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The theory of multilevel hierarchical data Expectation Maximization (EM)-algorithm is introduced via discrete 
time Markov chain (DTMC) epidemic models. A general model for a multilevel hierarchical discrete data is 
derived. The observed sample 𝑌 in the system is a stochastic incomplete data, and the missing data 𝑍 exhibits 
a multilevel hierarchical data structure. The EM-algorithm to find ML-estimates for parameters in the stochastic 
system is derived. Applications of the EM-algorithm are exhibited in the two DTMC models, to find ML-estimates 
of the system parameters. Numerical results are given for influenza epidemics in the state of Georgia (GA), USA.

1. Introduction

Deterministic mathematical models have a long history of applications in disease epidemiology, e.g. the Kermack and McKendrick SIR model [36], 
and more examples are given in Hethcote [32]. Since random events occur in epidemic dynamics, this implies that deterministic models are first 
approximations for reality. Indeed, they serve to estimate the basic reproduction number of diseases (cf. [21]); and to investigate factors affecting 
disease eradication and persistence in the population (cf. [9]). Also, deterministic models are more suitable for disease dynamics with large number 
of susceptible and infected states, where random epidemiological fluctuations can be ignored. However, in most epidemic dynamics, significant 
random variations occur, which are better represented by stochastic models. Compartmental epidemic models are used to investigate infectious 
disease dynamics. For instance, influenza, malaria and other types of compartmental disease models are studied in [24, 38, 40, 42, 43, 48, 49, 51, 
55, 56, 57, 61]. In general, these compartmental models are classified as SIRS, SIR, SIS, SEIR and, SEIRS etc. models depending on the disease states 
involved in the disease dynamics [24, 48, 53, 54, 55, 61].

Probability modeling also has a long history, and a classic example is Bernoulli [12]. Also, stochastic epidemic models are investigated (cf. [10, 
34]). Modeling with some counting processes such as continuous-time Markov chains (CTMC), where the state of the process is an integer valued 
random variable representing, for example, the disease states: susceptible, exposed, infectious or removed individuals, have wide applications in the 
literature [8, 11, 35]. Discrete-time Markov chain (DTMC) epidemic models on the other hand, have also received attention [6, 8, 29, 53, 61].

In the wide variety of DTMC epidemic models studied, there is (1) a class of DTMC epidemic models that are based on birth-death processes, 
where only one transition between disease states occurs over a small time step (cf. [8, 27, 35, 39, 47, 61]. These DTMC models approximate 
their corresponding CTMC epidemic models which have generator rate matrices that correspond with the rate functions of deterministic ordinary 
differential equation models that assume exponential holding lifetimes (cf. [8, 27, 35, 47, 61]. This class of DTMC epidemic models is the main case 
study for the hierarchical data EM-algorithm investigated in the paper, and other examples are [39, 61]. Another class of DTMC epidemic models is 
(2) DTMC epidemic models based on branching processes, such as, epidemic models based on Galton-Watson branching processes (cf. [8, 22]). The 
third class of DTMC epidemic models is (3) the class of chain-binomial epidemic models. Some classical examples of these models are the Greenwood 
[29] and Reed-Frost [6] models. Also see [28, 31, 52, 53, 58].

Employing mathematical models to obtain accurate predictions of epidemics, and deriving rational data-informed health policies necessitate the 
estimation of parameters of the models. For instance, the basic reproduction number (cf. [8]), ℜ0, is a complex parameter that depends on other 
simpler model parameters, which can be estimated. Significant progress has been made to derive and employ statistical and data-science techniques 
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to estimate and infer parameters of epidemic models, from epidemic data. A cross-section of these techniques is given in the following [7, 15, 18, 
19, 26, 27, 35, 46, 47, 50, 60, 61, 62, 63]. Indeed, the least squares (LS) estimation method is applied to find parameter estimates for the epidemic 
models in [15, 16, 19]; maximum likelihood (ML) estimators are obtained in [26, 35, 47, 61, 63]; martingale estimators are obtained in [10, 26]; 
nonparametric estimation method is applied in [44]; Bayesian Markov chain Monte Carlo (MCMC) estimation technique is applied in [39, 45]; the 
expectation maximization (EM) algorithm technique is discussed in [10, 23]; the hierarchical linear modeling (HLM) method is applied in [50, 60].

Parameter estimation and inferences in epidemic models becomes more complex when only partial observation of the epidemic process is possi-

ble, and several important epidemiological variables are missing in the data collected. In such circumstances, the traditional estimation techniques 
such as the HLM, LS, ML and Bayesian estimation methods, based on complete data are limited; more sophisticated estimation techniques such as 
the martingale estimation (cf. [10]), Bayesian MCMC estimation (cf. [39]), and the EM algorithm (cf. [10, 23, 33]) are more useful.

The primary interest of this study is introducing the technique of the EM-algorithm in hierarchical data (HD) structures, to find the maximum 
likelihood (ML) estimators of parameters of epidemic models. The hierarchical data EM-algorithm derived in this study is suitably applied to all sorts 
of hierarchical data structures arising in both statistical, stochastic and deterministic systems. However, the examples to characterize the hierarchical 
data structure in this study will be drawn from DTMC SEIR epidemic models; the interest is finding the maximum likelihood (ML) estimators of the 
parameters of the SEIR epidemic models. Some examples of SEIR disease epidemics are Ebola and influenza (cf. [39]).

For DTMC epidemic models, the method of ML estimation (cf. [17]) is explored in [26, 61, 63], and for CTMC epidemic models in [35, 47]. The 
method of ML estimation employed in infectious disease dynamic systems, seeks to find estimates for a set of model parameters, from epidemic data, 
that maximize the chance of observing the data from the population distribution indexed by the parameters (cf. [17]). This estimation technique 
becomes challenging to apply, whenever minimizing the likelihood function leads to intractable results. The expectation-maximization algorithm 
(EM-algorithm) [13, 20, 30] is applied in circumstances, where incorporating missing or hidden information to the given data leads to a more 
tractable likelihood function. Some of the primary subjects of this paper are as follows. To derive a model for the hierarchical data (HD) structure; to 
derive the EM-algorithm for the HD structure; to derive a DTMC model for a SEIR disease epidemic, for instance, Ebola or influenza, as an example 
of a HD system; to explore the maximum likelihood estimation and EM-algorithm techniques to find ML-estimates for the parameters of the SEIR 
epidemic model.

The EM-algorithm introduced by Dempster et al. [20] is a well-established ML estimation tool in the literature, and it has been exploited exten-

sively in many statistical studies (cf. [10]). Moreover, several advances have been made to improve the EM algorithm e.g. the MCEM algorithm [59]; 
the PX-EM algorithm [41]; the multiset EM algorithm [33] etc. Application of the EM algorithm in epidemic models to approximate model parame-

ters is in the infancy state. Duncan and Gyongy [23] applied the EM-algorithm to obtain MLE’s for parameters in a partial differential equation SEIR 
epidemic model with missing data. In [10], an illustration of the EM-algorithm is given for the classic Reed-Frost DTMC model [6], where hidden 
information is used to simplify the log-likelihood function.

Infectious disease transmission between susceptible and infectious individuals of a population is a very complex epidemiological process com-

posed of several intricate microscopic hidden sub-processes. For instance, for a susceptible person to get infected, (1) there must be contacts between 
individuals of all states in the population; (2) some of the contacts are with infectious individuals, and likely to lead to infection; (3) given a set of 
possible infectious contacts, at least one leads to infection. In other words, the hidden microscopic sub-disease processes (1)-(3) define a hierarchical 
structure of nested distinct conditional contacting levels, where the first level involves all possible contacts between individuals of all states in the 
population; the second level that involves infectious contacts, conditioned on the first level of given a set of contacts with individuals of all states; 
the third level of contacting involves specific infectious contacts that successfully transmit the disease, conditioned on the second level of a given 
set of infectious contacts.

In a typical epidemic process, the hierarchical contacting data for the levels described in (1)-(3) are hidden. Furthermore, as remarked in [39], for 
SEIR models, the exposed state (𝐸) in the population is unobserved, and hence, data on 𝐸 is missing. Thus, conducting ML estimation on DTMC SEIR 
models, where the disease transmission process satisfies (1)-(3), becomes computationally expensive because of an intractable likelihood function. 
And, the HD EM-algorithm is needed to find ML-estimates for the DTMC SEIR models.

Indeed, hierarchical data structures occur very often in medical research applications. For instance, in [50, 60], there are four HD levels consisting 
of measurements obtained from a “patient” category nested in a “hospital” category, which is further nested in a “city” category that is also nested 
in a “county” category. Given the high level of inter-dependency in a hierarchical data structure, the traditional statistical estimation methods are 
no longer feasible. For example, in [50, 60], a more complex extension of the ordinary least squares regression method, called Hierarchical Linear 
Modeling (HLM) technique, is proposed for deriving empirical linear models. Similarly, building upon the ideas of the studies [6, 25, 29, 39, 61], we 
shall propose a SEIR DTMC epidemic model as a case study for a new HD EM-algorithm derived in this study.

This paper is organized as follows. In Section 2, we derive the DTMC SEIR model used as case study for the HD EM-algorithm. In Section 3, we 
derive a mathematical model for the HD-structure, and give an example in the SEIR epidemic model. Section 4, we derive the HD EM-algorithm for 
an 𝑀 -level HD structure. In Section 5, we apply the 𝑀 - level HD EM-algorithm to a special example for a 4 -level HD structure in the SEIR model, 
and find the 𝑚𝑡ℎ step ML-estimate, in the EM-algorithm, for the parameter Θ2 for the SEIR model. In Section 6, we present numerical simulation 
results to test the algorithm.

2. Description and derivation of the general SEIR Markov chain

2.1. Derivation of the stochastic SEIR model

The SEIR model is based on the following assumptions: (A) We use a regular partition 𝑡0, 𝑡1, 𝑡2, … , 𝑡𝑘 = 𝑡0 + (Δ𝑡)𝑘, ∀𝑘 = 0, 1, 2, 3, … to create 
discrete time intervals of length Δ𝑡 (𝑖.𝑒. [𝑡𝑘, 𝑡𝑘+1), ∀𝑘 ≥ 0), and count the number of people of each compartment in a SEIR epidemic namely: 
susceptible, exposed, infectious and recovered (acquired immune or death) in each time interval. That is, 𝑥(𝑡𝑘) is the number of people in state 
𝑥 ∈ {𝑆, 𝐸, 𝐼, 𝑅} present at the beginning of the epoch 𝑘 (i.e. in [𝑡𝑘, 𝑡𝑘+1)), or equivalently, at the end of the epoch 𝑘 − 1 (i.e. in [𝑡𝑘−1, 𝑡𝑘)). Thus, 
𝑆(𝑡𝑘), 𝐸(𝑡𝑘), 𝐼(𝑡𝑘), 𝑅(𝑡𝑘) ∈ℤ+, and 𝑆(𝑡0) > 0, 𝐼(𝑡0) > 0, ∀𝑘 ∈ℤ+.

(B) It is assumed the total human population of size 𝑁(𝑡𝑘) = 𝑆(𝑡𝑘) + 𝐸(𝑡𝑘) + 𝐼(𝑡𝑘) + 𝑅(𝑡𝑘) =𝑁 > 0, (𝑁 ∈ ℤ+ is a constant) at time 𝑡𝑘 lives in a 
natural closed environment, where the outbreak of disease occurs. The susceptible people 𝑆 are vulnerable to infection and not yet infected. The 
exposed people 𝐸 are infected, but not infectious. The exposed incubate the disease for 𝑇1 time units. The infected individuals spreading the disease 
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are denoted by 𝐼 , and they spread the disease for 𝑇2 time units, before becoming removed 𝑅 via recovery or death. In general, it is assumed that 
𝑇1 ≤ 𝑇2. Note that the time 𝑡𝑘 is synonymously used as time 𝑘 ≥ 0.

(C) Assume 𝐶𝑖𝑗 (𝑡𝑘), 𝑖, 𝑗 ∈ {𝑆, 𝐸, 𝐼, 𝑅} is the number of epidemiological transition events that occur at time 𝑘, from state 𝑖 to state 𝑗, where 
𝑖, 𝑗 ∈ {𝑆, 𝐸, 𝐼, 𝑅}. For example, 𝐶𝑆𝐸(𝑡𝑘) is the number of newly infected people becoming exposed during the time [𝑡𝑘, 𝑡𝑘+1), where the new infections 
are counted from 𝑡𝑘 until the onset of 𝑡𝑘+1. Similarly, 𝐶𝐸𝐼 (𝑡𝑘) and 𝐶𝐼𝑅(𝑡𝑘) are the number of people converting from the exposed and infectious 
states, to the infectious and removed states, respectively, during time interval [𝑡𝑘, 𝑡𝑘+1). It follows that 𝐶𝑖𝑗 (𝑡𝑘) ∈ℤ+, ∀𝑖, 𝑗 ∈ {𝑆, 𝐸, 𝐼, 𝑅}. Also, it is easy 
to see that 0 ≤ 𝐶𝑆𝐸 (𝑡𝑘) ≤ 𝑆(𝑡𝑘), 0 ≤ 𝐶𝐸𝐼 (𝑡𝑘) ≤ 𝐸(𝑡𝑘), and 0 ≤ 𝐶𝐼𝑅(𝑡𝑘) ≤ 𝐼(𝑡𝑘), ∀𝑘 ≥ 0. Observe that the 𝐶𝑖𝑗 (𝑡𝑘)’s are mutually independent at any time 
𝑘 ≥ 0.

