
MitoSOX: DHE for mitochondria-targeting; TPP: triphenyl-phosphine; HPLC: high-performance liquid chromatography; MitoPY1: FlAmBE for
mitochondria-targeting; MitoAR/HR: DHR for mitochondria-targeting; ·OH: hydroxyl radical; HClO: hypochlorous acid; FRR2: a novel DHR probe; Pep1-
NP: a novel boric acid probe targeting mitochondria; Hyper: a genetic probe specific for H2O2; RoGFP2-Orp1: redox-sensitive green fluorescent proteins 2;
MLS: mitochondrial localization sequences.
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(NADPH) serves as an electron donor [115]. The ratio of
reduced and oxidized glutathione (GSH :GSSG) is a repre-
sentative indicator of cell antioxidant capacity. The imbal-
ance in the synthesis and conversion of GSH is widely
implicated in Parkinson’s disease [116], cystic fibrosis
[117], skin whitening [118], diabetes [119], and schizophre-
nia [120] as well as cancer [112, 121].

Increased GSH has long been considered as an accom-
plice in the progression and multidrug resistance of cancer
[122–126]. GSH depletion obtained by the irreversible GCL
inhibitor BSO is the most commonly used method and is
associated with many chemotherapy drugs. However, previ-
ous phase I clinical trials concerning the anticancer effect of
GSH inhibitor buthionine sulfoximine (BSO) were unsatis-
factory [127, 128]. Shortcomings such as a short half-life
and nonselective GSH depletion on normal cells limited its
clinical application. Over the past two decades, BSO stood
at a standstill and did not proceed to Phase II clinical trials.
Based on this, researchers carried out a large amount of work
with respect to GSH analogues [129] or a combination treat-
ment with other antioxidant systems [130]. Key elements
such as GST and xCT in the GSH synthesis process are also
excavated to solve chemoresistance [125]. Telcyta (TLK-
286), a GSH analogue, has completed the phase II/III clinical
trials concerning its treatment efficacy combined with
cisplatin, carboplatin, doxorubicin, paclitaxel, and docetaxel
in several types of locally advanced or metastatic or refrac-
tory resistant cancers (https://www.clinicaltrials.gov/). How-
ever, HNC are not covered in these trials. The clinical
application of TLK-286 in HNC is hence not suggested in
the latest NCCN and ASCO guidelines [17, 19].

There are some preclinical researches in the matter of the
GSH antioxidant system in HNC. The combination of BSO
and the thioredoxin reductase (TrxR) inhibitor auranofin can
synergistically sensitize erlotinib-induced cell death of HNC
in vitro and in vivo [131]. On the other hand, the BSO and aur-
anofin combination can simultaneously activate the Nrf2-
antioxidant response element pathway which may lead to
suboptimal GSH and Trx inhibition in resistant HNC. Thus,
inhibition of Nrf2 is proven to make the anticancer effect of
BSO and auranofin back to the optimum for HNC [130].

Ethacrynic acid (ECA), a GST inhibitor, was designed to
be a methoxy poly(ethylene glycol)-poly(lactide)-disulfide
bond-methacrynic acid (MPEG-PLA-SS-ECA) nanoparticle
drug carrier, which encapsulates pingyangmycin (PYM) or
carboplatin (CBP) separately. The PYM- and CBP-resistant
oral squamous cell carcinoma cell lines SCC15/PYM and
SCC15/CBP were established to examine the reversal effect
of drug resistance by the MPEG-PLA-SS-ECA/PYM and
MPEG-PLA-SS-ECA/CBP nanoparticle. The resistant factor
values of MPEG-PLA-SS-ECA/PYM and MPEG-PLA-SS-
ECA/CBP nanoparticles in SCC15/CBP and SCC15/PYM
cells were 1.51 and 1.24. Effective inhibition of GST by nano-
particles shows great hope in reversing PYM and CBP drug
resistance in oral cancer [132]. These findings are expected
to proceed to further clinical trials.

4.3. Targeting the Trx Antioxidant System in HNC. The thior-
edoxin (Trx) system is a disulfide reductase system widely

existing in many species from prokaryotes to mammals. It
is composed of Trx, thioredoxin reductase (TrxR), coenzyme
α-NADPH, and Trx-interacting protein (TXNIP) [133]. The
predominant location is the cytoplasm containing Trx-1 and
TrxR-1, and the subordinate location is mitochondria con-
taining Trx2 and TrxR-2 [134]. Trx with a conserved redox
catalytic site (-Cys-Gly-Pro-Cys-) can affect multiple biolog-
ical functions such as intracellular redox regulation, DNA
synthesis, selenium metabolism, cell growth regulation, and
apoptosis [135]. TrxR is the only known enzyme capable of
reducing Trx, which regulates the protein’s thiol/disulfide
bond balance by disulfide reductase activity. The dynamic
balance between TrxR reduction ability and oxidative stress
is the key factor to ensure body homeostasis [130, 136]. Ele-
vated levels of Trx system proteins (Trx-1, TrxR-1, Trx-2,
and TrxR-2) and decreased levels of TNXIP protein are
involved in various cancers [137–140]. A similar phenome-
non was discovered in oral cancers [141–143] and esophageal
adenocarcinoma [144]. Moreover, Kaplan-Meier’s analysis
revealed that the expression level of Trx was significantly
related with a lower 5-year survival rate in patients with ton-
gue squamous cell carcinoma [141]. The expression level of
TrxR-1 in HPV- cells is much higher than in HPV+ cells in
HNSCC. This leads to intrinsic resistance to radiation in
HPV- cells [145]. Trx inhibitors such as 1-methylpropyl 2-
imidazolyl disulfide (PX-12), 4-benzothiazole-substituted
quinol (PMX464), and suberoylanilide hydroxamic acid
(SAHA) exert anticancer activity byROS generation, cell cycle
arrest, and apoptosis induction viaMAPK signaling pathways
[136]. SAHA can synergize the killing effect of bortezomib in
EBV-positive nasopharyngeal carcinoma (NPC) HK1-EBV,
HONE1-EBV, HA, and C666-1 cell lines. In vivo, bortezomib
and SAHA effectively induced apoptosis and inhibited the
growth of NPC xenografts in nude mice. ROS generation
and subsequent induction of apoptosis indicated by elevated
levels of cleaved caspases 3, 7, and 9 and cleaved PARP are
the key mechanisms for this synergistic effect [146].

4.4. Targeting the PRX Antioxidant System in HNC.
Peroxiredoxins (PRXs) are a family of 22-27 kDa non-
selenium-dependent glutathione peroxidases that catalyze
the reduction of H2O2 and peroxynitrite (ONOO-). There
are six subtypes of Prxs (Prx I-VI) found in mammals
[147]. PRXs participate in the occurrence and development
of tumors by regulating the level of redox inside and outside
the mitochondria [148]. Prx1 was observed to be significantly
increased in ESCC clinical tissue samples [149]. Activation of
the mTOR/p70S6K pathway is involved in Prx1-promoted
tumorigenesis [150]. Another study discovered that Prx II
was greatly augmented in patients who failed to respond to
chemotherapy or radiation therapy. And in head and neck
cancer UMSCC-11A cells, the expression level of Prx II was
elevated after 3 Gy radiation or treatment of cisplatin (5
mg/ml) and 5-flurouracil (5-Fu) (2.5 mg/ml). The antisense
of PrxII could be sensitized to radiation or chemotherapy
inducing apoptosis in UMSCC-11A cells [151]. In a recent
study, the expression level of Prx6 was analyzed by immuno-
histochemistry in 95 ESCC samples and 26 paired adjacent
normal tissues. Prx6 was upregulated in ESCC tissues and
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correlated with the elevated proliferation markers such as
Ki67, PCNA, and CyclinD1. Silencing Prx6 greatly inhibited
the proliferation of Eca-109 and TE-1, while the overexpres-
sion of Prx6 facilitated the migration and invasion of Eca-109
and TE-1 via elevating the Akt and Erk1/2 signaling pathway.
Moreover, the downregulation of Prx6 synergizes the apo-
ptosis induced by 8 Gy X-ray irradiation. These findings are
further validated in the ESCC xenograft mode in vivo. Inhibi-
tion of Prx6 shows a novel therapeutic strategy for radiosen-
sitization in ESCC [152].

