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Antiviral lectin Q-Griffithsin
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Resistance to antifungal agents in vulvovaginal candidiasis has resulted in

increasing morbidity among women globally. It is therefore crucial that new

antimycotic agents are developed to counter this rising challenge. Q-Griffithsin

(Q-GRFT) is a red algal lectin, manufactured in Nicotiana benthamiana.

Griffithsin has well characterized broad spectrum antiviral activity and has

demonstrated potent in vitro activity against multiple strains of Candida,

including C. albicans. We have been working to incorporate Q-GRFT into

topical microbicide products to prevent HIV-1 and HSV-2 transmission. The

goal of this study was to evaluate the efficacy of a prototype Q-GRFT dosage

form in prophylactic and therapeutic murine models of vaginal candidiasis,

through microbiologic, histopathologic, and immune studies. In a preventive

model, in comparison with infected controls, Q-GRFT treatment resulted in a

lower fungal burden but did not alter the number of vaginal neutrophils and

monocytes. In a therapeutic model, Q-GRFT enhanced fungal clearance when

compared with infected untreated controls. Finally, histopathology

demonstrated lower vaginal colonization with C. albicans following Q-GRFT

treatment. Our results demonstrate that Q-GRFT has significant preventive and

therapeutic activity in vaginal candidiasis offering additional benefit as a topical

microbicide for prevention of HIV-1 and HSV-2 transmission.
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Introduction

Vulvovaginal candidiasis (VVC) is an ongoing global

challenge, and is predominantly caused by the common fungal

pathogen, Candida albicans (Sobel, 1985). Approximately 75%

of women will develop at least one episode of vulvovaginal

candidiasis during their lifetime (Sobel, 2007). About 138

million women globally are affected by recurrent vulvovaginal

candidiasis (RVVC) annually, with the numbers expected to

increase to 158 million each year, by 2030 (Denning et al., 2018).

Candida organisms are commensals in the vagina, with

overgrowth resulting in vaginal and vulval inflammation

contributing to the pathological hallmarks of infection (Fidel

et al., 2004). Factors that predispose women to candidiasis

include use of oral contraceptives, hormone replacement

therapy, pregnancy and antibiotic use (Rivers et al., 2011;

Fischer and Bradford, 2011). Recurrent vaginal Candida

infections are associated with mental discomfort (Sobel, 2016),

in addition to the physical symptoms that include pruritus,

burning pain, profuse leucorrhea, redness and interrupted and

restless sleep as a result of vulval and vaginal mucosal irritation

(Peters et al., 2014; Qu et al., 2019).

The major drugs currently used for the treatment of vaginal

candidiasis include azoles, echinocandins, and polyenes.

Unfortunately, there are increasing reports of resistance by

fungal pathogens to these antifungals (Baddley et al., 2008;

Alexander et al., 2013; Toda et al., 2019). The resistance is

attributed to the static function of many antifungals, in addition

to microbial recalcitrance upon repeated drug exposure (Sobel

et al., 2003; Pappas et al., 2016). In addition, long-term drug use,

prophylactic administration, and exposure to antifungals

through agriculture and contaminated food consumption

contribute to the growing trend of drug resistance (e Silva and

da Costa, 2012; Verweij et al., 2016; Brauer et al., 2019).

Furthermore, intrinsic natural resistance to antifungal therapy

has been demonstrated in some pathogenic fungal species

including azole-resistant Aspergillus species (Leonardelli et al.,

2016), fluconazole-resistant C. krusei (Sanguinetti et al., 2015)

and C. glabrata (Morio et al., 2017), and echinocandin- resistant

Cryptococcus neoformans. This demonstrates the urgent need to

develop more antifungal agents and strategies relevant to the

eradication of these infections.

The vaginal mucosa is the first line of defense against

Candida through maintaining an acidic mucosal pH that is

not optimal for Candida and providing anatomical and

physiological barriers to infection (Diamond et al., 2008;

Moyes and Naglik, 2011). Previous research by numerous

groups has demonstrated that Candida overgrowth triggers an

epithelial cell-mediated cytokine response, with a resultant

recruitment of immune cells like neutrophils, dendritic cells,

and T cells (Weindl et al., 2007; Moyes and Naglik, 2011; Zhang

et al., 2018). Additionally, symptomatic infection demonstrates

elevated cellular infiltration with PMNs and variable fungal
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presence, whereas protection from VVC has been associated

with limited or absent inflammatory responses in the vagina

(De Luca et al., 2013). However, recently, vaginal candidiasis has

been determined to demonstrate a hallmark immunopathogenesis

that involves an influx of neutrophils and pro-inflammatory

cytokines associated with the inflammasome, and a dysfunction

of theneutrophils. This results in a chronic inflammatory condition

with no observable clearance of Candida (Roselletti et al., 2017;

Willems et al., 2020).