From (A)-(C) above, the SEIR epidemic model is guided by the system (2.1)-(2.4). That is, given the states at time 𝑘, (𝑆(𝑡𝑘), 𝐸(𝑡𝑘), 𝐼(𝑡𝑘), 𝑅(𝑡𝑘)), 
then the states at time 𝑘 + 1 are given by

𝑆(𝑡𝑘+1) = 𝑆(𝑡𝑘) −𝐶𝑆𝐸 (𝑡𝑘), (2.1)

𝐸(𝑡𝑘+1) =𝐸(𝑡𝑘) +𝐶𝑆𝐸 (𝑡𝑘) −𝐶𝐸𝐼 (𝑡𝑘), (2.2)

𝐼(𝑡𝑘+1) = 𝐼(𝑡𝑘) +𝐶𝐸𝐼 (𝑡𝑘) −𝐶𝐼𝑅(𝑡𝑘), (2.3)

𝑅(𝑡𝑘+1) =𝑅(𝑡𝑘) +𝐶𝐼𝑅(𝑡𝑘), (2.4)

where similarly to [31, 39], it can be easily seen that

𝐶𝑆𝐸 (𝑡𝑘) ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑆(𝑡𝑘), 𝑃𝑆𝐸 (𝑡𝑘)), 𝐶𝐸𝐼 (𝑡𝑘) ∼𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐸(𝑡𝑘), 𝑃𝐸𝐼 (𝑡𝑘)),

𝐶𝐼𝑅(𝑡𝑘) ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐼(𝑡𝑘), 𝑃𝐼𝑅(𝑡𝑘)), (2.5)

are random variables with binomial probability distributions; and in (2.5) denote by, 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝜌), where 𝑛 is the fixed number of Bernoulli 
trials, and 𝜌 is the success probability. That is, 𝑃𝑖𝑗(𝑡𝑘), is the probability of transiting from state 𝑖 to state 𝑗, where 𝑖 ∈ {𝑆, 𝐸, 𝐼}, 𝑗 ∈ {𝐸, 𝐼, 𝑅}. To 
comprehend the intrinsic nature of hierarchical data (HD) structures in epidemic models such as (2.1)-(2.4), and also to elucidate all hidden or 
missing components of (2.1)-(2.4), detailed derivations of the probabilities 𝑃𝑖𝑗 (𝑡𝑘) are given in subsequent subsections.

Let (Ω, 𝔉, ℙ) be a complete probability space, where 𝔉𝑡𝑘 is a filtration (that is, sub 𝜎- algebra 𝔉𝑡𝑘 that satisfies the following: given 𝑡1 ≤ 𝑡2 ⇒𝔉𝑡1 ⊂
𝔉𝑡2 ; 𝐸 ∈𝔉𝑡𝑘 , ∃𝑘, and 𝑃 (𝐸) = 0 ⇒𝐸 ∈𝔉𝑡0 ). Define a random vector measurable function

𝑋 ∶ℤ+ ×Ω→ℤ4
+, 𝑋(𝑡𝑘) = (𝑆(𝑡𝑘),𝐸(𝑡𝑘), 𝐼(𝑡𝑘),𝑅(𝑡𝑘)) ∈ℤ4

+,∀𝑘 ∈ℤ+. (2.6)

Moreover, the states 𝑆(𝑡𝑘), 𝐸(𝑡𝑘), 𝐼(𝑡𝑘), and 𝑅(𝑡𝑘) at any time 𝑘 ≥ 0, are 𝔉𝑡𝑘 -measurable and satisfy the equations (2.1)-(2.4). In addition, the 
random variables 𝐶𝑖𝑗 (𝑡𝑘) ∈ℤ+, ∀𝑖, 𝑗 ∈ {𝑆, 𝐸, 𝐼, 𝑅}, are all discrete random variables on the probability space. Thus, 𝔉𝑡𝑘 is generated by the components 
of 𝑋(𝑡0), 𝑋(𝑡1), … , 𝑋(𝑡𝑘−1), 𝑋(𝑡𝑘). The collection

{𝑋(𝑡𝑘) ∶ 𝑘 ≥ 0} = {(𝑆(𝑡𝑘),𝐸(𝑡𝑘), 𝐼(𝑡𝑘),𝑅(𝑡𝑘)) ∶ 𝑘 ≥ 0}, (2.7)

defines a random process for the SEIR epidemic. In addition, if we introduce the notations1

𝐶12(𝑡𝑘) ≡ 𝐶𝑆𝐸 (𝑡𝑘), 𝐶23(𝑡𝑘) ≡ 𝐶𝐸𝐼 (𝑡𝑘), 𝐶34(𝑡𝑘) ≡ 𝐶𝐼𝑅(𝑡𝑘), 𝑆(𝑡𝑘) ≡𝑋1(𝑡𝑘),

𝑆(𝑡𝑘+1) ≡𝑋1(𝑡𝑘+1),𝐸(𝑡𝑘) ≡𝑋2(𝑡𝑘),𝐸(𝑡𝑘+1) ≡𝑋2(𝑡𝑘+1), 𝐼(𝑡𝑘) ≡𝑋3(𝑡𝑘),

𝐼(𝑡𝑘+1) ≡𝑋3(𝑡𝑘+1),𝑅(𝑡𝑘) ≡𝑋4(𝑡𝑘),𝑅(𝑡𝑘+1) ≡𝑋4(𝑡𝑘+1),

then the transition events satisfy

𝐶𝑖,𝑖+1(𝑡𝑘) =
𝑖∑
𝑗=1

(𝑋𝑗 (𝑡𝑘) −𝑋𝑗 (𝑡𝑘+1)),

and 𝐶34(𝑡𝑘) =𝑋4(𝑡𝑘+1) −𝑋4(𝑡𝑘), where, 𝑖 ∈ 1, 2, 3.

Thus, the feasible region, denoted by, Ω1
𝑋(𝑡𝑘+1)

for the state 𝑋(𝑡𝑘+1) of the process at time 𝑘 + 1, given the state of the process 𝑋(𝑡𝑘) at time 𝑘, is 
defined as follows:

Ω1
𝑋(𝑡𝑘+1)

={(𝑠𝑘+1, 𝑒𝑘+1, 𝑖𝑘+1, 𝑟𝑘+1) ∈ℤ4
+|0 ≤ 𝑆(𝑡𝑘) − 𝑠𝑘+1 ≤ 𝑆(𝑡𝑘),

0 ≤𝐸(𝑡𝑘) − 𝑒𝑘+1 +𝑆(𝑡𝑘) − 𝑠𝑘+1 ≤𝐸(𝑡𝑘),

0 ≤ 𝐼(𝑡𝑘) − 𝑖𝑘+1 +𝐸(𝑡𝑘) − 𝑒𝑘+1 + 𝑆(𝑡𝑘) − 𝑠𝑘+1 ≤ 𝐼(𝑡𝑘),

and 0 ≤ 𝑟𝑘+1 −𝑅(𝑡𝑘) ≤ 𝐼(𝑡𝑘)}. (2.8)

Clearly, the random process (2.7) is a Markov chain. Indeed, we introduce new notations in addition to (2.6) - (2.7).

Notation 2.1.

(i.) Let 𝑥𝑘 ∈ ℤ4
+, where 𝑥𝑘 = (𝑥𝑘1 , 𝑥

𝑘
2 , 𝑥

𝑘
3 , 𝑥

𝑘
4) ≡ (𝑠𝑘, 𝑒𝑘, 𝑖𝑘, 𝑟𝑘) ∈ ℤ4

+. That is, 𝑥𝑘1 ≡ 𝑠𝑘, 𝑥𝑘2 ≡ 𝑒𝑘, 𝑥𝑘3 ≡ 𝑖𝑘 and 𝑥𝑘4 ≡ 𝑟𝑘. The vector 𝑥𝑘 = (𝑠𝑘, 𝑒𝑘, 𝑖𝑘, 𝑟𝑘) ∈ ℤ4
+

consists of non-negative integers for each 𝑘 ∈ {0, 1, 2, 3, …}, and 𝑋(𝑡𝑘) = 𝑥𝑘 if and only if

1 The notation “≡” signifies the operation of “mathematical equivalence” between two variables.
3
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𝑆(𝑡𝑘) ≡𝑋1(𝑡𝑘) = 𝑥𝑘1 , 𝑆(𝑡𝑘+1) ≡𝑋1(𝑡𝑘+1) = 𝑥𝑘+11 ,𝐸(𝑡𝑘) ≡𝑋2(𝑡𝑘) = 𝑥𝑘2 ,

𝐸(𝑡𝑘+1) ≡𝑋2(𝑡𝑘+1) = 𝑥𝑘+12 , 𝐼(𝑡𝑘) ≡𝑋3(𝑡𝑘) = 𝑥𝑘3 , 𝐼(𝑡𝑘+1) ≡𝑋3(𝑡𝑘+1) = 𝑥𝑘+13 ,

𝑅(𝑡𝑘) ≡𝑋4(𝑡𝑘) = 𝑥𝑘4 ,𝑅(𝑡𝑘+1) ≡𝑋4(𝑡𝑘+1) = 𝑥𝑘+14 ,

where, 𝑥𝑘1 ≡ 𝑠𝑘, 𝑥
𝑘
2 ≡ 𝑒𝑘, 𝑥

𝑘
3 ≡ 𝑖𝑘 and 𝑥𝑘4 ≡ 𝑟𝑘.

(ii.) The notation 𝐺(𝑡𝑘)|𝐻(𝑡𝑘) denotes a conditional random variable 𝐺(𝑡𝑘), given the random variable 𝐻(𝑡𝑘) at each time 𝑘 ≥ 0. That is, for each 
𝑘 ≥ 0, given a value for 𝐻(𝑡𝑘), then 𝐺(𝑡𝑘) is determined. Moreover, the collection {𝐺(𝑡𝑘)|𝐻(𝑡𝑘), 𝑘 ≥ 0} is called a sub-stochastic process of the 
process {𝐻(𝑡𝑘), 𝑘 ≥ 0}.

Applying the Notation 2.1, the random process {𝑋(𝑡𝑘) ∶ 𝑘 ≥ 0} in (2.7) satisfies

𝑃 (𝑋(𝑡𝑘+1) = 𝑥𝑘+1|𝔉𝑡𝑘 ) = 𝑃 (𝑋(𝑡𝑘+1) = 𝑥𝑘+1|𝑋(𝑡𝑘) = 𝑥𝑘) =
3∏
𝑖=1
𝑃

(
𝐶𝑖,𝑖+1(𝑡𝑘) =

𝑖∑
𝑗=1

(𝑥𝑘𝑗 − 𝑥
𝑘+1
𝑗

)|𝑋(𝑡𝑘) = 𝑥𝑘
)
, (2.9)

where 𝑘 ∈ {0, 1, 2, ...}.

From (B) above, note that 𝑁 is constant, and 𝑅(𝑡𝑘) =𝑁 −𝑆(𝑡) −𝐸(𝑡𝑘) − 𝐼(𝑡𝑘). Hence, the vector (𝑆(𝑡𝑘), 𝐸(𝑡𝑘), 𝐼(𝑡𝑘)) is sufficient for the model (2.1)-

(2.4). Thus, we use the vectors 𝑋(𝑡𝑘) = (𝑆(𝑡𝑘), 𝐸(𝑡𝑘), 𝐼(𝑡𝑘), 𝑅(𝑡𝑘)) and 𝑋(𝑡𝑘) = (𝑆(𝑡𝑘), 𝐸(𝑡𝑘), 𝐼(𝑡𝑘)) synonymously. Also, note that the distributions of the 
sub-stochastic processes {𝐶𝑖,𝑖+1(𝑡𝑘)|𝑋(𝑡𝑘), 𝑘 ≥ 0}, ∀𝑖 ∈ {1, 2, 3} are given in (2.5) without proof. However, to clearly understand the hierarchical data 
(HD) structure in the SEIR model (2.1)- (2.4), and also to understand the observed, and missing/hidden constituents of the data structure required 
for the EM algorithm, we explicitly derive the success probabilities 𝑃𝑖𝑗 (𝑡𝑘) of (2.5), where 𝑖 ∈ {𝑆, 𝐸, 𝐼}, 𝑗 ∈ {𝐸, 𝐼, 𝑅}; we completely characterize the 
distributions of {𝐶𝑖,𝑖+1(𝑡𝑘)|𝑋(𝑡𝑘), 𝑘 ≥ 0}, ∀𝑖 ∈ {1, 2, 3}.

Remark 2.1. The EM-algorithm presented in this paper for the hierarchical data structure in the model (2.1)- (2.4), is for the case where the 
incubation and infectious periods, 𝑇1 and 𝑇2, respectively, are random with exponential lifetime distributions.

3. 𝑴 -level hierarchical data structures

In this section, we characterize an 𝑀 -level hierarchical data (HD) structure, where 𝑀 ≥ 2 is an integer. Some ideas from [14, 50] are used to 
construct the HD structure. Consider a data structure comprising of 𝑀 -levels of nested hierarchical data, where at the 𝑀𝑡ℎ level, there are 𝑛𝑀 ≥ 1
measurements, denoted by 𝑍𝑘𝑀 , obtained from 𝑛𝑀 distinct units present at this level, where 𝑘𝑀 = 1, 2, 3, … 𝑛𝑀 . Let

𝐶 (𝑀) =
{
𝑍𝑘𝑀 |𝑘𝑀 = 1,2,3,…𝑛𝑀

}
, (3.1)

denote the collection of the 𝑛𝑀 ≥ 1 measurements in the 𝑀𝑡ℎ level.

Similarly, for each unit measurement 𝑍𝑘𝑀 , 𝑘𝑀 ∈ {1, 2, 3, … 𝑛𝑀}, there are 𝑛(𝑀−1) ≥ 1 nested sub-measurements obtained in the (𝑀 − 1)𝑡ℎ level, 
denoted by 𝑍𝑘𝑀,𝑘(𝑀−1)

, where 𝑘(𝑀−1) = 1, 2, 3, … 𝑛(𝑀−1). Let

𝐶 (𝑀−1) =
𝑛𝑀⋃
𝑘𝑀=1

{
𝑍𝑘𝑀,𝑘(𝑀−1)

|𝑘(𝑀−1) = 1,2,3,…𝑛(𝑀−1)

}
,

be the collection of the 𝑛𝑀 × 𝑛(𝑀−1) ≥ 1 measurements obtained from units in the (𝑀 − 1)𝑡ℎ level.

In a similar manner, for each unit measurement 𝑍𝑘𝑀,𝑘(𝑀−1)
, where 𝑘(𝑀−1) ∈ {1, 2, 3, … 𝑛(𝑀−1)}, there are 𝑛(𝑀−2) ≥ 1 nested sub-measurements 

obtained in the (𝑀 − 2)𝑡ℎ level, denoted by 𝑍𝑘𝑀,𝑘(𝑀−1) ,𝑘(𝑀−2)
, where 𝑘(𝑀−2) = 1, 2, 3, … 𝑛(𝑀−2). Let

𝐶 (𝑀−2) =
𝑛𝑀⋃
𝑘𝑀=1

𝑛(𝑀−1)⋃
𝑘(𝑀−1)=1

{
𝑍𝑘𝑀,𝑘(𝑀−1) ,𝑘(𝑀−2)

|𝑘(𝑀−2) = 1,2,3,…𝑛(𝑀−2)

}
,

be the collection of the 𝑛𝑀 × 𝑛(𝑀−1) × 𝑛(𝑀−2) ≥ 1 measurements obtained in the (𝑀 − 2)𝑡ℎ level.