4.5. Targeting the Nrf2/Keap1 Antioxidant System in HNC.
Nrf2 and Keap1 are the major proteins that coordinate the
induction and transcription of various antioxidant enzymes
[34]. Under normal physiological conditions, Nrf2 binds to
the Keap1/CUL3/RBX1 E3-ubiquitin ligase complex in large
amounts and degrades rapidly in the cytoplasm. When the
oxide accumulates, Nrf2 and Keap1 dissociate and transfer
or bind to antioxidant enzymes in the promoter region of
detoxification phase II enzymes, such as NQO1, GST, gluta-
thione peroxidase (Gpx), peroxidase I, glutathione ligase,
glutathione, epoxide hydrolase, and heme oxygenase (HO-
1). These enzymes can protect the body from active sub-
stances (such as ROS) and some toxic substances [34, 35].
A large number of studies have shown that Nrf2 is related
to the occurrence of metabolic disorders and cancer initia-
tion, and these are well reviewed by Cuadrado et al. and Rojo
de la Vega et al. [153, 154]

Nrf2 gene (NFE2LE) mutations are a mechanism of Nrf2
activation which has been correlated with poor survival
[155]. Besides, a high frequency (60%) of DNA level inactiva-
tion to the Nrf2 inhibitor Keap1/CUL3/RBX1 E3-ubiquitin
ligase complex is related to HNSCC. And this complex dis-
ruption is unique to HNSCC. The median survival rate was
decreased when the altered complex increased. Nrf2 activa-
tion is an underlying prognostic indicator in HNSCC [156].

A recent retrospective study concerning Nrf2 was con-
ducted in 183 patients with confirmed stage I to VI HNSCC.
A higher level of Nrf2 was associated with a poorer overall
survival (median OS: 45.5 months versus 60 months). This
is further validated through the Cancer Genome Atlas
(TCGA) database. The OS for Nrf2high versus Nrf2low is 40
months versus 90 months, and disease-free survival (DFS)
in the Nrf2high group is 64 months compared with 100
months in the Nrf2low group. Nrf2 expression was signifi-
cantly higher in cisplatin-resistant and nonresponder
patients than good responders. HO-1, the Nrf2-targeted
gene, was also elevated in cisplatin-resistant HNNC patients.
Knockdown of Nrf2 reversed the sphere-forming efficiency
that marks the cancer stem cell characteristics in FaDu cells
[157]. Inhibition of Nrf2 by artesunate leading to a reversal
of the ferroptosis resistance in cisplatin-resistant HNC cells
has been reported [158]. These findings hint at some clues
for the targeted therapy of the Nrf2/Keap1 system and com-
plimentary strategy towards drug resistance.

4.6. Targeting the ETC Complexes in HNC. In cancer cells,
mitochondria electron transporter chain (ETC) complexes
become more active to produce ATP and ROS which induce

drug resistance via ATP-driven multidrug efflux pumps.
Elevated ROS promote certain antioxidant systems to attain
redox balance. Therefore, disturbing ETC complexes show
great potential for tackling drug resistance. On one hand is
the consumption of as much ATP as possible, while on the
other hand ROS levels are increased facilitating cellular apo-
ptosis [40]. Proteomic expression profiling reveals reduction
of COX7A2 (cytochrome c oxidase subunit 7A2), a subunit of
ETC complex IV, which is related to patients with esophageal
adenocarcinoma who respond to cisplatin plus 5-Fu therapy.
Silencing of COX7A2 in OE19 cells leads to an abnormal
cup-shaped structure of the mitochondria observed by elec-
tron microscopy. The combination treatment of cisplatin/5-
Fu after silencing COX7A2 significantly inhibits OE19 cell
proliferation [159].

5. Repurpose Old Drugs Modulating ROS for a
New Life

The so-called “new use of old drugs” refers to the non-anti-
cancer drugs that have been used for a long time in clinical
practice. These drugs are applied to new fields because of
their anticancer effects. By this, not only is the safety of drugs
ensured, but the long cycle of new drug development and
screening is also avoided (Table 2).

5.1. Sulfasalazine. Sulfasalazine is an anti-inflammatory drug
that has been applied to treat inflammatory bowel disease
and rheumatoid arthritis for decades [160]. Recent studies
show that sulfasalazine, a nonsubstrate xCT inhibitor, can
efficiently kill cancer cells. Sulfasalazine can eliminate cellular
detoxification by GSH depletion and enhance the anticancer
effect by upregulating ferroptosis in HNC [161]. In HNC
cisplatin-resistant HN3-cisR, HN4-cisR, and HN9-cisR cells,
1 mM sulfasalazine can enhance cisplatin-induced cell death
in terms of a significant decrease of GSH. Pretreatment of N-
acetylcysteine (NAC) can block this effect. In HN9-cisR
xenograft nude mice, a combination of sulfasalazine with
cisplatin showed greater inhibition of tumor growth than
either single group [162]. Thus, the synergy of sulfasalazine
with conventional chemotherapeutic agents is promising in
the treatment of advanced and resistant HNC.

5.2. Dichloroacetic Acid.Dichloroacetic acid (DCA), an inhib-
itor of pyruvate dehydrogenase kinase, has been approved by
the FDA for treating a rare hereditary lactate metabolism
disorder [163]. During the past decade, DCA has been repur-
posed for enhancing cancer therapy efficacy by overcoming
resistance to chemotherapeutic drugs [164]. Even so, DCA
has rarely been checked in HNC. Downregulation of PDK2
by DCA switches bioenergetics towards mitochondrial oxida-
tive phosphorylation which leads to an increase in mitochon-
drial reactive oxygen species (mROS) in the larynx cancer
cisplatin-resistant cell lines AMC-HN4-cisR and HN9-cisR,
thus sensitizing a cisplatin effect in vitro and in vivo [165].
DCA-induced apoptosis by the inhibition of PDK1 inHNSCC
cells can be further enhanced by cetuximab-mediated down-
regulation of ASCT2, which is a glutamine transporter
[166]. One issue should be dealt with caution when the use
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Table 2: Old drugs modulating ROS as an adjuvant agent in the chemo-/radiotherapy of HNC.