Numerous endogenous and plant-derived lectins have

previously demonstrated in vitro antifungal activity (Gomes

et al., 2012; Wang et al., 2013). Griffithsin (GRFT) is a lectin

originally derived from red alga Griffithsia sp. GRFT has

demonstrated broad-spectrum antiviral properties and activity

(Mori et al., 2005; O'Keefe et al., 2010; Lo et al., 2020). In

previously published research, we showed that Griffithsin has no

cellular cytotoxicity at the concentration/dose tested; does not

induce production of inflammatory cytokines when exposed to

cultured human cells or tissue explants; and is safe when

administered to laboratory animals (O'Keefe et al., 2009;

Kouokam et al., 2011; Nixon et al., 2013; Barton et al., 2014;

Barton et al., 2016; Kouokam et al., 2016). Native GRFT is prone

to oxidation (Kramzer et al., 2021), and our group has developed

an engineered form, Griffithsin-M78Q (Q-GRFT), with

improved stability, and similar antiviral activity to GRFT. We

and others have demonstrated that GRFT and Q-GRFT are both

safe and efficacious in preclinical models of HIV-1 and HSV-2

infection (O'Keefe et al., 2009; Kouokam et al., 2011; Férir et al.,

2011; Nixon et al., 2013; Kouokam et al., 2016; Derby et al., 2018;

Girard et al., 2018; Günaydın et al., 2019; Yang et al., 2019; Tyo

et al., 2020; Tyo et al., 2020; Kramzer et al., 2021), as well as in

early-stage human clinical studies (Teleshova et al., 2022).

Recently, we reported a novel antifungal activity of Q-GRFT,

with potent growth inhibition of Candida species of human

importance including C. albicans, C. parapsilosis, C. krusei, C.

glabrata and against strains of the pan-resistant C. auris (Nabeta

et al., 2021). It is possible the Q-GRFT impacts other members of

the human microbiome, although those data to our knowledge,

are not yet available in literature. Additionally, our in vitro

studies have suggested that Q-GRFT binds to a-mannan in C.

albicans’ cell wall, impairs membrane barrier integrity and likely

induces reactive oxygen species formation, with resultant

damage to intracellular organelles. Compared to PBS-control,

Q-GRFT treatment impaired normal Candida cell division, with

fungal cells demonstrating failed attempts at budding. Q-GRFT

treated cells were circular, with a wrinkled and desiccated rough

appearance, with multiple bud scars and loss of polarity.

Contrastingly, PBS-treated cells were normally shaped (ovoid),

with smooth surfaces and normal budding polarity. Moreover,

Q-GRFT induced the expression of genes required to counter

cell stress and sustain survival (Nabeta et al., 2021). To our

knowledge, no study has reported the efficacy of Q-GRFT in

vaginal candidiasis in vivo models. Here, we investigated the
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efficacy of Q-GRFT in vaginal candidiasis using prophylactic

and therapeutic murine models. We describe the impact of

topical Q-GRFT administration on vaginal fungal burden and

the immunological consequence of C. albicans infection in the

context of topical Q-GRFT therapy.
Materials and methods

Mice

Female CBA/J mice (Jackson Laboratories), aged 6-8 weeks

were maintained under specific pathogen-free conditions in the

Clinical and Translational Research Building vivarium, at the

University of Louisville, Louisville, Kentucky. Experiments were

performed after animals were acclimated to vivarium conditions

for at least one week. In the preventive/prophylactic model, N=

10 mice per group were used for the experiments, with 6 groups

employed to test our hypothesis. In the therapeutic model, N=20

mice per group were used for the experiments, with 6 groups

employed to test our hypothesis.
Candida albicans and vaginal inoculation

The C. albicans ATCC 32032 strain was grown on

Sabourand dextrose agar plates overnight at 30°C prior to use,

and cell preparation done with slight modifications to the animal

model development protocol by Conti et al. (2014). Briefly, 10

milliliters of Sabourand dextrose media were inoculated with 1

colony of C. albicans from the agar plate and incubated at 30°C

with shaking for 18 hours. Cells were then sub-cultured 1:100

dilution overnight, followed by preparation of 1.0 × 108 cells/mL

blastospores from the stationary phase, that were suspended in

sterile PBS. Cells were kept on ice until when vaginal inoculation

was performed in mice. Twenty microliters of the C. albicans

preparation were dispensed into each mouse’s vagina using a

P50 positive displacement pipettor.
Estradiol treatment, lavage, and
fungal burden