Inductively, it is easy to see that at the (𝑀 − 𝐽 )𝑡ℎ level, 𝐽 ∈ {1, 2, 3, … , 𝑀 − 1}, the set

𝐶 (𝑀−𝐽 ) =
𝑛𝑀⋃
𝑘𝑀=1

𝑛(𝑀−1)⋃
𝑘(𝑀−1)=1

⋯
𝑛[𝑀−(𝐽−1)]⋃
𝑘[𝑀−(𝐽−1)]=1

{
𝑍𝑘𝑀,𝑘(𝑀−1) ,…,𝑘(𝑀−𝐽 ) ,𝑘(𝑀−𝐽 )

|𝑘(𝑀−𝐽 ) = 1,2,3,…𝑛(𝑀−𝐽 )

}
, (3.2)

is the collection of the 𝑛𝑀 × 𝑛(𝑀−1) × 𝑛(𝑀−2)⋯ × 𝑛(𝑀−𝐽 ) ≥ 1 measurements obtained in the (𝑀 − 𝐽 )𝑡ℎ level.

Thus, for each unit measurement 𝑍𝑘𝑀,𝑘(𝑀−1) ,…,𝑘(𝑀−𝐽 )
, where 𝑘(𝑀−𝐽 ) ∈ {1, 2, 3, … 𝑛(𝑀−𝐽 )}, there are 𝑛[𝑀−(𝐽+1)] ≥ 1 nested sub-measurements ob-

tained in the [𝑀 − (𝐽 + 1)]𝑡ℎ level, denoted by 𝑍𝑘𝑀,𝑘(𝑀−1) ,𝑘(𝑀−2) ,…𝑘(𝑀−𝐽 ) ,𝑘[𝑀−(𝐽+1)]
, where 𝑘[𝑀−(𝐽+1)] = 1, 2, 3, … 𝑛[𝑀−(𝐽+1)]. It follows that

𝐶 [𝑀−(𝐽+1)] =
𝑛𝑀⋃
𝑘𝑀=1

𝑛(𝑀−1)⋃
𝑘(𝑀−1)=1

⋯
𝑛(𝑀−𝐽 )⋃
𝑘(𝑀−𝐽 )=1

{
𝑍𝑘𝑀,𝑘(𝑀−1) ,𝑘(𝑀−2) ,…𝑘(𝑀−𝐽 ) ,𝑘[𝑀−(𝐽+1)]

|𝑘[𝑀−(𝐽+1)] = 1,2,3,…𝑛[𝑀−(𝐽+1)]

}
,

is the collection of the 𝑛𝑀 × 𝑛(𝑀−1) × 𝑛(𝑀−2) ×⋯ × 𝑛[𝑀−(𝐽+1)] ≥ 1 measurements obtained in the [𝑀 − (𝐽 + 1)]𝑡ℎ level.

The Fig. 1 illustrates an example of a 𝑀 = 3 hierarchical data (HD) structure. It is also easy to see that (3.2) presents a general expression to 
explicitly write all observations made at any level 𝐽 ∈ {1, 2, 3, … , 𝑀}. For example, in the second level of the hierarchical data structure, we obtain 
the following data collection
4
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Fig. 1. Shows a hierarchical data structure with 𝑀 = 3 levels of hierarchy. The arrows in this diagram point in the direction of nested lower hierarchical level data. 
For example, 𝑍1 → {𝑍1,1} → {𝑍1,1,1 𝑍1,1,2⋯ 𝑍1,1,𝑛1 }, signifies that {𝑍1,1,1 𝑍1,1,2⋯ 𝑍1,1,𝑛1 } is nested in {𝑍1,1}, which is further nested in {𝑍1}.

𝐶 (2) =
𝑛𝑀⋃
𝑘𝑀=1

𝑛(𝑀−1)⋃
𝑘(𝑀−1)=1

⋯
𝑛3⋃
𝑘3=1

{
𝑍𝑘𝑀,𝑘(𝑀−1) ,𝑘(𝑀−2) ,…𝑘3 ,𝑘2 |𝑘2 = 1,2,3,…𝑛2

}
,

and in the first level of the HD structure, we obtain the following data collection

𝐶 (1) =
𝑛𝑀⋃
𝑘𝑀=1

𝑛(𝑀−1)⋃
𝑘(𝑀−1)=1

⋯
𝑛3⋃
𝑘3=1

𝑛2⋃
𝑘2=1

{
𝑍𝑘𝑀,𝑘(𝑀−1) ,𝑘(𝑀−2) ,…𝑘3 ,𝑘2 ,𝑘1 |𝑘1 = 1,2,3,…𝑛1

}
. (3.3)

3.1. Example of a 4-level hierarchical data structure in the SEIR epidemic model

The distribution of 𝐶𝑆𝐸 (𝑡𝑘) ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑆(𝑡𝑘), 𝑃𝑆𝐸 (𝑡𝑘)) in (2.5) is based on the following assumptions for a mixture distribution given as definitions. 
These definitions will be recalled when applying the EM-algorithm to the model (2.1)- (2.4).

Definition 3.1. Probability of passing infection from one infectious contact:

1. At any time 𝑡𝑘, 𝑘 ≥ 0, assume that there is a constant probability 𝑝 of passing infection to a susceptible person after one interaction with an 
infectious person in the interval of time [𝑡𝑘, 𝑡𝑘+1), ∀𝑘 ≥ 0.

Definition 3.2. The 4th level hierarchical data structure in the SEIR model:

2. It is assumed that independent contacts occur between individuals in the population at the Poisson rate of 𝜆 contacts per unit time. Suppose 
𝑛(𝑡𝑘), 𝑘 ≥ 0 is the number of contacts an individual makes with others in the population over the interval [𝑡0, 𝑡𝑘], then the increment, denoted by 𝑍𝑡𝑘 , 
over the interval [𝑡𝑘, 𝑡𝑘+1) has a Poisson distribution given by

𝑍𝑡𝑘 = 𝑛(𝑡𝑘+1) − 𝑛(𝑡𝑘) ≡ 𝑛(𝑡𝑘+1 − 𝑡𝑘) = 𝑛(Δ𝑡) = 𝑛 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆Δ𝑡), 𝑘≥ 0, (3.4)

where 𝑛 ∈ {0, 1, 2, …} ≡ℤ+.

It is easy to see that when the stochastic process is observed over times 𝑡𝑘, 𝑘 = 0, 1, 2, … , 𝑇 , 𝑇 ∈ℤ+, then applying the design of the HD structure 
in (3.1)-(3.3), the collection of all possible contacts 𝑍𝑡𝑘 an individual makes in the (𝑇 + 1) subintervals [𝑡𝑘, 𝑡𝑘+1), 𝑘 ∈ {0, 1, 2, … , 𝑇 } forms the fourth 
level (highest level 𝑀 = 4) of the HD structure defined by

𝐶 (4) =
{
𝑍𝑡𝑘 |𝑘 = 0,1,2,… , 𝑇

}
. (3.5)

Definition 3.3. The 3rd level hierarchical data structure in the SEIR model:

3. From (3.4), suppose in each interval [𝑡𝑘, 𝑡𝑘+1), a susceptible individual makes 𝑍𝑡𝑘 = 𝑛 contacts with both infectious and noninfectious persons, 
where 𝑛 ∈ {0, 1, 2, …}. It is assumed that there is homogeneous mixing in the population, so that all contacts are equally likely to occur, regardless 
of the state (susceptible, exposed, infectious or removed) of an individual in the population.

Denote by 𝑍𝑡𝑘,𝑛, the number of infectious contacts that the susceptible person makes, given the 𝑍𝑡𝑘 = 𝑛 contacts with other individuals. It is easy 
to see that the distribution of 𝑍𝑡𝑘,𝑛 is binomial. That is,

𝑍𝑡𝑘,𝑛 ∼𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝛼𝑡𝑘 ), (3.6)

where

𝛼𝑡𝑘 =
𝐼(𝑡𝑘)
𝑁

,

is the probability that the susceptible individual contacts an infectious person in the population during the time interval [𝑡𝑘, 𝑡𝑘+1). Moreover, the 
population has a total constant size 𝑁 at all time 𝑘 ≥ 0. Since the random variable 𝑍𝑡𝑘,𝑛 has binomial distribution with 𝑛 independent trials, it is 
easy to see that 𝑍𝑡𝑘,𝑛 takes values 𝑍𝑡𝑘,𝑛 = 𝑗, where 𝑗 ∈ {0, 1, 2, … , 𝑛}.

Similarly, when the stochastic process is observed over times 𝑡𝑘, 𝑘 = 0, 1, 2, … , 𝑇 , 𝑇 ∈ ℤ+, then applying the design of the HD structure in (3.1)-

(3.3), the collection of all possible infectious contacts an individual makes in the (𝑇 +1) subintervals [𝑡𝑘, 𝑡𝑘+1), 𝑘 ∈ {0, 1, 2, … , 𝑇 }, forms the third level 
of the HD structure defined by
5
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𝐶 (3) =
∞⋃
𝑛=0

{
𝑍𝑡𝑘,𝑛|𝑘 = 0,1,2,… , 𝑇

}
. (3.7)

Definition 3.4. The 2nd level hierarchical data structure in the SEIR model:

4. From (3.6) and (3.4), assume that during the time interval [𝑡𝑘, 𝑡𝑘+1), a susceptible individual makes 𝑍𝑡𝑘 = 𝑛 contacts with other individuals in the 
population- both infectious and noninfectious individuals. Assume further that in the 𝑍𝑡𝑘 = 𝑛 total contacts made, there are 𝑍𝑡𝑘,𝑛 = 𝑗 of the contacts 
that are with infectious individuals, where 𝑗 ∈ {0, 1, 2, … , 𝑛}, and 𝑛 ∈ {0, 1, 2, …}. It is clear that any one of the 𝑍𝑡𝑘,𝑛 = 𝑗 infectious contacts with the 
susceptible individual can lead to infection.

Thus, for 𝑗 ∈ {0, 1, 2, … , 𝑛}, and 𝑛 ∈ {0, 1, 2, …}, given that the susceptible person makes 𝑍𝑡𝑘,𝑛 = 𝑗 infectious contacts, define a categorical random 
variable, 𝑍𝑡𝑘,𝑛,𝑗 , that indicates the 𝑙𝑡ℎ infectious contact that potentially leads to infection, defined in Definition 3.1, and 𝑙 = 1, 2, … , 𝑗. That is,

𝑍𝑡𝑘,𝑛,𝑗 =

⎧⎪⎪⎨⎪⎪⎩
1, if the 1st person passes infection,

2, if the 2nd person passes infection,

⋮ ⋮
𝑗, if the 𝑗𝑡ℎ person passes infection.

(3.8)

The distribution of 𝑍𝑡𝑘,𝑛,𝑗 is characterized as follows. Define the sequence of probabilities (or masses) (𝛾1, 𝛾2, … , 𝛾𝑙), where ∑𝑗

𝑙=1 𝛾𝑙 = 1. Under the 
assumption of homogenous mixing in the population, it is easy to see that all of the 𝑗 infectious contacts carry the same risk of infecting the 
susceptible person, that is, all 𝑗 infectious contacts are equally likely to lead to infection. Thus,

𝑃
(
𝑍𝑡𝑘,𝑛,𝑗 = 𝑙|𝑍𝑡𝑘,𝑛 = 𝑗,𝑍𝑡𝑘 = 𝑛) = 𝛾𝑙 =

1
𝑗
,∀𝑙 ∈ {1,2,… , 𝑗},

is the probability that the 𝑙𝑡ℎ infectious contact potentially leads to infection.

Similarly, when the stochastic process is observed over times 𝑡𝑘, 𝑘 = 0, 1, 2, … , 𝑇 , 𝑇 ∈ ℤ+, then applying the design of the hierarchical data 
structure in (3.1)-(3.3), the collection of all possible potential single effective infectious contacts a susceptible individual makes in the (𝑇 + 1)
subintervals [𝑡𝑘, 𝑡𝑘+1), 𝑘 ∈ {0, 1, 2, … , 𝑇 } forms the second level of the hierarchical data structure defined by

𝐶 (2) =
∞⋃
𝑛=0

𝑛⋃
𝑗=0

{
𝑍𝑡𝑘,𝑛,𝑗 |𝑘 = 0,1,2,… , 𝑇

}
. (3.9)

Definition 3.5. The 1st level hierarchical data structure in the SEIR model:

From (3.8), suppose it is given that a susceptible person makes 𝑍𝑡𝑘 = 𝑛 contacts, and 𝑍𝑡𝑘,𝑛 = 𝑗, of the contacts are with infectious people, where 
𝑗 ∈ {0, 1, … , 𝑛}; suppose it is also known that the 𝑙𝑡ℎ infectious person potential passes the infection in the interval [𝑡𝑘, 𝑡𝑘+1), where from (3.8), 
𝑍𝑡𝑘,𝑛,𝑗 = 𝑙 is the indicator of the 𝑙𝑡ℎ infectious person passing the infection in the interval [𝑡𝑘, 𝑡𝑘+1), and 𝑙 ∈ {1, 2, … , 𝑗}. Define a new Bernoulli random 
variable, 𝑍𝑡𝑘,𝑛,𝑗,𝑙 , which indicates the event that the 𝑙𝑡ℎ infectious person passes the infection in [𝑡𝑘, 𝑡𝑘+1). That is,

𝑍𝑡𝑘,𝑛,𝑗,𝑙 =
{

1, if the 𝑙𝑡ℎ person passes infection,

0, otherwise,
(3.10)

where 𝑙 ∈ {1, 2, … , 𝑗}.

Recall Definitions 3.1-3.4, it is known that the probability of passing infection from one infectious contact is 𝑝 ∈ [0, 1]. Thus, the distribution of 
𝑍𝑡𝑘,𝑛,𝑗,𝑙 is given by

𝑃
(
𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1|𝑍𝑡𝑘,𝑛,𝑗 = 𝑙,𝑍𝑡𝑘,𝑛 = 𝑗,𝑍𝑡𝑘 = 𝑛) = 𝑝,

𝑃
(
𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 0|𝑍𝑡𝑘,𝑛,𝑗 = 𝑙,𝑍𝑡𝑘,𝑛 = 𝑗,𝑍𝑡𝑘 = 𝑛) = 1 − 𝑝, (3.11)

∀𝑙 ∈ {1, 2, … , 𝑗}; ∀𝑗 ∈ {0, 1, 2, … , 𝑛}; ∀𝑛 ∈ {0, 1, 2, …}.