Drug Site
Experimental

model
Effective
dose

Cotherapy ROS detection
Biological
effects

Mechanisms Reference

Sulfasalazine Larynx

In vitro
(HN3, HN4, and
HN9; HN3-cisR,
HN4-cisR, and
HN9-cisR cells)

In vivo
(HN9-cisR

xenograft nude
mice)

In vitro
(1 mM)
In vivo
(250
mg/kg
daily)

+Cisplatin
In vitro
(20 μM)
In vivo
(5 mg/kg
weekly)

DCFH-DA flow
cytometry

Synergistic
effect

↑ROS, ↓GSH,
↓xCT, ↑γH2AX

[162]

DCA Larynx

In vitro
(HN2, 3, 4, 5, 9,
and 10; SNU-
1041, 1066, and
1076; HN4-cisR
and HN9-cisR

cells)
In vivo

(HN4-cisR and
HN9-cisR

xenograft nude
mice)

In vitro
(15-30
mM)
In vivo
(0.5 g/l
once per
week)

+Cisplatin
In vitro

(10-30 μM)
In vivo
(5 mg/kg
once per
week)

DCFH-DA
+MitoSOX flow
cytometry and

confocal
microscopy

Synergistic
effect:

enhances
apoptosis

↑mROS, ↓ΔΨm,
↓PDK2, ↑p21,
↓pPDHE1α, ↑c-
PARP, ↑PUMA,

↑CC3

[165]

Melatonin Oral cavity
In vitro

(Cal-27, SCC-9
cell)

1.5 mM
+Radiation
(8 Gy)

DCFH-DA
spectrofluorometer

Synergistic
effects:
enhance
apoptosis
and lethal
autophagy

↑GSSG/GSH,
↑Bax/Bcl-2, ↓NIX,
↑ATG12-ATG5

[173]

Melatonin Oral cavity
In vitro

(Cal-27, SCC-9
cell)

1.5 mM
+Cisplatin
(10 μM)

DCFH-DA
spectrofluorometer

Synergistic
effects:
enhance
apoptosis
and lethal
autophagy

↑GSSG/GSH,
↑Bax/Bcl-2, ↑NIX,
↑ATG12-ATG5

[173]

Thioridazine Larynx
In vitro

(AMC-HN4
cell)

10 μM +Carboplatin

DCFH-DA
+MitoSOX flow
cytometry and
fluorescence
microscope

Synergistic
effect:

enhances
apoptosis

↑ROS, ↓PSMA5,
↑Nrf2, ↓c-FLIP,
↓Mcl-1, ↑c-PARP,

↑CC3

[180]

Aspirin Larynx

In vitro
(HN3, 4, and 9;
HN3R, 4R, and

9R cells)
In vivo
(HN9R

xenograft nude
mice)

In vitro
(5-10
mM)
In vivo
(10

mg/kg
daily)

+Sorafenib
In vitro

(5-10 μM)
In vivo

(10 mg/kg
daily)

DCFH-DA flow
cytometry

Synergistic
effect

↑ROS, ↓xCT,
↓GSH, ↑c-PARP,
↓p65, ↓Mcl-1

[183]

Aspirin Larynx

In vitro
(HN3, 4, and 9;
HN3R, 4R, and

9R cells)
In vivo
(HN9R

xenograft nude
mice)

In vitro
(5-10
mM)
In vivo
(10

mg/kg
daily)

+Cisplatin
In vitro
(10 μM)
In vivo
(5 mg/kg
weekly)

DCFH-DA flow
cytometry

Synergistic
effect

↓xCT, ↓GSH, ↑c-
PARP, ↓p65,

↓Mcl-1, ↑p-p53
[183]

Salinomycin Nasopharynx
In vitro

(CNE-1, CNE-2,
2 μM

+Radiation
(4 Gy)

DCFH-DA flow
cytometry

Synergistic
effect:

↑ROS, ↓Nrf2,
↓survivin

[186]
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of DCA in cancer treatment is concerned. Long-term expo-
sure to DCA may shift normal cells such as immune cells to
a greater oxidative metabolism in which the condition of
normal physiology function is disturbed [164].

5.3. Melatonin. Melatonin, N-acetyl-5-methoxytryptamine,
is a compound containing an indole ring approved by FDA
as a raw material for dietary supplements. In China, the use
of melatonin as a raw material for health foods is allowed,
requiring a purity of more than 99.5% and a recommended
daily dosage of 1-3 mg limited to improving sleep (product
standard: GB/T5009.170-2003; http://www.nhc.gov.cn).
During recent years, melatonin has been found to possess
anti-inflammatory, antioxidant, and anticancer activities
[167–171]. The melatonin gel [172] has completed a phase
II clinical trial (EudraCT number: 2015-001534-13) in 80
patients with HNC. The results showed that melatonin can
protect oral mucosa against the side effects of radiotherapy.
Fernandez-Gil et al. have researched an enhancing cytotoxic
role of melatonin combined with rapamycin in HNSCC cells.
Moreover, they found that a high concentration of melatonin
could sensitize HNC cells to CDDP and irradiation by
enhancing the mitochondrial ROS and then inducing apo-
ptosis and lethal autophagy [173]. A combined melatonin
and irradiation treatment decreased the mitophagic marker
NIX, while a combined melatonin and cisplatin treatment
increased NIX [173]. This is perhaps due to different ROS
levels enhanced by each kind of combination. Even so, mela-
tonin shows great hope in combination with radiotherapy or
chemotherapy for better therapeutic efficiency.

5.4. Thioridazine. Thioridazine was approved for use in the
United States in 1978 and was indicated for the therapy of
acute and chronic psychosis. A high concentration of thiorid-
azine administration is prone to cause prolongation of the
QTc interval and increase sudden death risk [174–176]. How-
ever, a low concentration of thioridazine is reported to induce
apoptosis, inhibit angiogenesis and metastasis, and overcome
drug resistance in cancer treatment [177–179]. A combina-
tion of thioridazine with carboplatin significantly induced

mitochondrial apoptosis and downregulated apoptosis-
related proteins c-FLIP and Mcl-2 which can be reversed by
knockdown of PSMA5, a proteasome subunit. Besides, a com-
bined treatment with carboplatin and thioridazine could
induce ROS production and activate Nrf2 translocation as
well as antioxidant response elements within 1 h in HNC
AMC-HN4 cells. ROS scavengers (NAC, trolox, and glutathi-
one-ethyl-ester) inhibited Nrf2 translocation and PSMA5
expression. Mitochondrial ROS have a critical role in carbo-
platin plus thioridazine-induced apoptosis. Moreover, a com-
bination of thioridazine and carboplatin did not induce cell
death in normal human mesangial and umbilical vein cells.
Thus, a low concentration of thioridazine is a promising adju-
vant agent in carboplatin-resistant HNC [180].

5.5. Acetylsalicylic Acid. Acetylsalicylic acid (aspirin), a non-
steroidal anti-inflammatory drug, has been used for relieving
inflammation and preventing cardiovascular events [181]. It
is reported that aspirin can inhibit tumor growth and metas-
tasis [182]. A low concentration of aspirin (1-3 mM) can
synergize 1-3 μM sorafenib to more cell death in HNC
cisplatin-resistant HN3R, HN4R, and HN9R cells. The
combination of aspirin and sorafenib significantly decreased
GSH level and elevated total ROS levels in cisplatin-resistant
HNC cells. This effect can be revered by the antioxidant
trolox. Furthermore, aspirin and sorafenib could synergize
cisplatin-induced cytotoxicity in resistant HNC cells. In
HN9R xenograft nude mice, the effect of aspirin plus sorafe-
nib on cisplatin has been confirmed and that this trip-
combination greatly suppressed tumor growth without
affecting the weight of mice. Aspirin is promising in synergiz-
ing sorafenib alone or combined with sorafenib to synergize
cisplatin in anticancer therapeutics of HNC [183].