Estradiol (SIGMA Life Science, Lot# BCBW5905) was

dissolved in sesame oil (SIGMA, Lot# MKCG9353) to a

concentration of 0.5 mg/mL. Mice were then injected

subcutaneously with 100 µL of the hormonal preparation in

the lower abdomen 3 days prior to C. albicans challenge, and

then once weekly for the duration of the experiment. To perform

the lavage, 100 µL of sterile PBS were dispensed into the mouse

vagina and aspirated back and forth several times, and then

transferred to labelled Eppendorf tubes on ice. The lavage was

then diluted 1:100, and 50 µL of the diluted fluid plated on
Frontiers in Cellular and Infection Microbiology 03
Sabourand agar. Colli rollers were used to spread the lavage. The

plates were incubated at 30°C for 24-48 hours, and colonies

counted to establish the fungal burden.
Vaginal treatment

Forty microliters (40 µL) of a 1% Q-GRFT gel formulated in

Carbopol (400 ng), 40 µL of Carbopol placebo gel, 100 µL of

nystatin solution at a concentration of 20 mg/mL (Mayne

Pharma, Greenville, NC, USA) and 100 µL of sterile 1X PBS

were instilled per vaginum in mice from the different animal

groups, using appropriate pipettors.
Hematoxylin and Eosin, periodic acid
Schiff staining

For Hematoxylin and Eosin (H & E) staining, sections were

deparaffinized and placed in xylene. Sections were then hydrated

in alcohol and water baths and stained in hematoxylin for 3

minutes. They were then washed in running water for 5 minutes,

differentiated in 1% acid alcohol for 5 minutes, washing in

running tap water, dipped in alkaline solution (ammonia

water) and washed again. They were subsequently stained in

1% Eosin Y for 10 minutes, washed in tap water for 3 minutes,

dehydrated in increasing concentrations of alcohols and then

cleared in xylene. Sections were then mounted and observed

under a microscope.

For periodic acid Schiff (PAS) staining, sections were dewaxed

followed by incubated in 0.5% periodic acid for 5 minutes, washed

in running tap water for 3 minutes and then immersed in Schiff’s

reagent for 15minutes. Sections were then washed in tap water for

5 minutes, counterstained with hematoxylin for 2 minutes,

washed in running tap water for 3 minutes, dehydrated in

ethanol and cleared in xylene for 5 minutes. Sections were then

mounted with Entellan® and a cover slip applied. The sections

were then viewed under a microscope.
Flow cytometry analysis

Cellular phenotypic analysis was carried out using flow

cytometry with the following antibodies: CD45 (Fisher Scientific

catalog# BDB564590, BD Biosciences, San Diego California) and

CD11b (Fisher Scientific catalog#BDB557686,BDBiosciences, San

Diego California), and F480 (Catalog# 123110, BioLegend, San

Diego, California), Ly6G (Fisher Scientific catalog# BDB566435,

BD Biosciences, San Diego California), and viability dye (Fisher

Scientific catalog# BD565388, BD Biosciences, San Diego

California). Vaginal lavage specimens were added to complete

RPMI medium (Fisher Scientific catalog# SLM140B,

MilliporeSigma™) supplemented with 1M HEPES, penicillin/
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streptomycin, fetal bovine serum (Catalog# BDB554656) and 2-

Mercaptoethanol, filtered and centrifuged for 5 minutes at 1600

rpm. One million cells were then added to appropriate flow

cytometry tubes, followed by washing with FACS buffer (Fisher

Scientific catalog# BDB5544656, BD Biosciences, San Diego

California) for 5 min at 1600 rpm. Cells were then blocked with 2

µL of CD16/32 antibody (Catalog# 101320, BioLegend, San Diego,

California) for 10 minutes. An antibody mix was prepared for the

surface staining primary antibodies, added to the mixture followed

by incubation at 4°C for 30 minutes. Cells were washed, re-

suspended in 300 µL of FACS buffer, and analyzed using a BD

device (BD LSR Fortessa™, USA), following manufacturer’s

instructions. Data was analyzed using Flowjo software (Tree Star,

Inc, Ashland, Oregon).
Statistical analysis

Where appropriate, tests used to determine significance

between experiments are outlined in the figure legends of each

figure. Data are representative of 2-4 independent experiments

for each time points. One way ANOVA was performed using

GraphPad Prism7.05 (GraphPad Software, Inc, La Jolla,

California) to determine statistical difference. A P value ≤0.05

was considered significant.
Results

Q-GRFT reduced the fungal burden
in a preventive model of murine
vaginal candidiasis