Similarly, when the stochastic process is observed over times 𝑡𝑘, 𝑘 = 0, 1, 2, … , 𝑇 , 𝑇 ∈ ℤ+, then applying the design of the hierarchical data 
structure in (3.1)-(3.3), the collection of zeros and ones indicating success or failure of susceptible persons getting infected from all possible potential 
single effective infectious contacts in the (𝑇 +1) subintervals [𝑡𝑘, 𝑡𝑘+1), 𝑘 ∈ {0, 1, 2, … , 𝑇 } forms the first level of the hierarchical data structure defined 
by

𝐶 (1) =
∞⋃
𝑛=0

𝑛⋃
𝑗=0

𝑗⋃
𝑙=1

{
𝑍𝑡𝑘,𝑛,𝑗,𝑙|𝑘= 0,1,2,… , 𝑇

}
. (3.12)

The following trivial result is given to simply show how the Definitions 3.1-3.4 lead to the distribution of 𝐶𝑆𝐸 (𝑡𝑘) ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑆(𝑡𝑘), 𝑃𝑆𝐸 (𝑡𝑘)).

Theorem 3.1. Let the Definitions 3.1-3.4 be satisfied. The success probability 𝑃𝑆𝐸 (𝑡𝑘) of the binomial distribution 𝐶𝑆𝐸 (𝑡𝑘) ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑆(𝑡𝑘), 𝑃𝑆𝐸 (𝑡𝑘)) in 
(2.5) is given by

𝑃𝑆𝐸 (𝑡𝑘) = 1 − 𝑒−𝑝𝛼𝑡𝑘 𝜆Δ𝑡. (3.13)

Proof. See Appendix A □
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Remark 3.1. Observe that the contact rate 𝜆 and the probability of passing infection from one infectious contact 𝑝, give the effective contact rate 
𝛽(𝑡𝑘) = 𝛽 = 𝑝𝜆 in [26, 39], where 𝛽(𝑡𝑘) = 𝛽 = 𝑝𝜆 is defined as the average number of effective contacts required to pass infection at time 𝑘 ≥ 0. Thus, 
the probability of getting infected at any time 𝑘, 𝑃𝑆𝐸 (𝑡𝑘), 𝑘 ≥ 0 in (3.13) is exactly the same as in [26, 39].

3.2. Transition probabilities for the SEIR model with random incubation and infectious periods

It is assumed that the incubation and infectious periods, 𝑇1 and 𝑇2, are random variables. That is, a newly infected person remains in the exposed 
state (𝐸) for an average time 𝔼(𝑇1) =

1
𝛿𝑒

, where 𝛿𝑒 is the average number of transitions from the exposed state (𝐸) to the infectious stat (𝐼) per unit 
time. Similarly, assume that a newly infectious person (𝐼) is removed (𝑅) from the infectious state after the average time 𝔼(𝑇1) =

1
𝛿𝑟

, where 𝛿𝑟 is 
the average number of transitions from the infectious state (𝐼) to the removal state (𝑅) per unit time. Clearly, if all transitions per unit time are 
independent, then 𝑇1 and 𝑇2 have exponential distributions. Moreover, 𝑇1 and 𝑇2 are independent random variables.

Trivially, using the survival distribution function �̄�𝑥(𝑡𝑘) of an individual in the state 𝑥 ∈ {𝐸, 𝐼}, the distribution of the transition events 𝐶𝑖𝑗(𝑡𝑘) in 
(2.5) of the SEIR model (2.1)- (2.4) are explicitly given by

𝐶𝑆𝐸 (𝑡𝑘) ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑆(𝑡𝑘), 𝑃𝑆𝐸 (𝑡𝑘)), 𝐶𝐸𝐼 (𝑡𝑘) ∼𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐸(𝑡𝑘), 𝑃𝐸𝐼 (𝑡𝑘)),

𝐶𝐼𝑅(𝑡𝑘) ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐼(𝑡𝑘), 𝑃𝐼𝑅(𝑡𝑘)), (3.14)

where 𝑃𝑆𝐸 (𝑡𝑘) is given in (3.13);

𝑃𝐸𝐼 (𝑡𝑘) = 1 −
�̄�𝐸 (𝑡𝑘+1)
�̄�𝐸 (𝑡𝑘)

= 1 − 𝑒−𝛿𝑒Δ𝑡,∀𝑖 = 1,2,… , 𝑒𝑘, (3.15)

and

𝑃𝐼𝑅(𝑡𝑘) = 1 −
�̄�𝐼 (𝑡𝑘+1)
�̄�𝐼 (𝑡𝑘)

= 1 − 𝑒−𝛿𝑟Δ𝑡,∀𝑖 = 1,2,… , 𝑖𝑘. (3.16)

Further, from (2.9) and (3.14), an explicit formula for the transition probabilities are obtained in the following.

Theorem 3.2. Let 𝑇1 and 𝑇2 be two independent exponential random variables with means 𝔼(𝑇1) =
1
𝛿𝑒

and 𝔼(𝑇2) =
1
𝛿𝑟

, respectively, where rate parameters 
are 𝛿𝑒 and 𝛿𝑟, respectively. The SEIR Markov chain model {𝑋(𝑡𝑘), 𝑘 = 0, 1, 2, …} has the following transition probabilities:

𝑃 (𝑋(𝑡𝑘+1) = 𝑥𝑘+1|𝑋(𝑡𝑘) = 𝑥𝑘) = 𝑃 ((𝑆(𝑡𝑘+1),𝐸(𝑡𝑘+1), 𝐼(𝑡𝑘+1) = (𝑠𝑘+1, 𝑒𝑘+1, 𝑖𝑘+1)|𝑋(𝑡𝑘) = 𝑥𝑘)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

( 𝑠𝑘
𝑠𝑘+1

)
(𝑝𝑖(𝑡𝑘))𝑠𝑘−𝑠𝑘+1 (1 − 𝑝𝑖(𝑡𝑘))𝑠𝑘+1×

×
( 𝑒𝑘
𝑠𝑘+1+𝑒𝑘+1

)
(𝑃 𝑖
𝐸𝐼

(𝑡𝑘))𝑠𝑘+𝑒𝑘−(𝑠𝑘+1+𝑒𝑘+1)×

×(1 − 𝑃 𝑖
𝐸𝐼

(𝑡𝑘))𝑠𝑘+1+𝑒𝑘+1−𝑠𝑘×
×
( 𝑖𝑘
𝑠𝑘+1+𝑒𝑘+1+𝑖𝑘+1

)
(𝑃 𝑖
𝐼𝑅

(𝑡𝑘))𝑠𝑘+𝑒𝑘+𝑖𝑘−(𝑠𝑘+1+𝑒𝑘+1+𝑖𝑘+1 )×

×(1 − 𝑃 𝑖
𝐼𝑅

(𝑡𝑘))𝑠𝑘+1+𝑒𝑘+1+𝑖𝑘+1−(𝑠𝑘+𝑒𝑘), for

(𝑠𝑘+1, 𝑒𝑘+1, 𝑖𝑘+1) ∈ Ω𝑋 (𝑡𝑘+1)
0, otherwise.

Moreover, the feasible region for the process is given as follows:

Ω𝑋 (𝑡𝑘+1) ={(𝑠𝑘+1, 𝑒𝑘+1, 𝑖𝑘+1) ∈ℤ3
+|𝑠𝑘 ≤ 𝑠𝑘+1 + 𝑒𝑘+1 ≤ 𝑠𝑘 + 𝑒𝑘,

𝑠𝑘 + 𝑒𝑘 ≤ 𝑠𝑘+1 + 𝑒𝑘+1 + 𝑖𝑘+1 ≤ 𝑠𝑘 + 𝑒𝑘 + 𝑖𝑘}.

Proof. From (2.1)- (2.4) and (2.9), observe that

𝑃 (𝑋(𝑡𝑘+1)|𝑋(𝑡𝑘)) = 𝑃 ((𝑆(𝑡𝑘+1),𝐸(𝑡𝑘+1), 𝐼(𝑡𝑘+1) = (𝑠𝑘+1, 𝑒𝑘+1, 𝑖𝑘+1)|𝑋(𝑡𝑘) = 𝑥𝑘)

= 𝑃 (𝐶𝑆𝐸 (𝑡𝑘) = (𝑆(𝑡𝑘 −𝑆(𝑡𝑘+1), 𝐶𝐸𝐼 (𝑡𝑘) = (𝐸(𝑡𝑘 −𝐸(𝑡𝑘+1) + (𝑆(𝑡𝑘 −𝑆(𝑡𝑘+1),

𝐶𝐼𝑅(𝑡𝑘) = (𝐼(𝑡𝑘 − 𝐼(𝑡𝑘+1) + (𝐸(𝑡𝑘 −𝐸(𝑡𝑘+1) + (𝑆(𝑡𝑘 −𝑆(𝑡𝑘+1)|𝑋(𝑡𝑘)). (3.17)

The rest of the proof follows easily by applying the distribution of the transition events in (3.14). □

3.3. Numerical results for the SEIR Markov chain models

Prior to deriving the EM-algorithm for hierarchical data in (3.1)-(3.3), and employing the algorithm to finding maximum likelihood estimates 
for the parameters of the two Markov chain model {𝑋(𝑡𝑘) ∶ 𝑘 ≥ 0} with transition probabilities in Theorem 3.2, from real epidemic data, we apply a 
theoretical approach to validate or assess the performance of the two Markov chain models. See Appendix B for the numerical results.
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4. The hierarchical data EM-algorithm

4.1. The traditional EM algorithm and Jensen’s inequality

The Expectation Maximization (EM) algorithm (cf. [13, 20, 30, 37]) is a computational method for finding the maximum likelihood estimate 
(denoted MLE or ML-estimate) of a parameter vector Θ of a given distribution. The EM-algorithm is most useful in: (1) when the given data for the 
ML technique has missing components at random; and (2) when the likelihood function is intractable to maximize, but adding hidden/missing data 
simplifies the process. In this study, the EM-algorithm is employed to remedy the two cases (1)-(2).

Kung et al. [37] present an explicit review of the traditional derivation and convergence of the EM-algorithm (see Section 3.2, [37]). Indeed, let 
𝑌 be observed data; 𝐿(Θ|𝑌 ) = 𝑃 (𝑌 |Θ) is the likelihood function; let the vector 𝑍 be the missing data or a missing component of the given data; and 
the complete data is 𝑋 = (𝑌 , 𝑍). The log-likelihood function 𝑙𝑜𝑔(𝐿(Θ|𝑋)) = 𝑙𝑜𝑔(𝑃 (𝑌 , 𝑍|Θ)) for the complete data is obtained and maximized to find 
the MLE of Θ in two basic algorithm steps, namely: the expectation (E)-step, and the maximization (M)-step.

The E-step of the algorithm consists of finding the conditional expected value of the complete log-likelihood function, denoted by

𝑄(Θ|Θ𝑚) = 𝔼𝑍|𝑌 ;Θ𝑚 [log(𝐿(Θ|𝑋))], (4.1)

where

𝔼𝑍|𝑌 ;Θ𝑚 [log(𝐿(Θ|𝑋))] = 𝔼𝑍|𝑌 ;Θ𝑚 [log(𝑃 (𝑌 ,𝑍|Θ))] =∑
𝑍

log[𝑃 (𝑌 ,𝑍|Θ)]𝑃 (𝑍|𝑌 ;Θ𝑚),
and Θ𝑚 is the estimate of Θ at the 𝑚𝑡ℎ iteration or step, where 𝑚 = 0,1, 2, ….

The M-step consists of maximizing the Q-function 𝑄(Θ|Θ𝑚) to find an estimate Θ𝑚+1 for Θ. This process is summarized in the following steps:

Algorithm 4.1.

1. Let 𝑚 = 0 and Θ𝑚 be an initial guess for Θ.

2. For the observed data 𝑌 , and assuming that the guess Θ𝑚 is correct, calculate the conditional expected log-likelihood 𝑄(Θ|Θ𝑚) in (4.1).

3. Find the Θ =Θ𝑚+1 that maximizes 𝑄(Θ|Θ𝑚), that is, find

Θ𝑚+1 = 𝑎𝑟𝑔𝑚𝑎𝑥
Θ

[
𝑄(Θ|Θ𝑚)]. (4.2)

4. Update Θ𝑚 with Θ𝑚+1, and repeat step 1 to step 3 until Θ stops noticeably changing.

Employing Jensen’s inequality, the convergence of the EM-algorithm can be obtained. Indeed, recall Jensen’s inequality [17] in the following:

Lemma 4.1. Let 𝑓 be a convex function, and 𝑋 a random variable, then

𝐸[𝑓 (𝑋)] ≥ 𝑓 (𝐸[𝑋]). (4.3)

Conversely, if you have a concave function (e.g. a logarithmic function), then

𝐸[𝑓 (𝑋)] ≤ 𝑓 (𝐸[𝑋]). (4.4)

By applying Lemma 4.1, it can be shown that the incomplete data log-likelihood function satisfies

log (𝐿(Θ|𝑌 )) = log (𝑃 (𝑌 |Θ)) ≥𝑄(Θ|Θ𝑚) +𝑅(Θ𝑚|Θ𝑚), (4.5)

where 𝑅(Θ𝑚|Θ𝑚) is the entropy term given by

𝑅(Θ𝑚|Θ𝑚) = −𝐸𝑍|𝑌 ;Θ𝑚 [
log(𝑃 (𝑍|𝑌 ;Θ𝑚))] = −

∑
𝑍

log[𝑃 (𝑍|𝑌 ;Θ𝑚)]𝑃 (𝑍|𝑌 ;Θ𝑚).
To verify (4.5), the reader is referred to [Subsection 3.2.2, Eq. (3.2.7), [37]].

Remark 4.1. There are several techniques to derive the Q-function (4.1) for the E-step of the EM-algorithm, for example, see [Subsection 3.2.1, Eq. 
(3.2.3), [37]]. However, the method employed in this paper to find an expression for the Q-function for the E-step utilizes the Jensen’s inequality 
in Lemma 4.1, to obtain an expression similar to (4.5), which simultaneously gives the Q-function, the entropy, and also proves convergence of the 
EM-algorithm.

4.2. The EM algorithm in nested hierarchical data

In this paper, to obtain the Q-function 𝑄(Θ|Θ𝑚) in (4.1) of the EM-algorithm for the hierarchical data set presented subsequently, we employ 
the approach in [Subsection 3.2.2, Eq. (3.2.7), [37]], that consists of applying Jensen’s inequality to obtain a similar relationship as (4.5) for the 
incomplete data log-likelihood function. The following definitions are made.
8
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Definition 4.1.