5.6. Salinomycin. Salinomycin is a carboxypolyether potas-
sium ionophore antibiotic isolated from the fermentation
broth of Streptomyces albus by Miyazaki et al. in the process
of screening for new antibiotics in 1974 [184]. Salinomycin
has been widely used in the prevention and control of coccid-
iosis in poultry animals in the past. In 2009, Gupta et al.

Table 2: Continued.

Drug Site
Experimental

model
Effective
dose

Cotherapy ROS detection
Biological
effects

Mechanisms Reference

SUNE1, 6-10B,
5-8F, SUNE1R

cell)

enhances
apoptosis

Metformin HNSCC

In vitro
(HN30, HN31

cell)
Clinical samples

2.5 mM
+Radiation
(4 Gy)

DCFH-DA flow
cytometry

Synergistic
effect:
induces

senescence

↑ROS, ↓ME2,
↑p21,

↑NADP/NADPH,
↑SA-β-gal

[192]

Note. mM: millimole; μM: micromole; DCFH-DA: 2′,7′-dichlorofluorescein diacetate; ROS: reactive oxygen species; GSH: glutathione; GSSG: oxidized
glutathione; xCT: cysteine-glutamate antiporter; γH2AX: H2A histone family member X; DCA: dichloroacetic acid; mROS: mitochondrial reactive oxygen
species; ΔΨm: mitochondrial membrane potential; PDK2: pyruvate dehydrogenase kinase 2; p21: protein 21; PDHE1α: pyruvate dehydrogenase E1-α; c-
PARP: cleaved poly-ADP ribose polymerase; PUMA: p53 upregulated modulator of apoptosis; CC3: cleaved caspase 3; Bcl-2: B-cell lymphoma-2; Bax: Bcl-
2-associated X protein; NIX: adenovirus E1B 19 kDa interacting protein 3-like; ATG: autophagy related; PSMA5: proteasome subunit alpha 5; Nrf2: nuclear
factor E2-related factor 2; c-FLIP: cellular FLICE-like inhibitory protein; Mcl-1: myeloid cell leukaemia-1; p65: protein 65; p-p53: phosphorylated protein
53; ME2: malic enzyme 2; NADP: nicotinamide adenine dinucleotide phosphate; NADPH: nicotinamide adenine dinucleotide phosphate oxidase; SA-β-gal:
senescence-associated β-galactosidase.
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conducted a high-throughput screening of more than 16,000
chemicals and found that salinomycin can selectively kill
breast cancer stem cells, and its killing effect is 100 times
more than that of the clinical first-line chemotherapy drug
paclitaxel [185]. The nasopharyngeal carcinoma radioresis-
tant SUNE1R cells expressed higher Nrf2 compared to
parental SUNE1 cells. Salinomycin can restore the radiosen-
sitivity of SUNE1R cells by inducing apoptosis which is
mediated via Nrf2 inhibition and ROS generation [186]. In
view of these effects, salinomycin is perhaps a promising
adjuvant agent to modulate ROS for enhancing the radiosen-
sitivity of HNC. However, more in vivo experiments con-
cerning its efficacy and toxicity should be further carried out.

5.7. Metformin. Metformin has been approved to treat type 2
diabetes since 1957 in Europe [187]. Due to lactic acidosis,
metformin was taken off the US market; however, later it has
been proven safe and effective in controlling glucose levels
and was reapplied in 1995 [188, 189]. In 2005, metformin
was used to reduce the incidence of cancer in patients with
diabetes [190]. Since then, metformin has been vastly
explored in the anticancer field. Metformin has been reported
to inhibit the proliferation and viability of HNSCC cells via an
AMPK-dependent manner [191]. In another research, met-
formin could suppress both HNSCC HN30 (wtp53) and
HN31 (p53 with 2missense mutations) cells via the downreg-
ulation of malic enzyme 2 (ME2) driven by ROS generation.
Noteworthy, metformin exerted a more efficient inhibitory
effect in HN31 cells which are resistant to radiation [192].
This provided anAMPK-independentmanner formetformin
to enhance the radiation effect against resistant HNSCC.

6. Exploit Novel Small Molecular Compounds
Targeting ROS

Small molecular compounds composed of several or dozens
of atoms have always been commonly used in clinical medi-
cine due to their many advantages, such as a definite curative
effect, less adverse effects, and smaller molecular weight,
which are easily absorbed [193]. It is also one of the hot spots
in the field of medicinal chemistry drug development. Based
on the intensive implication of ROS in cancer treatment, here
we reviewed several novel compounds modulating ROS as a
potential adjuvant therapy of HNC (Table 3).

6.1. CHW09. Chromones are oxygen-containing heterocyclic
compounds that possess anti-inflammatory and anticancer
abilities. A sulfonyl substituent is installed on the chrome-
4-one skeleton. This synthesized compound is named
CHW09. In vitro, CHW09 can efficiently kill oral cancer cells
Ca9-22 and CAL 27 with a mild decrease in viability in the
normal human gingival fibroblast cell HGF-1. Cellular ROS
and mitochondrial superoxide were both induced, and subse-
quent apoptosis and DNA damage were enhanced after the
treatment of CHW09. The high-stress status renders cancer
cells more sensitive to ROS-generating agents [194]. A com-
bination of 10 μg/ml CHW09 and 12 Gy radiation synergis-
tically inhibits proliferation and induces apoptosis of Ca9-22

and CAL 27 [195]. However, the animal experiments are not
available now.

6.2. Oxamate. Lactate dehydrogenase (LDH) is a major
glycolytic enzyme which catalyzes the transformation of
pyruvate to lactate. As the Warburg effect commonly exists
in cancer cells with elevated glucose consumption and aero-
bic glycolysis, the LDH expression is increased at the same
time in various types of cancer [196]. Oxamate, a LDH com-
petitive inhibitor, provides an attractive chance to develop a
novel cancer therapeutic strategy. In nasopharyngeal carci-
noma CNE-1 and CNE-2 cells, oxamate efficiently synergizes
radiation by upregulating ROS level and subsequent G2/M
arrest and apoptosis. Besides, inhibition of LDH disturbed
energy metabolism and significantly decreased ATP produc-
tion. An in vivo experiment further validated the synergizing
effect of oxamate in radiation [197]. Even so, the small size
and high polarity of oxamate limit its catalytic activity and
permeability. Several N-alkyl-oxamates are synthesized
[198]. Further experiments are imperative concerning their
inhibitory effects on LDH and anticancer actions.