To evaluate the efficacy of Q-GRFT in a preventive murine

model, we established an experimental model for vaginal infection

(Figure 1A), based on that described by Conti et al. (2014). Female

CBA/J mice were injected subcutaneously with estradiol, followed

by twice daily vaginal instillation of a Carbopol gel formulation

similar to a product that we previously demonstrated had HSV-2

inhibitory activity (Nixon et al., 2013). The Carbopol gel

formulation delivered 400 ng Q-GRFT per dose twice daily for 5

days.We challenged the animals withC. albicans on day 3. Vaginal

lavagewasperformed24hours followingadministrationof thefinal

Q-GRFT treatment. We determined the efficacy of Q-GRFT in the

prevention of vaginal candidiasis by establishing the fungal burden

in vaginal lavage fluids after vaginal pre-treatment, fungal

inoculation, and follow-up treatment with Q-GRFT. Fungal

burden was evaluated by plating lavage fluids on Sabourand agar

plates that were incubated for 48 hours at 30°C, followed by

counting of colonies. Our results demonstrated that Q-GRFT

treatment resulted in a significantly lower fungal burden when
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compared with the infected untreated controls (P=0.0417)

(Figure 1B). Similarly, treatment with the positive control

nystatin, a polyene antifungal agent, resulted in a significantly

lower fungal burden (P=0.0016), while there was no inhibition

demonstrated with PBS (P=0.4849) and placebo (P=0.5963) when

compared with the infected controls. Additionally, uninfected

animals did not demonstrate any fungal growth (P=0.0016).

Upon infection and epithelial penetration, tissue resident-

macrophages are among the initial immune cells that encounter

Candida, and phagocytose the fungal cells to achieve clearance

(Netea et al., 2008). Furthermore, pro-inflammatory cytokines

released by macrophages and epithelial cells recruit neutrophils

and inflammatory monocytes to eradicate Candida infection

(Netea et al., 2008; Netea et al., 2015). However, recent findings

have suggested that while PMNs are generally protective againstC.

albicans at other body sites, they do not appear to be protective in

the vagina. Depletion of PMNs using an anti-Ly6G antibody was

shown not to impact fungal burden (Peters et al., 2014). Therefore,

using flow cytometry,we sought to determine if pre-treatmentwith

Q-GRFT influenced the expression of vaginal innate immune cells

[neutrophils (CD45+,Ly6G+,CD11b+) (Figure 1C top) and

mononuclear phagocytes (CD45+CD11+F4/80+) (Figure 1C

bottom) in vaginal infection. Compared to infected controls,

there was no difference in the population of neutrophils following

pre-treatment with either Q-GRFT (P>0.9999), placebo

(P>0.9999), or PBS (P>0.6510) (Figure 1D). This is consistent

with reported observations that PMNs do not contribute to

clearance during VVC (Yano et al., 2017). In addition, treatment

with nystatin resulted in significantly higher populations of

neutrophils (P=0.0011), while uninfected animals had lower

neutrophils (P=0.0483), in comparison with infected controls.

Similarly, there was no difference in mononuclear phagocyte

populations following treatment with Q-GRFT (P=0.9461),

placebo (P=0.9155), and PBS (P=0.6263), in comparison with the

infected controls (Figure 1E). Nystatin treated animals were

associated with higher monocyte populations (P=0.0380), while

uninfected animals demonstrated significantly lower monocytes

(P=0.0368) than infected animals. These results demonstrate that

while Q-GRFT significantly inhibits Candida growth in a

preventative murine model, this effect is likely independent of the

inflammatory immune response.
Q-GRFT enhanced clearance of
vaginal candidiasis in a therapeutic
murine model

To study the role of Q-GRFT in the treatment of candidiasis, a

murine therapeutic experimental model was developed, (Figure 2A),

based on that described by Conti et al. (2014). Mice were injected

subcutaneously with estradiol, followed by inoculation with C.
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albicans vaginally 3 days later. Vaginal lavage was performed on day

4 following fungal challenge, to determine baseline fungal burden.

Twice daily vaginal instillation of 400 ng Q-GRFT was started on

day 5 and continued for a total of 7 days. A vaginal lavage was

performed 24 hours after the final dose to determine fungal burden

by colony counts on Sabourand agar plates, and immune response

to treatment using flow cytometry. Pre-treatment fungal burden

(Figure 2B) confirmed that all mice had established vaginal infection
Frontiers in Cellular and Infection Microbiology 05
prior to initiating treatment, with no significant differences in fungal

burden in any of the infected groups prior to initiation of treatment.