(1.) Define 𝑌 , to be the observed data or observed random sample. In fact, 𝑌 is a finite sequence of observed data written, for example, in the form

𝑌 = {𝑌𝑗 |𝑗 = 1,2,… , 𝑛𝑀},

where the values of the 𝑌𝑗 ’s are real numbers, or vectors with real coordinates, generated from populations that exhibit either (1) independent 
and identical distributions, or (2) dependent and identical distributions. The latter case applies mostly to stochastic population data. Without 
loss of generality, in the derivation of the EM-algorithm, for the hierarchical data, 𝑌 will be treated as a single random variable representing an 
observable characteristic in the population. Moreover, 𝑌 is assumed to be a discrete random variable or vector, over ℤ+ , the set of non-negative 
integers.

(2.) Define 𝑍 to be the missing data or missing components with a hierarchical data structure consisting of 𝑀 -levels (𝑀 >1), similar to (3.1)-(3.3), 
given by

𝑍 =
{
𝐶 (𝑀), 𝐶 (𝑀−1),… , 𝐶 (2), 𝐶 (1)} . (4.6)

That is, it is assumed that the missing data 𝑍 has 𝑀 nested levels of hierarchy, which is similarly structured as (3.1)-(3.3). Without loss of 
generality, 𝑍 will be treated as hierarchical data collection of discrete random variables over ℤ+ , the set of non-negative integers.

(3.) Define 𝑋 to be the complete data containing both 𝑌 and 𝑍. That is, 𝑋 = (𝑌 , 𝑍).
(4.) Define Θ = (𝜃1, 𝜃2, … , 𝜃𝜏 ) to be the vector of unknown parameters that defines the true distribution of 𝑌 , where 𝜏 is positive integer.

(5.) Define 𝑙(Θ|𝑌 ) = log [𝐿(Θ|𝑌 )] = log [𝑃 (𝑌 |Θ)] be the log-likelihood function of the incomplete data.

Note that the Q-function in (4.1) is a conditional expectation over all possible values of the missing random variable 𝑍. Thus, since we can 
only average one random variable at a time, we apply a step-by-step approach to obtain the Q-function by averaging over the different levels of the 
hierarchical missing data 𝑍 in (4.6). That is, we obtain the corresponding Q-function with the effects of 𝐶 (𝑀) in step 1, then consider the effects of 
𝐶 (𝑀−1) in the step 2; 𝐶 (𝑀−2) in the step 3, and so on, until the first level 𝐶 (1) of the hierarchical data structure.

In addition, we apply an inductive approach for all positive integers 𝑀 >1 as follows. To organize the solution process, we present in the 
following the results for 𝑀 = 3, and generalize in the next result.

Theorem 4.1. From (3.1)-(3.3), let 𝑀 = 3, that is, we assume that the missing data 𝑍 in (4.6) consists of

𝑍 =
{
𝐶 (3), 𝐶 (2), 𝐶 (1)} ,

where from (3.1)-(3.3),

𝐶 (3) =
{
𝑍𝑘3 |𝑘3 = 1,2,3,…𝑛3

}
,

𝐶 (2) =
𝑛3⋃
𝑘3=1

{
𝑍𝑘3 ,𝑘2 |𝑘2 = 1,2,3,…𝑛2

}
,

𝐶 (1) =
𝑛3⋃
𝑘3=1

𝑛2⋃
𝑘2=1

{
𝑍𝑘3 ,𝑘2 ,𝑘1 |𝑘1 = 1,2,3,…𝑛1

}
. (4.7)

Also, let 𝑌 , Θ and 𝑙(Θ|𝑌 ) be as defined in Definition 4.1. It follows that the log-likelihood function of the incomplete data 𝑙(Θ|𝑌 ) satisfies

𝑙(Θ|𝑌 ) = log [𝐿(Θ|𝑌 )] ≥𝑄𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1 (Θ|Θ𝑚) +𝑅𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1 (Θ𝑚|Θ𝑚) +𝑅𝑍𝑘3 ,𝑍𝑘2 (Θ𝑚|Θ𝑚) +𝑅𝑍𝑘3 (Θ𝑚|Θ𝑚),
where

𝑄𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1
(Θ|Θ𝑚) = 𝔼𝑍𝑘3 |𝑌 ,Θ𝑚

[
𝔼𝑍𝑘2 |𝑌 ,𝑍𝑘3 ,Θ𝑚

[
𝔼𝑍𝑘1 |𝑌 ,𝑍𝑘3 ,𝑍𝑘2 ,Θ𝑚

[
log

[
𝑃 (𝑌 ,𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1 |Θ)]]]] , (4.8)

𝑅𝑍𝑘3
(Θ𝑚|Θ𝑚) = −𝔼𝑍𝑘3 |𝑌 ,Θ𝑚

[
log𝑃 (𝑍𝑘3 |𝑌 ,Θ𝑚)] , (4.9)

𝑅𝑍𝑘3 ,𝑍𝑘2
(Θ𝑚|Θ𝑚) = −𝔼𝑍𝑘3 |𝑌 ,Θ𝑚

[
𝔼𝑍𝑘2 |𝑌 ,𝑍𝑘3 ,Θ𝑚

[
log

(
𝑃 (𝑍𝑘2 |𝑌 ,𝑍𝑘3 ,Θ𝑚))]] ,

and

𝑅𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1
(Θ𝑚|Θ𝑚) = −𝔼𝑍𝑘3 |𝑌 ,Θ𝑚

[
𝔼𝑍𝑘2 |𝑌 ,𝑍𝑘3 ,Θ𝑚

[
𝔼𝑍𝑘1 |𝑌 ,𝑍𝑘3 ,𝑍𝑘2 ,Θ𝑚

[
log

[
𝑃 (𝑍𝑘1 |𝑌 ,𝑍𝑘3 ,𝑍𝑘2 ,Θ𝑚)]]]] . (4.10)

That is, the log-likelihood function of the incomplete data 𝑙(Θ|𝑌 ) is bounded from below by the Q-function 𝑄𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1 (Θ|Θ𝑚) which includes the average 
effects of all the missing hierarchical information 𝐶 (3), 𝐶 (2) and 𝐶 (1) in 𝑍, and the entropy terms 𝑅𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1 (Θ𝑚|Θ𝑚), 𝑅𝑍𝑘3 ,𝑍𝑘2 (Θ𝑚|Θ𝑚), and 𝑅𝑍𝑘3 (Θ𝑚|Θ𝑚).
Proof. The complete proof of Theorem 4.1 is given in Appendix C. □

Remark 4.2. E- and M-steps of the EM-algorithm, and convergence:

(1.) Note that it can be shown, applying a similar direct approach of deriving the Q-function exhibited in [Subsection 3.2.2, Eq. (3.2.3), [37]], and 
the step-by-step method of adding and averaging over the missing hierarchical information 𝐶 (3), 𝐶 (2) and 𝐶 (1) that the log-likelihood function 
of the incomplete data, 𝑙(Θ𝑚|𝑌 ), for Θ =Θ𝑚 satisfies
9



D. Wanduku Heliyon 8 (2022) e12622
𝑙(Θ𝑚|𝑌 ) = log
[
𝐿(Θ𝑚|𝑌 )] =𝑄𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1 (Θ𝑚|Θ𝑚) +𝑅𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1 (Θ𝑚|Θ𝑚) +𝑅𝑍𝑘3 ,𝑍𝑘2 (Θ𝑚|Θ𝑚) +𝑅𝑍𝑘3 (Θ𝑚|Θ𝑚), (4.11)

where 𝑄𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1 (Θ𝑚|Θ𝑚), 𝑅𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1 (Θ𝑚|Θ𝑚), 𝑅𝑍𝑘3 ,𝑍𝑘2 (Θ𝑚|Θ𝑚), and 𝑅𝑍𝑘3 (Θ𝑚|Θ𝑚) are given in (4.8)-(4.10). The proof of (4.11) is omitted 
to reduce the complexity of the derivation process of the EM-algorithm in this paper, especially because no additional knowledge is gained.

Furthermore, for any Θ𝑚𝑎𝑥 that satisfies

Θ𝑚𝑎𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥
Θ

[
𝑄𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1

(Θ|Θ𝑚)], (4.12)

it implies that the following holds

𝑄𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1
(Θ𝑚𝑎𝑥|Θ𝑚) ≥𝑄𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1 (Θ𝑚|Θ𝑚), (4.13)

and as a result the following relationship is satisfied

𝑙(Θmax|𝑌 ) ≥ 𝑙(Θ𝑚|𝑌 ). (4.14)

The relationships in (4.13)-(4.14) imply that, at the (𝑛 + 1)𝑡ℎ iteration, as we continuously replace the value of Θ𝑚 in the Q-function 
𝑄𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1

(Θ|Θ𝑚) in (4.8), by the new value Θ𝑚𝑎𝑥 obtained from (4.12), we move closer to the true value of Θ that maximizes the log-

likelihood 𝑙(Θ|𝑌 ).
(2.) Therefore, from above convergence property in (4.14), we conclude that

E-step: the E-step of the EM-algorithm consists of finding the Q-function 𝑄𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1 (Θ|Θ𝑚) in (4.8), and

M-step: the M-step consists of finding Θ𝑚𝑎𝑥 in (4.12).

The mathematical patterns observed in the Q-functions (4.8) and entropy terms (4.9)-(4.10), given in Theorem 4.1 are easy to generalize for the 
𝑀 -level hierarchical missing data 𝑍 in (4.6). The major issue with the generalization is the complex nature of the conditional expectation notation, 
when the level of hierarchy 𝑀 >1 is arbitrary. We introduce new notations for the conditional expectation in the level 𝑀 >1.

Notation 4.1.

(1.) The sequence of random variables (𝑍𝑘𝑀 ,𝑍𝑘(𝑀−1)
,… ,𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1 ), is denoted by (𝑍𝑘𝑀 −𝑍𝑘1 );

the sequence (𝑍𝑘𝑀 ,𝑍𝑘(𝑀−1)
,… ,𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘2 ), is denoted by (𝑍𝑘𝑀 − 𝑍𝑘2 ). And in general, for each 𝑗 = 1, 2, … , 𝑀 − 1, the sequence 

(𝑍𝑘𝑀 ,𝑍𝑘(𝑀−1)
,… ,𝑍𝑘(𝑗+1) ), is denoted by (𝑍𝑘𝑀 −𝑍𝑘(𝑗+1) ).

(2) Denote by 𝔼∗
𝑍𝑘1 |𝑌 ,𝑍𝑘𝑀 −𝑍𝑘2 ,Θ𝑚

[⋯], the conditional expectation with respect to the mass of 𝑍𝑘1 , given the sequence (𝑌 , 𝑍𝑘𝑀 , 𝑍𝑘(𝑀−1)
, … , 𝑍𝑘3 , 𝑍𝑘2 ,

Θ𝑚), that is,

𝔼∗
𝑍𝑘1 |𝑌 ,𝑍𝑘𝑀 −𝑍𝑘2 ,Θ𝑚

[⋯] ≡ 𝔼𝑍𝑘1 |𝑌 ,𝑍𝑘𝑀 ,𝑍𝑘(𝑀−1) ,…,𝑍𝑘3 ,𝑍𝑘2 ,Θ𝑚
[⋯] ,

where the notation “≡” signifies “equivalence” between two identities. And in general, for each 𝑗 = 1, 2, … , 𝑀 − 1, denote by

𝔼∗
𝑍𝑘𝑗 |𝑌 ,𝑍𝑘𝑀 −𝑍𝑘𝑗+1 ,Θ𝑚

[⋯], the conditional expectation with respect to the mass of 𝑍𝑘𝑗 , given the sequence (𝑌 ,𝑍𝑘𝑀 ,𝑍𝑘(𝑀−1)
,… ,𝑍𝑘3 ,𝑍𝑘𝑗+1 ,Θ𝑚), 

that is,

𝔼∗
𝑍𝑘𝑗 |𝑌 ,𝑍𝑘𝑀 −𝑍𝑘(𝑗+1) ,Θ𝑚

[⋯] ≡ 𝔼𝑍𝑘1 |𝑌 ,𝑍𝑘𝑀 ,𝑍𝑘(𝑀−1) ,…,𝑍𝑘3 ,𝑍𝑘2 ,Θ𝑚
[⋯] , 𝑗 ∈ {1,2,… ,𝑀 − 1},

𝔼∗
𝑍𝑘𝑀

|𝑌 ,Θ𝑚 [⋯] ≡ 𝔼𝑍𝑘𝑀 |𝑌 ,Θ𝑚 [⋯] .

A generalization of Theorem 4.1 is presented subsequently, and the proof follows immediately by applying the method of mathematical induction.