6.3. D-Allose. D-Allose is a rare aldohexose with many physi-
ological functions including lowering blood lipid and blood
glucose concentrations, scavenging free radicals in the body,
and reducing ischemia-reperfusion injury and anticancer
effects [199]. It is noteworthy that D-allose can inhibit carci-
nogenesis under oxidative stress and can induce the expres-
sion of TXNIP which inhibits the proliferation of HNC cells
[200]. Hoshikawa et al. reported the radiosensitizing effect
of D-allose on HNC HSC-3 cells using a 3D culture method.
A combination ofD-allose and radiotherapy had better effects
than the two alone. The radiation enhancement rate reached
1.61 and 2.11 after 10 mM and 25 mM allose treatment,
respectively. The radiation treatment alone could not increase
the expression of themRNA level of TXNIP,while allose com-
bined with radiation treatment could significantly increase
the expression of TXNIP which can significantly induce the
generation of cellular ROS and the occurrence of apoptosis
[201]. Besides, D-allose can synergize docetaxel-induced apo-
ptosis by increasing TXNIP and ROS in vitro and in vivo
[202]. Most importantly, allose has no known side effects
[203], so the combined use of allose and radiation or docetaxel
may become a new treatment strategy for HNC [204].

6.4. Histone Deacetylase Inhibitors. Tumorigenesis and
progression are the result of the interaction of heredity and epi-
genetics.As an important epigeneticmodification, histone dea-
cetylation plays an important role in the occurrence and
development of a tumor [205]. The abnormal expression of
histone deacetylase (HDAC) in normal tissues and cells will
promote the development of a tumor, and it is related to the
proliferation and apoptosis, angiogenesis, metastasis, and drug
resistance of tumor cells, and becomes a new target of tumor
treatment [206–209]. HDAC inhibitors such as vorinostat
(SAHA), romidepsin, belinostat, and panobinostat have been
approved by FDA as anticancer drugs (https://www.fda.gov).
More combinationmodalities concerning SAHAwith conven-
tional chemotherapy drugs are undergoing preclinical
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researches [146, 209, 210]. SAHA can synergize bortezomib-
induced apoptosis via the upregulation of ROS in nasopharyn-
geal carcinoma cells. Further in vivo experiments confirmed
this effect [146]. Sodium butyrate (NaB) and hydroxamic acid
trichostatin A (TSA) are another two HDAC inhibitors that
sensitize radiation by downregulating Bmi-1 and then increas-
ing ROS generation and impairing DNA repair in esophageal
squamous cell carcinoma radioresistant KYSE-150R cells.

HDAC inhibitors as anticancer drugs complementary to
chemo-/radiotherapy show a great potential [211].

7. Natural Herbs Effectively Modulating ROS
Are Important Drug Candidates

Natural herbs combined with surgery and chemo-/radio-
therapy show a certain effect in clinical cancer treatment.

Table 3: Small molecular compounds modulating ROS in chemo-/radiotherapy of HNC.

Compound Site
Experimental

model
Effective
dose

Cotherapy
ROS

detection
Biological effect Mechanisms Reference

CHW09 Oral cavity

In vitro
(Ca9-22, CAL 27
cancer cell, and
normal gingival
fibroblast HGF-1

cell)

10 μg/ml
+Radiation
(12 Gy)

DCFH-DA
flow

cytometry
Synergistic effects

↑ROS, ↑CC3,
↑CC8, ↑c-
PARP, ↑8-
oxodG,
↑γH2AX

[195]

Oxamate Nasopharynx

In vitro
(CNE-1, CNE-2

cell)
In vivo

(CNE-1 xenograft
nude mice)

In vitro
(20, 50, 100

mM)
In vivo

(750 mg/kg
daily for 3
weeks)

+Radiation
(9.9 Gy)

DCFH-DA
flow

cytometry

Synergistic effect:
enhances

apoptosis and
G2/M arrest

↑ROS, ↓ATP,
↓CDK1/cyclin
B1, ↓Bcl-2,
↑Bax, ↑CC3

[197]

D-Allose Tongue
In vitro

(HSC-3 cell)
25 mM

+Radiation
(4 Gy)

DCFH-DA
fluorescence
microscopy

Synergistic effect:
enhances
apoptosis

↑ROS,
↑TXNIP, ↓TRX

[201]

D-Allose Tongue

In vitro
(HSC-3 cell)

In vivo
(HSC-3 xenograft

nude mice)

In vitro
(10 mM)
In vivo

(500 mM 5
times/week
for 3 weeks)

+Docetaxel
In vitro

(0.1 ng/ml)
In vivo

(12 mg/kg
on day 0 and

day 7)

DCFH-DA
fluorescence
microscopy

Synergistic effect:
enhances

apoptosis G2/M
arrest

↑ROS,
↑TXNIP, ↓TRX

[202]

SAHA Nasopharynx

In vitro
(HK1-EBV,

HONE1-EBV,
HA, C666-1,

NP460, HK2 cell)
In vivo

(C666-1, HONE1,
HA xenograft
nude mice)

In vitro
(5 μM)
In vivo

(50 mg/kg 5
days per
week for 4
weeks)

+Bortezomib
In vitro
(30 nM)
In vivo

(60 μg/kg)

DCFH-DA
flow

cytometry

Synergistic effect:
enhances
apoptosis

↑ROS, ↑c-
PARP, ↑CC3,
↑CC7, ↑CC9

[146]

NaB Esophagus
In vitro

(KYSE-150,
KYSE-150R cells)

0.5, 1 μM
+Radiation
(5 Gy)

DCFH-DA
flow

cytometry

Synergistic effect:
enhances

apoptosis, G2/M
arrest, and DNA

damage

↑ROS, ↓Bmi-1,
↑p21, ↓DNA-
PKcs, ↓NBS1,

↓Rad51,
↑γH2AX

[65]

TSA Esophagus
In vitro

(KYSE-150,
KYSE-150R cells)

5, 10 mM
+Radiation
(5 Gy)

DCFH-DA
flow

cytometry

Synergistic effect
enhances

apoptosis, G2/M
arrest, and DNA

damage

↑ROS, ↓Bmi-1,
↑p21, ↓DNA-
PKcs, ↓NBS1,

↓Rad51,
↑γH2AX

[65]

Note. ROS: reactive oxygen species; DCFH-DA: 2′,7′-dichlorofluorescein diacetate; CHW09: sulfonyl chromen-4-ones; SAHA: vorinostat; NaB: sodium
butyrate; TSA: hydroxamic acid trichostatin A; c-PARP: poly-ADP ribose polymerase; CC3: cleaved caspase 3; CC7: cleaved caspase 7; CC8: cleaved caspase
8; CC9: cleaved caspase 9; 8-oxodG: 8-oxo-2′-deoxyguanosine; γH2AX: H2A histone family member X; NQO1: NAD(P)H:quinone oxidoreductase 1; Bcl-2:
B-cell lymphoma-2; Bax: Bcl-2-associated X protein; ATP: adenosine-triphosphate; CDK1: cyclin-dependent kinase 1; c-PARP: cleaved PARP; Bmi-1: B-
lymphoma Mo-MLV insertion region 1; p21: protein 21; DNA-PKcs: DNA-dependent protein kinase, catalytic unit; NBS1: Nijmegen breakage syndrome 1;
RAD51: radioresistance protein 51; TXNIP: Trx-interacting protein.
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Mechanistically, the imbalance between ROS generation
and elimination in cancer provides an opportunity for
natural herbs. Generally, ROS upregulation synergizes con-
ventional chemo-/radiotherapy, while the downregulation
of ROS may protect normal tissue from side effects. Here,
we reviewed several natural herbs modulating ROS in the
comprehensive treatment of HNC (Table 4).