Compared to placebo, treatment with topical vaginal Q-GRFT gel

resulted in a significant inhibition of C. albicans burden (P=0.0379),

similar to that seen with the control nystatin (P=0.0003), at the end

of the dosing period (Figure 2C). These results indicated that Q-

GRFT was an effective treatment for vaginal candidiasis in a

murine model.
A B

C D

E

FIGURE 1

Q-GRFT significantly inhibits vaginal fungal infection in a preventive model of murine candidiasis. (A) Experimental scheme. CBA/J mice (N= 10
per group) were estradiol-treated at Day -3, followed by twice daily instillation of either Q-GRFT gel, nystatin solution, PBS, or Carbopol placebo
gel per vaginum for the next 5 days. At Day 0, mice were inoculated with 20 µL of (C) albicans blastospores at a cell concentration of 1.0 X 108

CFU/mL, per vaginum. A vaginal lavage was performed 24 hours after the final dose administration. (B) Vaginal fungal burden (CFU/mL)
following treatment, for mice in (A). Each dot represents one mouse, N=10 mice per group. Experiments were performed and repeated at least
2 times, and representative data of Mean ± SEM is shown. (C) Flow cytometry gating strategy for neutrophils, and mononuclear phagocytes in
the vaginal lavage. Neutrophils were identified as CD45+Ly6G+CD11b+, while monocytes were CD45+CD11+F4/80+ cells. (D) Neutrophil and (E)
mononuclear phagocyte cell populations in the vaginal lavage following the respective treatments. N=10 animals per group, and each dot
represents a population of cells from a single mouse. Measurements are representative of cell populations from experiments performed at least
2 times. Mean ± SEM data is presented. For all experiments, one-way ANOVA was used for statistical analyses, and P ≤ 0.05 was considered
significant. For normality testing, Dunnet’s test (B), and Tukey’s test (D, E) were performed for respective datasets. For all datasets, all groups
were compared to infected untreated controls. 'ns' = p> 0.05; *p=or < 0.05 and '**' = P< or = 0.01.
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A B

C

E

D

FIGURE 2

Efficacy of Q-GRFT in a murine model of vaginal candidiasis. (A) Experimental scheme. CBA/J mice were estradiol-treated, followed by vaginal
inoculation with 20 µL of C. albicans blastospores at a cell concentration of 1.0 X 108 CFU/mL 3 days later. Treatment with either Q-GRFT,
nystatin, placebo, or PBS by vaginal instillation was started on Day 5 following inoculation and continued twice daily for a total of 7 days,
respectively. Vaginal lavage was performed at Day 4 and Day 12 to establish pre-treatment and post-treatment fungal burden, respectively.
(B) Day 4 (pre-treatment) Vaginal fungal burden (CFU/mL), and (C) Day 12 (post-treatment) burden. (D) Neutrophil and (E) mononuclear
phagocyte cell populations in the vaginal lavage following infection and respective treatments, as determined using Flow cytometry. Each dot
represents one mouse, N=20 mice per group. Experiments were performed at least 2-3 times and representative data from 2 experiments,
Mean ± SEM is shown. One-way ANOVA was used for statistical analyses and P ≤ 0.05 was considered significant. For normality testing,
Dunnet’s test (B), and Tukey’s test (C-E) were performed for respective datasets. For all datasets, all groups were compared to infected
untreated controls. *p=or < 0.05 , ** p=or < 0.01 , ****p =or < 0.0001 and ns=not significant.
Frontiers in Cellular and Infection Microbiology frontiersin.org06

https://doi.org/10.3389/fcimb.2022.976033
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Nabeta et al. 10.3389/fcimb.2022.976033
Treatment with Q-GRFT does not induce
overt changes in innate immune cell
phenotypes in vaginal candidiasis

Pro-inflammatory cytokines released by macrophages and

epithelial cells recruit neutrophils and inflammatory monocytes

during Candida infection (Netea et al., 2008; Netea et al., 2015).