Proposition 4.1. Let 𝑀 >1, 𝑌 , 𝑍, Θ and 𝑙(Θ|𝑌 ) be as defined in Definition 4.1. It follows that the log-likelihood function of the incomplete data 𝑙(Θ|𝑌 ), 
satisfies

𝑙(Θ|𝑌 ) = log [𝐿(Θ|𝑌 )]
≥𝑄𝑍𝑘𝑀 −𝑍𝑘1

(Θ|Θ𝑚) +𝑅𝑍𝑘𝑀 −𝑍𝑘1
(Θ𝑚|Θ𝑚)

+𝑅𝑍𝑘𝑀 −𝑍𝑘2
(Θ𝑚|Θ𝑚) +𝑅𝑍𝑘𝑀 −𝑍𝑘3

(Θ𝑚|Θ𝑚)
+𝑅𝑍𝑘𝑀 −𝑍𝑘4

(Θ𝑚|Θ𝑚) +𝑅𝑍𝑘𝑀 −𝑍𝑘5
(Θ𝑚|Θ𝑚)

+…+𝑅𝑍𝑘𝑀 −𝑍𝑘(𝑀−1)
(Θ𝑚|Θ𝑚) +𝑅𝑍𝑘𝑀 (Θ𝑚|Θ𝑚), (4.15)

where

𝑄𝑍𝑘𝑀 −𝑍𝑘1
(Θ|Θ𝑚) = 𝔼∗

𝑍𝑘𝑀
|𝑌 ,Θ𝑚 [ 𝔼∗

𝑍𝑘(𝑀−1) |𝑌 ,𝑍𝑘𝑀 ,Θ𝑚
[ 𝔼∗

𝑍𝑘(𝑀−2) |𝑌 ,𝑍𝑘𝑀 −𝑍𝑘(𝑀−1) ,Θ𝑚
[ …𝔼∗

𝑍𝑘4 |𝑌 ,𝑍𝑘𝑀 −𝑍𝑘5 ,Θ𝑚
[

𝔼∗
𝑍𝑘3 |𝑌 ,𝑍𝑘𝑀 −𝑍𝑘4 ,Θ𝑚

[ 𝔼∗
𝑍𝑘2 |𝑌 ,𝑍𝑘𝑀 −𝑍𝑘3 ,Θ𝑚

[

𝔼∗
𝑍𝑘1 |𝑌 ,𝑍𝑘𝑀 −𝑍𝑘2 ,Θ𝑚

[
log

[
𝑃 (𝑌 ,𝑍𝑘𝑀 ,𝑍𝑘(𝑀−1)

,… ,𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1 |Θ)]] ] ] , (4.16)

is the generalized Q-function which considers the effects of all levels of missing information in 𝑍 given by (4.6). In addition, the entropy terms are given as 
follows.
10
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𝑅𝑍𝑘𝑀
(Θ𝑚|Θ𝑚) = −𝔼𝑍𝑘𝑀 |𝑌 ,Θ𝑚

[
log𝑃 (𝑍𝑘𝑀 |𝑌 ,Θ𝑚)] , (4.17)

𝑅𝑍𝑘𝑀 −𝑍𝑘(𝑀−1)
(Θ𝑚|Θ𝑚) = −𝔼𝑍𝑘𝑀 |𝑌 ,Θ𝑚

[
𝔼𝑍𝑘(𝑀−1) |𝑌 ,𝑍𝑘𝑀 ,Θ𝑚

[
log

(
𝑃 (𝑍𝑘(𝑀−1)

|𝑌 ,𝑍𝑘𝑀 ,Θ𝑚))]] ,
𝑅𝑍𝑘𝑀 −𝑍𝑘(𝑀−2)

(Θ𝑚|Θ𝑚) = −𝔼∗
𝑍𝑘𝑀

|𝑌 ,Θ𝑚
[
𝔼∗
𝑍𝑘(𝑀−1) |𝑌 ,𝑍𝑘𝑀 ,Θ𝑚

[
𝔼∗
𝑍𝑘(𝑀−2) |𝑌 ,𝑍𝑘𝑀 −𝑍𝑘(𝑀−1) ,Θ𝑚

[
log

[
𝑃 (𝑍𝑘(𝑀−2)

|𝑌 ,𝑍𝑘𝑀 −𝑍𝑘(𝑀−1)
,Θ𝑚)

]]]]
,

and in general, for 𝑗 = 0, 1, 2, … , 𝑀 − 2, the other entropy terms are obtained using the formula

𝑅𝑍𝑘𝑀 −𝑍𝑘(𝑗+1)
(Θ𝑚|Θ𝑚) = −𝔼∗

𝑍𝑘𝑀
|𝑌 ,Θ𝑚 [ 𝔼∗

𝑍𝑘(𝑀−1) |𝑌 ,𝑍𝑘𝑀 ,Θ𝑚
[ 𝔼∗

𝑍𝑘(𝑀−2) |𝑌 ,𝑍𝑘𝑀 −𝑍𝑘(𝑀−1) ,Θ𝑚
[

𝔼∗
𝑍𝑘(𝑀−3) |𝑌 ,𝑍𝑘𝑀 −𝑍𝑘(𝑀−2) ,Θ𝑚

[ …𝔼∗
𝑍𝑘(𝑗+2) |𝑌 ,𝑍𝑘𝑀 −𝑍𝑘(𝑗+3) ,Θ𝑚

[ 𝔼∗
𝑍𝑘(𝑗+1) |𝑌 ,𝑍𝑘𝑀 −𝑍𝑘(𝑗+2) ,Θ𝑚

log
[
𝑃 (𝑍𝑘(𝑗+1) |𝑌 ,𝑍𝑘𝑀 −𝑍𝑘(𝑗+2) ,Θ𝑚)

]
] ] ] . (4.18)

For example, using (4.18), when 𝑗 = 0, we obtain 𝑅𝑍𝑘𝑀 −𝑍𝑘1
(Θ𝑚|Θ𝑚) given by

𝑅𝑍𝑘𝑀 −𝑍𝑘1
(Θ𝑚|Θ𝑚) = −𝔼∗

𝑍𝑘𝑀
|𝑌 ,Θ𝑚 [ 𝔼∗

𝑍𝑘(𝑀−1) |𝑌 ,𝑍𝑘𝑀 ,Θ𝑚
[ 𝔼∗

𝑍𝑘(𝑀−2) |𝑌 ,𝑍𝑘𝑀 −𝑍𝑘(𝑀−1) ,Θ𝑚
[

𝔼∗
𝑍𝑘(𝑀−3) |𝑌 ,𝑍𝑘𝑀 −𝑍𝑘(𝑀−2) ,Θ𝑚

[ …𝔼∗
𝑍𝑘4 |𝑌 ,𝑍𝑘𝑀 −𝑍𝑘5 ,Θ𝑚

[ 𝔼∗
𝑍𝑘3 |𝑌 ,𝑍𝑘𝑀 −𝑍𝑘4 ,Θ𝑚

[

𝔼∗
𝑍𝑘2 |𝑌 ,𝑍𝑘𝑀 −𝑍𝑘3 ,Θ𝑚

[ 𝔼∗
𝑍𝑘1 |𝑌 ,𝑍𝑘𝑀 −𝑍𝑘2 ,Θ𝑚

[ log
[
𝑃 (𝑍𝑘1 |𝑌 ,𝑍𝑘𝑀 −𝑍𝑘2 ,Θ𝑚)

]
] ] ] . (4.19)

In other words, (4.15) signifies that, the log-likelihood function of the incomplete data 𝑙(Θ|𝑌 ) is bounded from below by the Q-function 𝑄𝑍𝑘𝑀 −𝑍𝑘1
(Θ|Θ𝑚)

which includes the average effects of all the missing hierarchical information 𝐶 (𝑀)⋯ , 𝐶 (2) and 𝐶 (1) in 𝑍, and the entropy terms in (4.17)-(4.19), which 
represent the uncertainty in the different levels of the missing data in 𝑍.

Proof. The proof of this result follows immediately by the method of mathematical induction from Theorem 4.1. Thus, the proof is omitted. □

Remark 4.3. It can be inferred from the convergence property exhibited in Remark 4.3 that when there are 𝑀 hierarchical levels in the missing 
data 𝑍 in (4.6), the E- & M- steps of the EM-algorithm consist of the following.

E-step: the E-step of the EM-algorithm consists of finding the Q-function 𝑄𝑍𝑘𝑀 −𝑍𝑘1
(Θ|Θ𝑚) in (4.16), and

M-step: the M-step consists of finding Θ𝑚𝑎𝑥 below.

Θ𝑚𝑎𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥
Θ

[
𝑄𝑍𝑘𝑀 −𝑍𝑘1

(Θ|Θ𝑚)].
Recall Definitions 3.2-3.5, there are four levels of hidden hierarchical data in the SEIR model. Thus, the application of the EM-algorithm in 

Theorem 4.1 and Proposition 4.1 to the SEIR model is exhibited in the next section for the case where the missing data has 𝑀 = 4 - levels of 
hierarchy.

5. Application of the hierarchical data EM-algorithm

5.1. The traditional maximum likelihood estimation technique in the SEIR model

Note that the hierarchical data EM-algorithm proposed in Theorem 4.1 and Proposition 4.1 has wider applications than in the SEIR epidemic 
model presented in this study as a case study. In fact, the 4-level hierarchical missing data given in Section 3.1 serves mainly as an example to 
understand the application of the EM algorithm in hierarchical data sets. Also, note that applying the EM-algorithm to the SEIR epidemic model 
is intended more to be informative about the process of applying the algorithm, and not the process that generates the data for the SEIR epidemic 
model. The process that generates the data for the SEIR epidemic model described below in Remark 5.1(2.) assumes that contact tracing (cf. [4]) is 
employed during the epidemic, and this is not applicable in all settings of SEIR epidemics.

In this section, we derive estimators for the true parameters of the model in Theorems 3.2, given any observed data for the state of the process 
over time. The maximum likelihood estimation technique (cf. [17]) has been applied in similar stochastic systems (cf. [26, 35, 47, 61]). We employ 
ideas in these studies to find maximum likelihood estimators (MLE’s) for the parameter Θ2 = (𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟) for the SEIR model in Theorem 3.2. Observe 
that the SEIR model in Theorem 3.2 has four parameters Θ2 = (𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟). To facilitate understanding of the application of the 4-level EM-algorithm 
in Theorem 4.1 and Remark 4.2, we find MLE’s for the four parameter model in Theorem 3.2.

Note that in a stochastic system, the parameter Θ2 = (𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟) represents fixed measures in the population at each time step 𝑡𝑘, where the 
population at any time 𝑡𝑘, 𝑘 ≥ 0 is defined by the random vector

𝑋(𝑡𝑘) = (𝑆(𝑡𝑘),𝐸(𝑡𝑘), 𝐼(𝑡𝑘)), (5.1)

which satisfies the model equations (2.1)-(2.4). Specific values of the random vector 𝑋(𝑡𝑘) are denoted

�̂�(𝑡𝑘) = (�̂�𝑘, 𝑒𝑘, 𝑖𝑘),∀𝑘 = 0,1,2,… . (5.2)
11
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Remark 5.1.

(1.) Recall Remark 3.1, the contact rate 𝜆 and the probability of passing infection from one infectious contact 𝑝, give the effective contact rate 
𝛽(𝑡𝑘) = 𝛽 = 𝑝𝜆 in [26, 39]. Note that in practice, the parameter 𝛽 = 𝑝𝜆 is identifiable (cf. [26, 39]), but the parameters 𝑝 and 𝜆 represent 
measures of microscopic events that are not easily identified.

(2.) While it is obvious that the number of random transitions between states denoted by 𝐶𝑖𝑗(𝑡𝑘), 𝑖, 𝑗 ∈ {𝑆, 𝐸, 𝐼, 𝑅}, are sufficient to analyze and 
conduct inferences in the stochastic process governed by (2.1)-(2.4), the approach to find a ML-estimate for Θ2 = (𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟) in this paper centers 
on observation of some components of the state 𝑋(𝑡𝑘) of the system in (5.1). Indeed, for populations with fixed and finite sizes 𝑁 defined in 
Subsection 2.1, the following are true: (a) the epidemic dies eventually (cf. [8]); (b) it may be possible, for reasonable sizes of the population 
𝑁 , to track and observe some components of the state 𝑋(𝑡𝑘), for example, the number of individuals in the susceptible and infectious states 
𝑆(𝑡𝑘) and 𝐼(𝑡𝑘), respectively, can be measured at any time 𝑡𝑘, 𝑘 ≥ 0. For example, new contact tracing programs are considered effective control 
strategies for epidemics such as Ebola, HIV, tuberculosis, Covid-19 (cf. [4]), whenever the population size is relatively small. Thus, epidemics 
in small populations, where contact tracing programs are applied as control strategy, can often lead to concrete observations of the states 𝑆(𝑡𝑘)
and 𝐼(𝑡𝑘).

The ML-estimation method presented in this section is based on the premises in Remark 5.1[(2.)]. That is, it is assumed that the population 
size 𝑁 is relatively small, and the states 𝑆(𝑡𝑘) and 𝐼(𝑡𝑘) are traced and observed for a finite amount of time. This strong assumption of contact 
tracing ultimately amounts to several of the quantities 𝐶𝑖𝑗 (𝑡𝑘), 𝑖, 𝑗 ∈ {𝑆, 𝐸, 𝐼, 𝑅} in (2.1)-(2.4) being observed over time, which further differentiates 
significantly the procedure in this paper from the earlier studies [31, 39], which are based on observing the 𝐶𝑖𝑗 (𝑡𝑘)’s. Furthermore, as in the Markov 
chain models in [31, 39], some components in the vector 𝑋(𝑡𝑘) are not observable. For example, the component 𝐸(𝑡𝑘) = 𝑒𝑘, representing those who 
are in the latent phase, with no visible symptoms, and during the period over which the disease is still incubating, is not an observable state. Thus, 
only the state 𝑆(𝑡𝑘) = �̂�𝑘 ∈ℤ+ representing those who are healthy with no visible clinical symptoms, and the state 𝐼(𝑡𝑘) = 𝑖𝑘 ∈ℤ+ representing those 
with clear clinical symptoms can be considered as observable components of 𝑋(𝑡𝑘), at any time 𝑡𝑘, 𝑘 ≥ 0. Thus, as in [31, 39], 𝐸(𝑡𝑘) = 𝑒𝑘 will be 
treated as part of the missing information. However, unlike [31, 39], the EM-algorithm framework is applied here to treat the missing data.

For the traditional ML-estimation technique, the population 𝑋(𝑡𝑘) is partially observed over 𝑡𝑘, 𝑘 = 0, 1, 2, … , 𝑇 , where the initial state 𝑋(𝑡0) = �̂�(𝑡0)
is assumed to be known. That is, a path of the collection

𝐻𝑇 = {𝑋(𝑡0),𝑋(𝑡1),𝑋(𝑡2),… ,𝑋(𝑡𝑇 )} = {𝔖𝑇 ,𝔈𝑇 ,ℑ𝑇 }, (5.3)

given by

�̂�𝑇 = {�̂�(𝑡0), �̂�(𝑡1), �̂�(𝑡2),… , �̂�(𝑡𝑇 )} = {�̂�𝑇 , �̂�𝑇 , ℑ̂𝑇 }, (5.4)

is obtained, where only the values of 𝑆(𝑡𝑘) and 𝐼(𝑡𝑘) are observed, and the sub-collections 𝔖𝑇 , 𝔈𝑇 , ℑ𝑇 and �̂�𝑇 , �̂�𝑇 , ℑ̂𝑇 contain the corresponding 
components 𝑆(𝑡𝑘), 𝐸(𝑡𝑘), 𝐼(𝑡𝑘) of the vector 𝑋(𝑡𝑘) over 𝑡𝑘, 𝑘 = 0, 1, 2, … , 𝑇 .

We use the sample path �̂�𝑇 of the process {𝑋(𝑡𝑘); 𝑘 = 0, 1, 2, …} to find the maximum likelihood estimates for the parameter Θ2 = (𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟), ap-

plying the EM-algorithm. From this point onwards in the description of the traditional ML-estimation approach, only the SEIR model in Theorem 3.2

with parameter Θ2 = (𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟) is discussed.