7.1. Flavonoids. Flavonoids, a group of important naturally
occurring compounds found in several edible vegetables,
fruits, and medicinal plants, are structured by connecting
two benzene rings with phenolic hydroxyl groups through
the central three-carbon chain (C6-C3-C6) [212]. It is
reported that flavonoids can be used to protect the cardiovas-
cular system, lower diabetes risk, cure neurodegenerative
disorders, restore cognition after stroke, and suppress cancer
progression [213–215]. Although flavonoids do not seem to
be potent enough to be used as a monotherapy in the treat-
ment of cancers, these compounds have been suggested to
render considerable clinical benefits when applied in combi-
nation with radiotherapy or chemotherapy. Quercetin can
synergize cisplatin-induced mitochondrial apoptosis via
downregulating Cu/Zn SOD which leads to elevated ROS in
larynx cancer Hep2 cells [216]. Naringin has a protective role
in doxorubicin-induced toxicity towards normal tissues
without sacrificing its anticancer effect by elevating SOD
and total antioxidant capacity against the esophageal cancer
stem cell YM1 in xenograft nude mice [217]. Alpinumisofla-
vone (AIF) could significantly increase the radiosensitivity of
esophageal squamous cell carcinoma (ESCC) indicated by
enhanced apoptosis, DNA damage, and cell cycle arrest
which are mechanically achieved by ROS generation and
Nrf2 antioxidant system inhibition both in vitro and in vivo
[218]. Wogonin, isolated from the root of Scutellaria baica-
lensis Georgi, could selectively kill HNC cells by upregulating
intracellular ROS with no obvious cytotoxic effect against
normal oral keratinocytes, oral fibroblasts, and skin keratino-
cytes. Mechanically, wogonin induces HNC cell death via
JNK and PARP activation resulting from the inhibition of
Nrf2-GSTP1. Combined wogonin synergizes cisplatin-
induced cell death of cisplatin-resistant HNC HN4R and
HN9R cells by enhanced ROS in vitro and in vivo. These
findings show great hope in the chemosensitivity potential
of wogonin in advanced HNC [219].

7.2. Polyphenols. Curcumin is a hydrophobic phenol isolated
from Curcuma longa and possesses a variety of pharmacolog-
ical effects including antidiabetic, antiamyloid, antidepres-
sant, antibacterial, cardioprotective, anti-inflammatory,
antioxidant, and anticancer properties [220]. Multiple ani-
mal and human studies prove that curcumin is nontoxic even
at high doses [221]. Curcumin can inhibit the effects of pro-
survival and antiapoptotic elements such as NF-κB and
reduce the radiation adaptation in order to enhance the
radiation-induced killing effect in various cancer cells [222].
A higher expression of TxnRd1 leads to intrinsic resistance
to radiation in HPV- cells. Curcumin can effectively down-
regulate TxnRd1 and then sensitize HPV- cells to radiation
[145]. In a very recent research, curcumin and ferulic acid

(FA) both show an antioxidant ability by upregulating the
Nrf2/HO-1 pathway for protecting the cochlea after cisplatin
treatment without sacrificing the anticancer therapeutic
effect in the human oral squamous carcinoma cell line
PE/CA-PJ15 and in animal models. One thing to mention
is that FA exhibits a biphasic response wherein at lower
concentrations it exerts an oxidant function and at higher
concentrations it promotes an antioxidant function for
chemoresistance. Judging from this, curcumin seems the
optimum regimen for effective treatment [223]. A novel
synthetic polyphenol conjugate, (E)-3-(3,5-dimethoxyphe-
nyl)-1-(2-methoxyphenyl) prop-2-en-1-one (DPP-23), can
efficiently kill cisplatin-resistant HN3-cisR, HN4-cisR, and
HN9-cisR cells without harming normal HOK-1 cells. DPP-
23 inhibits Nrf2 antioxidant systems and activates p53
expression, thus boosting an increase in cisplatin-mediated
apoptosis in vitro and in vivo [224]. Epigallocatechin gallate
(EGCG) and tannic acid (TA) could mitigate doxorubicin-
induced keratinocyte toxicity without impairing the antican-
cer effect of doxorubicin at a certain concentrations. An
additive cellular ROS increase was not observed after combi-
nation treatment of doxorubicin with either 50 μM EGCG or
50 μM TA in oral keratinocyte cells [225]. Epicatechin can
protect normal oral fibroblasts from radiation via downregu-
lating ROS and subsequent apoptosis. This is also validated
in zebrafish. Epicatechin inhibits JNK and p38 signaling
pathways but not the ERK pathway during this physiological
process [226]. Another study also confirmed a radioprotec-
tive role of epicatechin in human keratinocyte HaCaT cells
and in Sprague-Dawley rats via ROS regulation and JNK
and p38 pathway alterations [227].

7.3. Naphthoquinones. β-Lapachone (3,4-dihydro-2,2-
dimethyl-2H-naphthol (1,2-b) pyran-5,6-dione (C15H14O3))
is a natural naphthoquinone, originally an isomer of lapacho,
obtained from the bark of the purple Ipe in SouthAmerica.Var-
ious studies have demonstrated that β-lapachone can induce
cell death in solid cancers including esophageal and oral
cancers [228–230]. ARQ 761, a β-lapachone analogue, has
completed a phase I clinical trial (clinical trial number:
NCT01502800) in advanced solid tumors.Outcomes show that
ARQ 761 possesses a modest single-agent activity. The most
common adverse effect is anemia [231]. Several derivatives
have been developed throughout the years. β-Lapachone
and its 3-iodine derivatives (3-I-α-lapachone and 3-I-β-lapa-
chone) efficiently kill OSCC HSC-3 cells by enhancing ROS
and inducing G2/M arrest, DNA fragmentation, and
mitochondria-dependent apoptosis. These results are syn-
chronized in an in vivo study, and the toxicology towards
normal tissue is slight [232]. In another multifaceted study,
NQO1 is highly expressed in HNC clinical tissue samples,
and β-lapachone can synergize radiation to enhance apopto-
sis and DNA damage by inhibiting NQO1 in HNC FaDu,
Detroit 562, SqCC/Y1, and UMSCC-10A cells and also in
SqCC/Y1 xenograft nude mice [233]. Thus, the combination
treatment of β-lapachone and radiotherapy for QNO1+

HNC patients shall be further tested in clinical trials.
Plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone

(C11H8O3)), isolated from Plumbago zeylanica L., Juglans
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regia, Juglans cinerea, and Juglans nigra, exerts antibacterial,
antifungal, antiatherosclerosis, and anticancer effects [234].
Our research group has devoted to research its anticancer
properties in HNC in recent years. Plumbagin can induce
ROS, G2/M arrest, apoptosis, and autophagy in addition to
reversing Epithelial-Mesenchymal Transitions (EMT) and
cancer stem cell characteristics via inhibiting PI3K/Akt/m-
TOR, GLUT-1, MAPK, and Nrf2 signaling pathways of oral
squamous cell carcinoma (OSCC) in vitro and in vivo
[235–237]. In our very recent research, the cisplatin-
resistant cell line CAL27/CDDP is applied to verify the
chemosensitivity of plumbagin in cisplatin treatment. Out-
comes show that plumbagin can efficiently synergize
cisplatin-induced apoptosis via upregulating cellular ROS
and mitochondrial hydrogen peroxide. Autophagy is also
induced by plumbagin and cisplatin, while it is hard to
determine its definite anticancer or protective role. Besides,
these effects can all be reversed by antioxidant NAC. In
CAL27/CDDP xenograft nude mice, we are glad to observe
that the combination of plumbagin and cisplatin can signifi-
cantly reduce tumor volume without affecting the weight of
the mice [238]. In order to prompt the clinical utility of
plumbagin, we also carried out stable isotope labeling with
amino acids in cell culture (SILAC) quantitative proteomics
technology to fully reveal the possible molecular targets of
plumbagin on OSCC [236]. More well-designed experiments
are going on to determine plumbagin’s anticancer effect in
chemo-/radiotherapy in HNC.