Therefore, we next sought to determine if treatment with Q-

GRFT influenced the expression of vaginal innate immune cells,

neutrophils (CD45+Ly6G+CD11b+), (Figure 2D), and

mononuclear phagocytes (CD45+CD11b+F4/80+), (Figure 2E),

in candidiasis using flow cytometry. Compared to infected

controls, Q-GRFT did not induce any significant changes in

populations of both neutrophils, P=0.7279, and mononuclear

phagocytes, P=0.1960. Similarly, neutrophils populations were

not significantly different between infected controls and nystatin

treated mice, P=0.1771, while monocytes were elevated

following treatment, P=0.0055. Compared with the infected

untreated controls, uninfected mice demonstrated significantly

lower neutrophils (P=0.0039), but not mononuclear phagocytes,

P=0.0873. Both placebo and PBS did not result in any changes in

neutrophil (P=0.3626, P=0.111), and monocyte (P=0.2464,

P=0.9939) populations, respectively, when compared to

infected untreated animals. These results demonstrate that Q-

GRFT does not induce overt changes in neutrophil and
Frontiers in Cellular and Infection Microbiology 07
mononuclear phagocytic populations following vaginal

infection with C. albicans.
Histology of vaginal tissue following
treatment with Q-GRFT demonstrates
paucity of infection

To further investigate the effect of Q-GRFT on vaginal

candidiasis, we evaluated the impact of topical administration

on the histology of infected tissues at the end of the drug

treatment period. Microscopic analysis revealed that infected

untreated animals displayed significant vaginal luminal

congestion with high fungal growth/burden (Figures 3A-C),

unlike Q-GRFT-treated animals that displayed lower

conges t i on (F i gure s 3D-F) . Cons i s t en t w i th our

microbiological observations, H&E and PAS staining

demonstrated that Q-GRFT was an effective treatment against

treated vaginal candidiasis.
Discussion

Our study demonstrated that Q-GRFT significantly inhibited

vaginal infection in a preventive model and enhanced fungal
A B C

D E F

FIGURE 3

Histological evaluation of vaginal candidiasis following treatment with Q-GRFT. CBA/J mice were infected with C. albicans vaginally. 5 days later, topical
treatment was initiated with Q-GRFT gel (vaginally) twice daily for 7 days. Post-treatment (Day 12) tissue histology is presented. (A) Representative H&E
staining of mice vaginal tissue in the infected, untreated group. (B, C) PAS staining of infected, untreated mice. Note the predominance of fungal growth/
burden in the vaginal lumen. (D) Representative H&E staining of vagina tissues from Q-GRFT treated mice. (E, F), PAS staining of vaginal tissue from Q-
GRFT-treated mice. (*) represents fungal hyphae and black arrows depict neutrophils in the vagina.
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clearance in a therapeutic murine model of candidiasis. Cytokines

expressed in the vagina following C. albicans infection induce large

populations of neutrophils in the epithelium, underscoring their

mucosal immune cell activation and recruitment function (Zhang

et al., 2018). Recent findings, however, suggest that neutrophils

recruited into the vagina during VCC are unable to clear fungal

infection due to a combination of numerous factors in the local

milieu. First, the protective role of PMNs appears to be impeded by

heparan sulfate in VVC that induces their dysfunction (Yano et al.,

2017). Heparan sulfate is a competitive ligand for the neutrophilic

receptor Mac-1, yet the receptor is critical in fungal recognition and

neutrophil-mediated killing (Ardizzoni et al., 2021). Additionally,

women with symptomatic VVC have demonstrated a higher

frequency of anti-C. albicans antibodies, CAGTA and perinuclear

anti-neutrophils cytoplasmic antibodies (pANCA) than healthy

controls (Ardizzoni et al., 2021). In vitro studies have shown that

pANCA completely blocks the Candida killing activity of

neutrophils freshly isolated from healthy donors (Ardizzoni et al.,

2021). Interestingly, Zhang et al. showed that epithelial treatment

with nystatin, further enhanced the initial immune process

generated early in infection, resulting in fungal clearance (353).

Although fewer in number, macrophages may be recruited into

vaginal tissues during infection, and act as antigen presenting cells

when activated, generating pro-inflammatory and cytotoxic T cell

responses (Wira et al., 2005; Iijima et al., 2008; Hickey et al., 2011;

Kalia et al., 2019). In our preventive model, we have demonstrated

that pre-treatment with Q-GRFT prevented infection with C.

albicans but did not affect the frequency of neutrophil and

mononuclear phagocytes populations, in comparison with

infected control animals. In the therapeutic model, unlike the

infected controls, treatment with Q-GRFT was effective in fungal

clearance with no demonstrable differences in local neutrophil and

mononuclear phagocytic populations. These results are similar to

observations in the nystatin treatment animals. Given the data

suggesting anergy of innate immune cells in VVC (Yano et al., 2017;

Ardizzoni et al., 2021), our results demonstrate that Q-GRFT

enhances fungal clearance, and the inhibitory role is likely

independent of the local inflammatory response.