If all components in �̂�𝑇 were observed, then it is easy to see from (5.2), (5.3), and (5.4), that the complete likelihood function of Θ2 = (𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟)
would be given as follows:

𝐿1(Θ2|�̂�𝑇 ) =𝐿1(𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟|�̂�𝑇 ) = 𝑃 (𝐻𝑇 = �̂�𝑇 |𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟) = 𝑃 (𝑋(𝑡𝑇 ) = �̂�(𝑡𝑇 ),𝑋(𝑡𝑇−1) = �̂�(𝑡𝑇−1),… ,𝑋(𝑡0) = �̂�(𝑡0)|𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟). (5.5)

But, {𝑋(𝑡𝑘), 𝑘 = 0, 1, 2, …} a Markov chain, and since it is assumed 𝑋(𝑡0) is known, it is easy to see that (5.5) reduces to

𝐿1(𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟|�̂�𝑇 ) =
𝑇∏
𝑘=1
𝑃 (𝑋(𝑡𝑘) = �̂�(𝑡𝑘)|𝑋(𝑡𝑘−1) = �̂�(𝑡𝑘−1);𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟). (5.6)

It follows from (5.6), that

𝐿1(𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟|�̂�𝑇 ) =
𝑇∏
𝑘=1
𝑃 (𝑆(𝑡𝑘) = �̂�𝑘,𝐸(𝑡𝑘) = 𝑒𝑘, 𝐼(𝑡𝑘) = 𝑖𝑘|𝑋(𝑡𝑘−1) = �̂�(𝑡𝑘−1);𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟). (5.7)

From (5.7), the log-likelihood function is given as follows

𝑙1(Θ2|�̂�𝑇 ) = log𝐿1(𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟|�̂�𝑇 ) =
𝑇∑
𝑘=1

log [𝑃 (𝑆(𝑡𝑘) = �̂�𝑘,𝐸(𝑡𝑘) = 𝑒𝑘, 𝐼(𝑡𝑘) = 𝑖𝑘|𝑋(𝑡𝑘−1) = �̂�(𝑡𝑘−1);𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟)]. (5.8)

Note that in equation (5.7), the state 𝐸(𝑡𝑘) = 𝑒𝑘, 𝑘 = 0, 1, 2, … , 𝑇 is missing data. As a result the traditional ML-estimation becomes limited.

Also note that even with the assumption that the component 𝐸(𝑡𝑘) = 𝑒𝑘, 𝑘 = 0, 1, 2, … , 𝑇 is observed in the path �̂�𝑇 , attempting to maximize the 
likelihood function 𝐿 in (5.7) by computing the derivatives of 𝐿 with respect to 𝑝, 𝜆, 𝛿𝑒, and 𝛿𝑟, and setting the results to zero, leads to intractable 
system of equations. Thus, we apply the expectation maximization (EM) algorithm in Theorem 4.1 to resolve the limitations of the traditional 
ML-estimation technique to find an appropriate MLE for the parameter vector Θ2 = (𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟).

5.2. Application of the hierarchical data EM-algorithm in the SEIR model

To apply the EM-algorithm in Theorem 4.1, Proposition 4.1 and Remark 4.2, we define the observable and missing data in the following.
12



D. Wanduku Heliyon 8 (2022) e12622
Definition 5.1. Observed data in the SEIR model:

(1) From Definition 4.1[1.], the observed data 𝑌 for the SEIR model is the time series data for the observable components 𝑆(𝑡𝑘) and 𝐼(𝑡𝑘) of the 
vector 𝑋(𝑡𝑘), given by the collection

𝑌 = {�̂�𝑇 , ℑ̂𝑇 }, (5.9)

where �̂�𝑇 , and ℑ̂𝑇 are defined in (5.4).

Definition 5.2. Missing non-hierarchical data in the SEIR model:

(1.) From Definition 4.1[2.], the time series for the exposed state 𝐸(𝑡𝑘), over the times 𝑘 = 1, 2, … , 𝑇 , which is denoted by �̂�𝑇 and given in (5.4) is 
also missing data. However, the missing data �̂�𝑇 is not of the hierarchical data structure in Definition 4.1[2.].

(2.) Also, it is assumed that 𝐸(𝑡0) = 𝑒0 is known.

(3.) For each 𝑘 ∈ {0, 1, 2, … , 𝑇 }, it is easy to see that the feasible region Ω1
𝐸(𝑡𝑘+1)

for 𝐸(𝑡𝑘+1), given 𝐸(𝑡𝑘) from (2.8), is given by

Ω1
𝐸(𝑡𝑘+1)

= {𝑒𝑘+1 ∈ℤ+|𝑠𝑘 − 𝑠𝑘+1 ≤ 𝑒𝑘+1 ≤ 𝑒0 + 𝑘+1∑
𝑗=1

(𝑠𝑗−1 − 𝑠𝑗 )}. (5.10)

Thus, the combined feasible region for 𝐸(𝑡𝑘) over 𝑘 ∈ {0, 1, 2, … , 𝑇 }, denoted by Ω1
𝐸

, is given by

Ω1
𝐸
=

𝑇⋃
𝑘=0

Ω1
𝐸(𝑡𝑘)

.

To impute the missing data 𝐸(𝑡𝑘), over the times 𝑘 = 1, 2, … , 𝑇 , to the log-likelihood function, we introduce a new notation for the super-sum 
over Ω1

𝐸
. Denote by

∑
Ω1
𝐸

[⋯] =
𝑇∑
𝑘=0

∑
Ω1
𝐸(𝑡𝑘)

[⋯]. (5.11)

Definition 5.3. Missing hierarchical data in the SEIR model:

(1.) The missing hierarchical data 𝑍 defined in (4.6), in the SEIR epidemic model, is given by Definitions 3.2-3.4. Indeed, for the sequence of times 
𝑡𝑘, 𝑘 = 1, 2, … 𝑇 that 𝑌 in (5.9) is observed, the number of contacts that a susceptible person makes in the interval [𝑡𝑘, 𝑡𝑘+1), denoted by 𝑍𝑡𝑘 , which 
is defined in (3.4) is hidden information.

Also, for the given number of contacts 𝑍𝑡𝑘 = 𝑛, 𝑛 ∈ ℤ+ that susceptible person makes in the interval [𝑡𝑘, 𝑡𝑘+1), there are 𝑍𝑡𝑘,𝑛 = 𝑗 contacts with 
infectious individuals in the population, where 𝑗 ∈ {0, 1, … , 𝑛}, and 𝑍𝑡𝑘,𝑛 is defined in (3.6). Moreover, the data on 𝑍𝑡𝑘,𝑛, 𝑘 = 1, 2, … 𝑇 is also hidden 
information.

In addition, given that the susceptible person makes 𝑍𝑡𝑘 = 𝑛 contacts, and 𝑍𝑡𝑘,𝑛 = 𝑗, of the contacts are with infectious people, where 𝑗 ∈
{0, 1, … , 𝑛}, the information of the 𝑙𝑡ℎ person who likely passes the infection in the interval [𝑡𝑘, 𝑡𝑘+1) is also hidden, where information 𝑙 ∈ {1, 2, … , 𝑗}. 
That is, the categorical random variable 𝑍𝑡𝑘,𝑛,𝑗 = 𝑙, 𝑙 ∈ {1, 2, … , 𝑗} defined in (3.8) is hidden data.

Finally, given that the susceptible person makes 𝑍𝑡𝑘 = 𝑛 contacts, and 𝑍𝑡𝑘,𝑛 = 𝑗, of the contacts are with infectious people, where 𝑗 ∈ {0, 1, … , 𝑛}, 
it is easy to see that taking note of the 𝑙𝑡ℎ infectious person likely passing the infection in the interval [𝑡𝑘, 𝑡𝑘+1), where 𝑙 ∈ {1, 2, … , 𝑗}, the information 
of the event that the 𝑙𝑡ℎ person passes the infection is also hidden. That is, the collection of Bernoulli random variables 𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 𝜄, 𝜄 = 0, 1, and 
𝑙 ∈ {1, 2, … , 𝑗}, defined in (3.12) is hidden data.

Hence, from above, the hierarchical missing data 𝑍 in (4.6), in the SEIR epidemic model, is given by Definitions 3.2-3.5. That is,

𝑍 = {𝐶 (4), 𝐶 (3), 𝐶 (2), 𝐶 (1)}, (5.12)

given in (3.5), (3.7), (3.9) and (3.12).

Definition 5.4. Unknown parameters in the SEIR model:

From Definition 4.1[4.], the unknown parameter is Θ2 = (𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟) for the SEIR model in Theorem 3.2.

Remark 5.2. Since the missing hierarchic data in the SEIR model in Definition 5.3 has four levels of hierarchy, we employ the hierarchical data 
EM-algorithm deduced from Theorem 4.1, Proposition 4.1 and Remark 4.2. Furthermore, explicit knowledge of the distribution of the missing 
hierarchical data in (5.12) is given in Definitions 3.2-3.5.

Theorem 5.1. Suppose the observed data 𝑌 in the SEIR epidemic model in Theorem 3.2, is as given in Definition 5.1. Let the missing non-hierarchical data 
𝐸(𝑡𝑘) over 𝑘 = 1, 2, … , 𝑇 be as defined in Definition 5.2; let the hierarchical hidden data in the SEIR epidemic model over 𝑘 = 1, 2, … , 𝑇 be as defined in 
Definition 5.3. The log-likelihood function 𝑙(Θ2|𝑌 ) of the unknown parameter Θ2 = (𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟) for the SEIR model in Theorem 3.2 satisfies the following 
inequality.

𝑙(Θ2|𝑌 ) ≥ 𝑇∑
𝑘=1
𝑄𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙

(Θ2|Θ2
𝑚)

+
𝑇∑
𝑅𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙

(Θ2
𝑚|Θ2

𝑚)

𝑘=1

13
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+
𝑇∑
𝑘=1
𝑅𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗

(Θ2
𝑚|Θ2

𝑚) +
𝑇∑
𝑘=1
𝑅𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛

(Θ2
𝑚|Θ2

𝑚)

+
𝑇∑
𝑘=1
𝑅𝐸(𝑡𝑘),𝑍𝑡𝑘

(Θ2
𝑚|Θ2

𝑚) +
𝑇∑
𝑘=1
𝑅𝐸(𝑡𝑘)(Θ

2
𝑚|Θ2

𝑚), (5.13)

where for each 𝑘 = 1, 2, … , 𝑇 , the Q-function of the E-step of the EM-algorithm is given as follows.

𝑄𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙
(Θ2|Θ2

𝑚) = 𝔼𝐸(𝑡𝑘)|𝑆(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[

𝔼𝑍𝑡𝑘 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[ 𝔼𝑍𝑡𝑘,𝑛|𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2

𝑚
[

𝔼𝑍𝑡𝑘,𝑛,𝑗 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[ 𝔼𝑍𝑡𝑘,𝑛,𝑗,𝑙 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2

𝑚
[

𝑙1,𝑘(Θ2|𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 , 𝑆(𝑡𝑘),𝐸(𝑡𝑘), 𝐼(𝑡𝑘);𝑆(𝑡𝑘−1), 𝐼(𝑡𝑘−1))]]]]] (5.14)

and

𝑙1,𝑘(Θ2|𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 , 𝑆(𝑡𝑘),𝐸(𝑡𝑘), 𝐼(𝑡𝑘);𝑆(𝑡𝑘−1), 𝐼(𝑡𝑘−1))
= log

{
𝑃
(
𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 , 𝑆(𝑡𝑘) = �̂�𝑘,𝐸(𝑡𝑘) = 𝑒𝑘, 𝐼(𝑡𝑘) = 𝑖𝑘|𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2

)}
. (5.15)

Also, the entropy terms are given as follows.

𝑅𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙
(Θ2
𝑚|Θ2

𝑚) = −𝔼𝐸(𝑡𝑘)|𝑆(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[

𝔼𝑍𝑡𝑘 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[ 𝔼𝑍𝑡𝑘,𝑛|𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2

𝑚
[

𝔼𝑍𝑡𝑘,𝑛,𝑗 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[ 𝔼𝑍𝑡𝑘,𝑛,𝑗,𝑙 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2

𝑚
[

logℙ(𝑍𝑡𝑘,𝑛,𝑗,𝑙|𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 , 𝑆(𝑡𝑘),𝐸(𝑡𝑘), 𝐼(𝑡𝑘);𝑆(𝑡𝑘−1), 𝐼(𝑡𝑘−1),Θ2
𝑚)

]]]]]
𝑅𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗

(Θ2
𝑚|Θ2

𝑚) = −𝔼𝐸(𝑡𝑘)|𝑆(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[

𝔼𝑍𝑡𝑘 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[ 𝔼𝑍𝑡𝑘,𝑛|𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2

𝑚
[

𝔼𝑍𝑡𝑘,𝑛,𝑗 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[

logℙ(𝑍𝑡𝑘,𝑛,𝑗 |𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑆(𝑡𝑘),𝐸(𝑡𝑘), 𝐼(𝑡𝑘);𝑆(𝑡𝑘−1), 𝐼(𝑡𝑘−1),Θ2
𝑚)

]]]]
𝑅𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛

(Θ2
𝑚|Θ2

𝑚) = −𝔼𝐸(𝑡𝑘)|𝑆(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[

𝔼𝑍𝑡𝑘 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[ 𝔼𝑍𝑡𝑘,𝑛|𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2

𝑚
[

logℙ(𝑍𝑡𝑘,𝑛|𝑍𝑡𝑘 ,𝑆(𝑡𝑘),𝐸(𝑡𝑘), 𝐼(𝑡𝑘);𝑆(𝑡𝑘−1), 𝐼(𝑡𝑘−1),Θ2
𝑚)

]]]
𝑅𝐸(𝑡𝑘),𝑍𝑡𝑘

(Θ2
𝑚|Θ2

𝑚) = −𝔼𝐸(𝑡𝑘)|𝑆(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[

𝔼𝑍𝑡𝑘 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[

logℙ(𝑍𝑡𝑘 |𝑆(𝑡𝑘),𝐸(𝑡𝑘), 𝐼(𝑡𝑘);𝑆(𝑡𝑘−1), 𝐼(𝑡𝑘−1),Θ2
𝑚)

]]
and

𝑅𝐸(𝑡𝑘)(Θ
2
𝑚|Θ2

𝑚) = −𝔼𝐸(𝑡𝑘)|𝑆(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚

[
logℙ(𝐸(𝑡𝑘)|𝑆(𝑡𝑘), 𝐼(𝑡𝑘);𝑆(𝑡𝑘−1), 𝐼(𝑡𝑘−1),Θ2

𝑚)
]
.