7.4. Terpenoids. Oridonin is a natural bioactive diterpenoid
isolated from Rabdosia rubescens, which has been a widely
used herb in traditional Chinese medicine [239]. Oridonin
shows great anticancer potential with low adverse effect
[240]. In human laryngeal squamous cell carcinoma (LSCC)
Hep-2 cells, oridonin can induce G2/M phase arrest and apo-
ptosis by targeting caspase 9 to enhance ROS production
[240, 241]. Hep-2 is a cell line characterized by high EGFR
expression. Hence, the inhibition of EGFR with tyrphostin
AG1478 can augment oridonin-induced intrinsic and extrin-
sic apoptosis via ROS generation in Hep-2 cells [242]. Orido-
nin is reported to synergize cetuximab. The setting is that
cetuximab exhibits unsatisfactory efficacy as a single agent
in HNSCC patients [243]. The combined treatment with ori-
donin and cetuximab could induce Fas-dependent apoptosis
and G2/M arrest through triggering ROS generation in LSCC
Hep-2 and Tu212 cells. EGFR and JNK signaling pathways
are involved in these biological effects. In vivo experiments
validate the combined anticancer effect of oridonin and
cetuximab [244]. Thus, oridonin is a promising drug target-
ing ROS in combination with cetuximab in resistant cases.

7.5. Ginsenosides. Ginsenosides, the main active ingredient of
ginseng, have significant anticancer activity by inhibiting cell
proliferation, promoting apoptosis, inducing cell cycle arrest
of cancer cells, inhibiting tumor angiogenesis, and synergiz-
ing with chemo-/radiotherapy [245]. Besides, ginsenosides
can activate the body’s immunity through different ways to
fight against cancer [246]. Some kinds of ginsenosides are
undergoing clinical trials [247]. Ro, a kind of ginsenoside

monomer, can activate estrogen receptor 2 (ESR2), which
leads to the activation of neutrophil cytosolic factor 1
(NCF1), a subunit of NADPH oxidase, and then leads to
the elevation of ROS production. It is reported that Ro can
synergize the killing effect of 5-fluorouracilin by upregulating
ROS and subsequently inhibiting protective autophagy in
esophageal cancer ECA-109 and TE-1 cells. NAC, an antiox-
idant, substantially reversed Ro-mediated autophagy inhibi-
tion in ECA-109 and TE-1 cells and reversed cell death
enhanced by the combination of Ro and 5-fluorouracilin
[248]. Korean red ginseng (KRG) whose effective constituent
is ginsenoside shows great potential in radiosensitivity in oral
cancer SCC25 and SCC1484 cells and radioprotection in
normal keratinocyte HaCaT cells. Radiation can induce cell
death in HaCaT cells by increasing intracellular ROS and
membrane damage. When radiation is combined with
KRG, the injury of HaCaT cells was greatly alleviated accom-
panied by ROS elimination and downregulation of p38 and
JNK signaling pathways. This protective effect was verified
in a zebrafish embryo toxicity model. These findings show
that KRG can potentially be used as a protective drug against
radiation-induced oral mucositis without impairing the kill-
ing effect of cancer cells [249].

8. Emerging Interdisciplinary Techniques
Broaden the Potency of ROS in Chemo-
/Radiotherapy in HNC

8.1. Application of Photodynamic Therapy (PDT). Photody-
namic therapy (PDT) is a recognized treatment for incurable
head and neck cancer [250, 251]. PDT may be particularly
useful for the treatment of early unresectable lesions and
remission of locally recurrent esophageal cancer [252],
resulting in prolonged survival [253]. Besides, the application
of PDT will not affect treatment options for future relapses or
second primary disease [254]. Conventional PDT starts with
the administration of a photosensitizer (PS), which is excited
by locally applied light after 2-4 days. The activated PS subse-
quently converts oxygen to ROS that can damage DNA,
proteins, and lipids, ultimately resulting in cell death [255].
However, side effects of conventional PDT (using hydropho-
bic PS) are common, including damage to normal surround-
ing tissues and skin phototoxicity. Hence, there is a trend that
associates PDT with other chemotherapeutic agents to
reduce tumor resistance and improve the efficacy of treat-
ment [256]. Targeted PDT with cetuximab-IRDye700DX
conjugates is currently being tested in patients diagnosed
with advanced stage HNSCC (clinical trial number:
NCT02422979). The first results of this trial indicate that
patients responded well to this therapy, while experiencing
limited side effects [257]. The following table lists some
recent researches concerning combinations of PDT with
chemotherapy drugs which show a synergistic anticancer
effect and are expected in future clinical trials (Table 5).

8.2. Application of the Nanoparticle System Based on ROS
Modulation. Nanomedicine is an emerging form of treat-
ment that is dedicated to alternative drug delivery and
improved therapeutic efficacy, while reducing harmful side
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effects on normal tissues. New nanoparticle systems with
highly flexible and rapid drug design and production capabil-
ities can be created, which can be designed based on the
genetic characteristics of tumors; therefore, making the drug
selection for individual patient treatment and overcoming
multiple forms of multidrug resistance look promising and
open up new prospects for cancer treatment [262–268]. The
effect of metal nanoparticles on ROS concentration has been
shown to play a role in both radiosensitization and radiopro-
tection.Many studies have investigated the effects of nanopar-
ticle structure and surface functionalization on nanoparticle
absorption and radiosensitization during radiotherapy [269].

In OSCC cells, RPTD/HP nanoparticles were effectively
internalized and showed effective effects on cell growth inhi-
bition and apoptosis induction after laser irradiation. In
OSCC tumor-bearing mice, RPTD/HP nanoparticles show
excellent tumor-targeting ability and significantly inhibit
tumor growth through a variety of mechanisms after local
laser irradiation [270].

Cur-NPs induce apoptosis and inhibit cell growth in
human oral cancer cisplatin-resistant CAL27 cells, but they
have no cytotoxicity on normal human gingival fibroblast
cells and normal keratinocyte cells. The results show that
Cur-NPs trigger apoptotic cell death by regulating the func-
tion of MDR1 and the production of ROS. The activation
of caspase 9 and caspase 3 associated with intrinsic signaling
pathways is its main pharmacological effect. Cur-NPs are
expected to become a new drug against cisplatin-resistant
human oral cancer [271].

8.3. BEMER Therapy Possesses Great Potential in
Radiosensitization. Application of low-dose electromagnetic
fields (EMF) in the regulation of cellular processes is a comple-
mentary therapeutic method. EMF therapy can effectively
normalize the tissue microcirculation, thus sensitizing cancer
therapy [272–277]. A unique system is the Bio-Electro-Mag-
netic-Energy-Regulation (BEMER) which employs a low-
frequency pulsed magnetic field (maximum 35 μT) with a
series of half-wave-like sinusoidal intensity transformation.
The BEMER system facilitates an increase in blood vessel
and microcirculation to improve organ blood flow, nutrient
supply, and removal of metabolites. BEMER treatment
showed an obvious radiosensitizing effect in a time-
dependent manner by deriving a high ROS level and increas-
ing the number of DNA double-strand breaks (DSBs) in the
HNC cell line UTSCC15 which were cultured in a 3D
laminin-rich extracellular matrix [278].