Human live vaginal challenge studies have demonstrated

that protection from candidiasis is associated with asymptomatic

colonization with Candida, and the absence of any inflammatory

response. Additionally, a heavy inflammatory response with

cellular predominance of PMNs is observed in symptomatic

disease (Yano et al., 2012). Furthermore, a positive correlation

has been observed between PMN infiltration and vaginal fungal

burden in a subset of individuals (Fidel et al., 2004).

Comparably, in murine studies, a heavy vaginal infiltration

with PMNs has been observed in subsets of inoculated

animals, despite no impact on the fungal burden (Fidel et al.,

1996; Yano et al., 2010). Given the failure in characterizing

disease severity in murine models based on clinical signs and

symptoms of vaginitis, the rigid criteria based on high and low

PMN responses ably predicts symptomatic and asymptomatic
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conditions in mice with VVC (Yano et al., 2010; Yano et al.,

2012). In fact, in vitro PMNmigration assays have demonstrated

that vaginal lavage fluids from high PMN (symptomatic) mice

have higher chemotactic activity, when compared to those from

low PMN (asymptomatic) animals (Yano et al., 2010).

In extensive in vitro and in vivo assays and experimental

models, secretion of cytokines and chemokines by epithelial cells

and tissues is only minimally changed upon treatment with

Griffithsin (O'Keefe et al., 2009; Kouokam et al., 2011; Kouokam

et al., 2016). The lack of difference in populations of neutrophils

and monocytes triggered following vaginal infection in both Q-

GRFT treated and untreated animals is indicative of a likely

direct inhibitory role of the lectin against Candida.

Infection with C. albicans likely triggered cytokines early in

infection in the therapeutic model, attracting innate immune cells

among all mice inoculated with fungal blastospores. Murine

treatment with Q-GRFT, as well as in the control animals with

nystatin resulted in fungal clearance, albeit with a detectably low

fungal burden upon completion of the dosing period. In the

preventive model, inflammatory infiltrates (neutrophils and

mononuclear phagocytes) were still elevated at the end of the

study period, similar to therapeutic animals, in both Q-GRFT and

nystatin treated animals. It is unlikely that Q-GRFT induced

inflammatory infiltrates in the lectin treated groups, given our

prior comprehensive studies that demonstrated the lack of

immune stimulation by GRFT when applied in the vagina of

experimental animals (O'Keefe et al., 2009; Kouokam et al., 2016).

However, in murine vaginal experiments, nystatin enhances the

immune inflammatory response against C. albicans (Zhang et al.,

2018), which likely accounts for the persistent cellular infiltrates

observed in treated animals at the end of the study period. The

absence of immune stimulation by Q-GRFT is likely advantageous

to its potential utility in multipurpose microbicide technologies as

an antiviral and antifungal product. HIV-1 transmission is

enhanced in the presence of inflammation (Lavelle et al., 2010;

Passmore et al., 2016), hence utility of Q-GRFT to prevent vaginal

candidiasis is not likely to increase the risk of infection.

There is scant data available assessing the impact of plant-

derived lectins in VVC. Bruno Severo Gomes and colleagues

have described the antifungal activity of lectins Dioclea violacea

(Dviol), D. rostrata (DRL) and Canavalia brasiliensis (ConBr)

against yeast isolated from vaginal secretions using in vitro

assays (Gomes et al., 2012). Although the exact mechanism of

action of these lectins is not identified, they postulate that it is

likely a direct inhibitory effect involving alteration of the fungal

cell wall and other synthesis pathways (Gomes et al., 2012).

Similarly, our earlier in vitro studies identified a-mannan in the

C. albicans cell wall as a binding target for Q-GRFT (Nabeta

et al., 2021). Additionally, we demonstrated that Q-GRFT’s

inhibitory activity involved the differential expression of genes

involved in stress response and cell cycle regulation (Nabeta

et al., 2021). Q-GRFT binds to a-mannan, and disrupts cell wall

and membrane integrity, causing desiccation and loss of fungal
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budding ability. We assume that the mechanism of action in vivo

is related to this in vitro observation. Altogether, the in vitro

findings (Nabeta et al., 2021), and murine results demonstrating

a lower fungal burden with Q-GRFT treatment, suggest a direct

inhibitory impact against C. albicans.

So far, there is no demonstrated toxicity, T-cell activation, or

immunological stimulation of GRFT or Q-GRFT in in vitro and

in vivo studies (Kouokam et al., 2011; Kouokam et al., 2016;

Girard et al., 2018). Here, we have demonstrated that Q-GRFT

significantly inhibited infection in a preventive model, and

enhanced candidiasis clearance in murine therapeutic studies.