9. Conclusions and Perspectives

The estimated new cases of HNC have gradually increased
during the past ten years [7, 13, 279]. The five-year survival
rate of HNC has not been significantly improved especially
in esophageal cancer which is as low as 12% [3]. Two-
thirds of the patients with HNC are advanced cases when
they are first examined [20]. Comprehensive modality is
required for advanced HNC covering surgery, radiotherapy,
and chemotherapy. However, response failures and severe
side effects still affect the prognosis and quality of life of

Table 5: Combination treatment of PDT with chemotherapy drugs in HNC.

Site Model
Photosensitizer/laser

irradiation
Cotherapy ROS detection Effect Mechanisms Reference

Larynx

In vitro
(AMC-HN3 cell)

In vivo
(AMC-HN3 xenograft

nude mice

Radachlorin (0.9
J/cm2)

+Carboplatin

DCFH-DA
confocal

microscope,
flow

cytometry

Synergistic
effects:

reduce side
effect

↑cytochrome
c ↓EGFR,
↑ROS

[258]

Larynx
In vitro

(Hep-2 cell)
mTHPC (2 J/cm2)

+Cisplatin (5
μM)

—
Synergistic
effects

↓Bcl-2, ↓PD-
L1 ↓ATG-7,

↓LC3-
II/LC3-I

[259]

Oral cavity
In vitro

(BHY cell)
mTHPC (1.8 J/cm2)

+Oxaliplatin
(0.1-100 μM)

DCFH-DA
flow

cytometry

Synergistic
effects

↑ROS, ↑S-
phase arrest

[260]

Esophagus
In vitro

(KYSE-70 cell)
mTHPC (1.8 J/cm2)

+Cisplatin
(0.01-50 μM)

DCFH-DA
flow

cytometry

Synergistic
effects

↑ROS [260]

Head and neck

In vitro
(cisplatin-resistant SQ20B
and JSQ3 cell and cisplatin-
sensitive HNSCC135 and

SCC61 cell)
In vivo

(SQ20B xenograft nude
mice)

Pyrolipid (54 J/cm2)
+Cisplatin
(0.5 mg/kg)

—

Synergistic
effects:
enhance
apoptosis

↑IL-6, ↑TNF-
α, ↑IFN-γ

[261]

Notes. DCFH-DA: 2′,7′-dichlorofluorescein diacetate; mTHPC: meta-Tetra (hydroxyphenyl) chlorin; EGFR: epidermal growth factor receptor; Bcl-2: B-cell
lymphoma-2; ROS: reactive oxygen species; LC3: microtubule-associated protein light chain 3; ATG-7: autophagy-related 7; TNF-α: tumor necrosis factor-
α; IL-6: interleukin-6; IFN-γ: interferon-γ.
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patients. Methods that simultaneously increase the therapeu-
tic response of cancer cells and protect normal tissues are
needed to ameliorate the treatment outcome.

The cellular redox status greatly affects the chemo-
/radiotherapy efficiency directly or indirectly by multiple bio-
logical events such as cell death induction [45–47], DNA
damage repair [45–47], stemness maintenance [68], meta-
bolic reprogramming [81, 82], and tumor microenvironment
modification [78]. In the past decade, researchers around the
world have carried out numerous researches dedicated to
enhancing and adjuvanting the effect of chemo-/radiother-
apy by finely adjusting the cellular redox of HNC. These
research findings contribute to extend the molecular mecha-
nisms and orchestrate therapeutic strategies to overcome
resistance and reduce the side effects, and finally improve
long-term outcomes for HNC.

Increasing efficacy may be obtained by combining agents
with established conventional treatments. In this review
paper, we list several “old drugs” and novel small molecular
compounds which efficiently modulate cellular or mitochon-
drial ROS levels to synergize chemo-/radiotherapy. The
mechanisms in terms of energy metabolism, cell death, and
DNA damage are investigated. Redox-related signaling path-
ways such as Nrf2/Keap1, MAPKs, p53, NF-κB, and STAT3
have been discovered to be involved in the process of
chemo-/radiosensitization at different degrees using multiple
cell and animal models.

In view of the dual role of ROS at different cell stages and
the fact that the basic level is different for different types of
cells, it should require considerable caution when adjusting
ROS. In general, the success of cancer treatments by inducing
oxidative damage or disrupting antioxidant systems to
suspend the cancer progression of redox homeostasis should
be tailored according to tumor stage and pathological
pattern, antioxidant levels in the microenvironment of the
tumor, and the endogenous antioxidant capacity [6].
Oxidation-reduction screening may include the expression
rates of different oxidoreductase enzymes and the compari-
son of antioxidant enzyme expression between tumor tissues
and normal tissues [280]. Prominent detection kits by simple
sampling methods concerning the redox status of patients
with HNC may bring benefits. This approach can be used
to better scheme the treatment for each patient and maximize
the effectiveness of the treatment to annihilate the cancerous
tissue and reduce adverse harm to normal tissue.

Besides, the overexpression of EGFR was discovered in
80-100% of HNC patients [281]. Inhibition of EGFR
strengthens the apoptosis induction of ROS-generating
agents in HNC. In the context of EGFR, the downregulation
of the glutamine transporter ASCT2 can sensitize HNSCC
cells to combination therapy with radiation, cetuximab, or
cisplatin to induce higher ROS and then evoke more apopto-
sis [166, 282]. Ptoxin, a new immunotoxin, was obtained by
fusing a novel EGFR-targeted antibody into pseudomonas
exotoxin A. Ptoxin can effectively boost ROS via inhibiting
the Nrf2-Keap1 antioxidant pathway, thus inducing apopto-
sis in EGFR+ esophageal cancer cells [283]. DpdtbA, a dithio-
carbamate derivative, can effectively inhibit p53/EGFR/AK
and produce ROS via inactivating and downregulating SOD

which lead to the occurrence of apoptosis [284]. In the future,
the combination of Ptoxin and/or DpdtbA with chemother-
apy or radiotherapy shows great potential against the most
deadly esophageal cancer.

Noteworthy is the emergence of natural herbs that are
considered to be putative chemo-/radiosensitizers. Due to
the drug resistance of small molecule-targeted inhibitors,
researchers are currently committed to developing “double
target” or “multitarget” agents. The value of natural herbs is
their capability of exerting their anticancer ability via multi-
ple targets which may be developed as effective and ideal
drugs to improve cancer treatment especially under the com-
plex circumstance of redox. Defects such as poor solution,
low bioavailability, and inefficient extraction of natural herbs
limit their future application. Several approaches including
the development of synthetic analogues, the use of nanopar-
ticles and other efficient delivery agents to improve bioavail-
ability, and the employment of phospholipid complexes to
increase solubility have shown promise in overcoming these
challenges [285, 286]. Interdisciplinary techniques such as
PDT, nanoparticle transfer system, and the BEMER system
show great potential in personalized ROS modulation at a
large scale in future combination therapy. More mechanistic
studies and randomized controlled trials are required to
confirm the benefits.
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