Altogether, these data suggest that Q-GRFT likely directly

inhibits vaginal C. albicans growth, regardless of the

inflammatory status in the local milieu. In this study, we did

not characterize cytokines expression in both preventive and

therapeutic model, despite demonstrating fungal clearance with

Q-GRFT treatment. This limitation warrants further exploration

to gain a deeper understanding of the role Q-GRFT plays in

VVC. Additionally, assessing the neutrophilic and monocytes

phagocytic killing activity in the presence of Q-GRFT will

provide a better understanding of Q-GRFT’s role in VVC. Q-

GRFT has shown promise in preventing viral sexually

transmitted infections, including HSV-2 and HIV-1 (Nixon

et al., 2013; Derby et al., 2018; Tyo et al., 2020; Tyo et al.,

2020). Our data demonstrate additional potential for utility of

Q-GRFT vaginal dosage forms in both preventing and treating

candidiasis, and further support incorporation of Q-GRFT in

multipurpose STI prevention modalities.
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J., Booker, R., et al. (2013). Increasing echinocandin resistance in candida glabrata:
clinical failure correlates with presence of FKS mutations and elevated minimum
inhibitory concentrations. Clin. Infect. Dis. 56, 1724–1732. doi: 10.1093/cid/cit136

Ardizzoni, A., Wheeler, R. T., and Pericolini, E. (2021). It takes two to tango:
How a dysregulation of the innate immunity, coupled with candida virulence,
triggers VVC onset. Front. Microbiol., 12, 692491. doi: 10.3389/fmicb.2021.692491

Baddley, J. W., Patel, M., Bhavnani, S. M., Moser, S. A., and Andes, D. R. (2008).
Association of fluconazole pharmacodynamics with mortality in patients with
candidemia. Antimicrob Agents chemother 52, 3022–3028. doi: 10.1128/
AAC.00116-08

Barton, C., Kouokam, J. C., Hurst, H., and Palmer, K. E. (2016).
Pharmacokinetics of the antiviral lectin griffithsin administered by different
routes indicates multiple potential uses. Viruses 8, 331. doi: 10.3390/v8120331

Barton, C., Kouokam, J. C., Lasnik, A. B., Foreman, O., Cambon, A., Brock, G.,
et al. (2014). Activity of and effect of subcutaneous treatment with the broad-
spectrum antiviral lectin griffithsin in two laboratory rodent models. Antimicrob
Agents chemother 58, 120–127. doi: 10.1128/AAC.01407-13
frontiersin.org

https://doi.org/10.1093/cid/cit136
https://doi.org/10.3389/fmicb.2021.692491
https://doi.org/10.1128/AAC.00116-08
https://doi.org/10.1128/AAC.00116-08
https://doi.org/10.3390/v8120331
https://doi.org/10.1128/AAC.01407-13
https://doi.org/10.3389/fcimb.2022.976033
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Nabeta et al. 10.3389/fcimb.2022.976033
Brauer, V. S., Rezende, C. P., Pessoni, A. M., De Paula, R. G., Rangappa, K. S.,
Nayaka, S. C., et al. (2019). Antifungal agents in agriculture: Friends and foes of
public health. Biomolecules 9, 521. doi: 10.3390/biom9100521

Conti, H. R., Huppler, A. R., Whibley, N., and Gaffen, S. L. (2014). Animal
models for candidiasis. Curr. Protoc. Immunol. 105:19.6.1–19.6.17. doi: 10.1002/
0471142735.im1906s105

De Luca, A., Carvalho, A., Cunha, C., Iannitti, R. G., Pitzurra, L., Giovannini, G.,
et al. (2013). IL-22 and IDO1 affect immunity and tolerance to murine and human
vaginal candidiasis. PloS Pathog. 9, e1003486. doi: 10.1371/journal.ppat.1003486

Denning, D. W., Kneale, M., Sobel, J. D., and Rautemaa-Richardson, R. (2018).
Global burden of recurrent vulvovaginal candidiasis: a systematic review. Lancet
Infect. Dis. 18, e339–e347. doi: 10.1016/S1473-3099(18)30103-8

Derby, N., Lal, M., Aravantinou, M., Kizima, L., Barnable, P., Rodriguez, A., et al.
(2018). Griffithsin carrageenan fast dissolving inserts prevent SHIV HSV-2 and
HPV infections in vivo. Nat. Commun. 9, 1–9. doi: 10.1038/s41467-018-06349-0

Diamond, G., Beckloff, N., and Ryan, L. (2008). Host defense peptides in the oral
cavity and the lung: similarities and differences. J. Dental Res. 87, 915–927. doi:
10.1177/154405910808701011

e Silva, M., and da Costa, L. M. (2012). A indústria de defensivos agrıćolas.
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