Proof. The idea of the proof of Theorem 5.1 is similar to the proof of Theorem 4.1, where we apply a step-by-step approach to impute hidden data 
in the incomplete log-likelihood function, and average over the distributions of the hidden non-hierarchical data 𝐸(𝑡𝑘), 𝑘 = 1, 2, … , 𝑇 , and the hidden 
hierarchical data 𝑍 = {𝐶 (4), 𝐶 (3), 𝐶 (2), 𝐶 (1)}, defined in Definitions 5.2-5.3, respectively. This method applies the Jensen’s inequality, similarly as in 
the proof Theorem 4.1, to simultaneously obtain the Q-function and entropy terms in (5.13); as well as show convergence of the EM-algorithm. The 
complete proof of Theorem 5.1 is given in Appendix D. □

Remark 5.3. The hierarchical data EM-algorithm in the SEIR model in Theorem 3.2:

Similarly to Remark 4.3, it is obvious from Theorem 5.1 that applying the EM-algorithm to find MLE for the unknown parameter Θ2 = (𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟)
for the SEIR model in Theorem 3.2, consists of the following E- & M- steps.

E-step: the E-step of the EM-algorithm consists of finding the Q-function

𝑄(Θ2|Θ2
𝑚) =

𝑇∑
𝑘=1
𝑄𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙

(Θ2|Θ2
𝑚), (5.16)

where 𝑄𝐸(𝑡 ),𝑍 ,𝑍 ,𝑍 ,𝑍 (Θ2|Θ2
𝑚) is defined in (5.14), and
𝑘 𝑡𝑘 𝑡𝑘,𝑛 𝑡𝑘,𝑛,𝑗 𝑡𝑘,𝑛,𝑗,𝑙

14
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M-step: the M-step consists of finding Θ2
𝑚𝑎𝑥 below.

Θ2
𝑚𝑎𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥

Θ2

[
𝑇∑
𝑘=1
𝑄𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙

(Θ2|Θ2
𝑚)

]
= 𝑎𝑟𝑔𝑚𝑎𝑥

Θ2

[
𝑄(Θ2|Θ2

𝑚)
]
. (5.17)

In the next set of results we apply the steps for the EM-algorithm in Remark 5.3 to find MLE for the parameter Θ2 = (𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟) for the SEIR 
model in Theorem 3.2. First, we present a separate result for the E-step of the EM-algorithm.

Theorem 5.2. Suppose the assumptions of Theorem 5.1 are satisfied, that is, the log-likelihood function for Θ2 = (𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟) satisfies (5.13), where Θ2 =
(𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟) is the parameter vector for the SEIR model in Theorem 3.2 and Θ2

𝑚 = (𝑝𝑚, 𝜆𝑚, 𝛿𝑚𝑒 , 𝛿𝑚𝑟 ) is the 𝑚𝑡ℎ step estimate for Θ2 in the EM-algorithm 
characterized in Remark 5.3, where 𝑚 ∈ ℤ+. For each 𝑘 ∈ {1, 2, 3, … , 𝑇 }, let the missing non-hierarchical data 𝐸(𝑡𝑘) over 𝑘 = 1, 2, … , 𝑇 be as defined in 
Definition 5.2; let the hierarchical hidden data in the SEIR epidemic model over 𝑘 = 1, 2, … , 𝑇 be as defined in Definition 5.3. Define the following random 
variable that is independent of the parameter Θ2, but depends on the other random variables 𝐸(𝑡𝑘−1), 𝐸(𝑡𝑘)𝑍𝑡𝑘 , 𝑍𝑡𝑘,𝑛, 𝑍𝑡𝑘,𝑛,𝑗 , 𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1

𝕂(𝐸(𝑡𝑘−1),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1)

= log
[(

�̂�𝑘−1
�̂�𝑘−1 − �̂�𝑘

)]
+ log

[(
𝐸(𝑡𝑘−1)

𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘) + �̂�𝑘−1 − �̂�𝑘

)]
+log

[(
𝑖𝑘−1

𝑖𝑘−1 − 𝑖𝑘 +𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘) + �̂�𝑘−1 − �̂�𝑘

)]
+ log

(
1

(𝑍𝑡𝑘 )!

)

+log

[(
𝑍𝑡𝑘 = 𝑛
𝑍𝑡𝑘,𝑛 = 𝑗

)(
𝛼𝑡𝑘

)𝑍𝑡𝑘,𝑛 (1 − 𝛼𝑡𝑘)𝑍𝑡𝑘−𝑍𝑡𝑘,𝑛
]
+ log

(
1

𝑍𝑡𝑘,𝑛

)
.

Also define the following random variable that dependents on both the parameter Θ2 , and the other random variables 𝐸(𝑡𝑘−1), 𝐸(𝑡𝑘)𝑍𝑡𝑘 , 𝑍𝑡𝑘,𝑛, 𝑍𝑡𝑘,𝑛,𝑗 , 𝑍𝑡𝑘,𝑛,𝑗,𝑙 =
1

𝕁(𝐸(𝑡𝑘−1),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1;Θ2)

=
(
�̂�𝑘−1 − �̂�𝑘

)
log𝑝+

(
�̂�𝑘

)
log (1 − 𝑝)

+
(
𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘) + �̂�𝑘−1 − �̂�𝑘

)
log

(
𝑃𝐸𝐼 (𝑡𝑘−1)

)
+
(
𝐸(𝑡𝑘) − [�̂�𝑘−1 − �̂�𝑘]

)
log

(
1 − 𝑃𝐸𝐼 (𝑡𝑘−1)

)
+
(
𝑖𝑘−1 − 𝑖𝑘 +𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘) + �̂�𝑘−1 − �̂�𝑘

)
log

(
𝑃𝐼𝑅(𝑡𝑘−1)

)
+
(
𝑖𝑘 − [𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘)] − [�̂�𝑘−1 − �̂�𝑘]

)
log

(
1 − 𝑃𝐼𝑅(𝑡𝑘−1)

)
+𝑍𝑡𝑘 log (𝜆Δ𝑡) − 𝜆Δ𝑡+ log (𝑝). (5.18)

The Q-function 𝑄(Θ2|Θ2
𝑚) in (5.16) of the EM-algorithm in Remark 5.3, is given as follows. Let 𝑄𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 (Θ

2|Θ2
𝑚) be as defined in (5.14). 

For each 𝑘 ∈ {1, 2, 3, … , 𝑇 }, the following conditional expected value term is defined.

𝔼𝑍𝑡𝑘,𝑛,𝑗,𝑙 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚

[
𝑙1,𝑘(Θ2|𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 , 𝑆(𝑡𝑘),𝐸(𝑡𝑘), 𝐼(𝑡𝑘);

𝑆(𝑡𝑘−1), 𝐼(𝑡𝑘−1))
]

=
[
𝕂(𝐸(𝑡𝑘−1),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1) + 𝕁(𝐸(𝑡𝑘−1),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1;Θ2)

]
×

×𝑝𝑚.

Thus, from (5.14), it follows that

𝑄𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙
(Θ2|Θ2

𝑚) =𝑄
1
𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙

(Θ2|Θ2
𝑚) +𝑄

2
𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙

(Θ2|Θ2
𝑚),

where

𝑄1
𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙

(Θ2|Θ2
𝑚) = 𝔼𝐸(𝑡𝑘)|𝑆(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2

𝑚
[

𝔼𝑍𝑡𝑘 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[ 𝔼𝑍𝑡𝑘,𝑛|𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2

𝑚
[

𝔼𝑍𝑡𝑘,𝑛,𝑗 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[ 𝔼𝑍𝑡𝑘,𝑛,𝑗,𝑙 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2

𝑚
[

𝕂(𝐸(𝑡𝑘−1),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1)
]]]]]

(5.19)

and

𝑄2
𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙

(Θ2|Θ2
𝑚) = 𝔼𝐸(𝑡𝑘)|𝑆(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2

𝑚
[

𝔼𝑍𝑡𝑘 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[ 𝔼𝑍𝑡𝑘,𝑛|𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2

𝑚
[

𝔼𝑍𝑡𝑘,𝑛,𝑗 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[ 𝔼𝑍𝑡𝑘,𝑛,𝑗,𝑙 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2

𝑚
[

𝕁(𝐸(𝑡𝑘−1),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1;Θ2)
]]]]]

, (5.20)

and from (5.16), it follows that the Q-function is given by
15
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𝑄(Θ2|Θ2
𝑚) =

𝑇∑
𝑘=1
𝑄1
𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙

(Θ2|Θ2
𝑚) +

𝑇∑
𝑘=1
𝑄2
𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙

(Θ2|Θ2
𝑚). (5.21)

Proof. The idea of the proof of Theorem 5.2 is to explicitly compute the complex conditional expectation expression of the Q-function 𝑄(Θ2|Θ2
𝑚)

in (5.16) in a step-by-step manner, by averaging over the nested conditional distributions of the hierarchical data 𝑍𝑡𝑘 = 𝑛, 𝑍𝑡𝑘,𝑛 = 𝑗, 𝑍𝑡𝑘,𝑛,𝑗 = 𝑙, 
∀𝑘 = 1, 2, … 𝑇 , given in Definitions 3.2-3.5&5.3, and indexed by the 𝑚𝑡ℎ step parameter estimate Θ2

𝑚; and also over the distributions of the non-

hierarchical data 𝐸(𝑡𝑘) = 𝑒𝑘, ∀𝑘 = 1, 2, … 𝑇 . Some basic probability rules, algebraic manipulations and the discrete probability distributions in (3.14) 
are used. The complete proof of Theorem 5.2 is given in Appendix E □

Remark 5.4. From Theorem 5.2, it is easy to see that the M-step in (5.17) reduces to finding Θ2
𝑚𝑎𝑥 below.

Θ2
𝑚𝑎𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥Θ

[
𝑇∑
𝑘=1
𝑄2
𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙

(Θ2|Θ2
𝑚)

]
where 𝑄2

𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙
(Θ2|Θ2

𝑚) is defined in (5.20). This is because 𝑄1
𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙

(Θ2|Θ2
𝑚) in (5.19) is independent of the param-

eter Θ2. The M-step of the EM-algorithm in Remark 5.3 is given in the next result.

Theorem 5.3. Suppose the E-step of the EM-algorithm which consists of finding the Q-function is as stated in Theorem 5.2, where the Q-function is given 
(5.21). Let �̃�𝑘;Θ2

𝑚
[⋯] denote the following complex conditional expectation operator.

�̃�𝑘;Θ2
𝑚
[⋯] = 𝔼𝐸(𝑡𝑘)|𝑆(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2

𝑚
[

𝔼𝑍𝑡𝑘 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[ 𝔼𝑍𝑡𝑘,𝑛|𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2

𝑚
[

𝔼𝑍𝑡𝑘,𝑛,𝑗 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[

⋯]]]] . (5.22)

Assume further that for each 𝑚 ≥ 0, Θ2
𝑚 is the 𝑚𝑡ℎ step estimate of the parameter Θ2 = (𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟)𝑇 of the SEIR model in Theorem 3.2. The M-step of the 

EM-algorithm consists of finding

Θ2
𝑚+1 = Θ2

𝑚𝑎𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥Θ

[
𝑄(Θ2|Θ2

𝑚)
]
,

where 𝑄(Θ2|Θ2
𝑚) is given in (5.21). Moreover,

Θ2
𝑚+1 = Θ2

𝑚𝑎𝑥 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∑𝑇
𝑘=1

[
�̂�𝑘−1−�̂�𝑘+1

]∑𝑇
𝑘=1

[
�̂�𝑘−1−�̂�𝑘+1

]
+
∑𝑇
𝑘=1

[
�̂�𝑘

]∑𝑇
𝑘=1 �̃�𝑘;Θ2𝑚

[𝑍𝑡𝑘 ](∑𝑇
𝑘=1[Δ𝑡]

)
1
Δ𝑡 log

[
𝐴𝑒 + 1

]
1
Δ𝑡 log

[
𝐵𝑟 + 1

]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where

𝐴𝑒 =

∑𝑇
𝑘=1 �̃�𝑘;Θ2

𝑚

[(
𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘)

)]
+
∑𝑇
𝑘=1

[(
�̂�𝑘−1 − �̂�𝑘

)]
∑𝑇
𝑘=1 �̃�𝑘;Θ2

𝑚

[
𝐸(𝑡𝑘)

]
−
∑𝑇
𝑘=1

[
(�̂�𝑘−1 − �̂�𝑘)

] ,

and

𝐵𝑟 =

∑𝑇
𝑘=1

[(
𝑖𝑘−1 − 𝑖𝑘

)]
+
∑𝑇
𝑘=1 �̃�𝑘;Θ2

𝑚

[(
𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘)

)]
+
∑𝑇
𝑘=1

[(
�̂�𝑘−1 − �̂�𝑘

)]
∑𝑇
𝑘=1

[
𝑖𝑘
]
−
∑𝑇
𝑘=1 �̃�𝑘;Θ2

𝑚

[
𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘)

]
−
∑𝑇
𝑘=1

[
�̂�𝑘−1 − �̂�𝑘

] .

Proof. The basic idea of the proof of Theorem 5.3 is simply to apply the tools of differential calculus, and matrix algebra to find a value for the 
parameter Θ2 that maximizes the Q-function in (5.21). The complete proof of Theorem 5.3 is given in Appendix F. □

From Theorem 5.3 and Algorithm 4.1, we state in the following, the complete steps of the EM-algorithm for finding the MLE of the parameter 
Θ2 for the SEIR epidemic model in Theorem 3.2.

Algorithm 5.1. The EM-algorithm for the SEIR epidemic model in Theorem 3.2:

1. Let 𝑚 = 0 and Θ2
𝑚 =Θ2

0 be an initial guess for Θ2.

2. Find the 𝑚𝑡ℎ step estimate Θ2
𝑚+1, 𝑚 ≥ 1 iteratively, where

Θ2
𝑚+1 =

⎛⎜⎜⎜⎜⎜⎜⎜

∑𝑇
𝑘=1

[
�̂�𝑘−1−�̂�𝑘+1

]∑𝑇
𝑘=1

[
�̂�𝑘−1−�̂�𝑘+1

]
+
∑𝑇
𝑘=1

[
�̂�𝑘

]∑𝑇
𝑘=1 �̃�𝑘;Θ2𝑚

[𝑍𝑡𝑘 ](∑𝑇
𝑘=1[Δ𝑡]

)
1
Δ𝑡 log

[
𝐴𝑚𝑒 + 1

]
1 log

[
𝐵𝑚 + 1

]

⎞⎟⎟⎟⎟⎟⎟⎟
(5.23)
⎝ Δ𝑡 𝑟 ⎠
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where

𝐴𝑚𝑒 =

∑𝑇
𝑘=1 �̃�𝑘;Θ2

𝑚

[(
𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘)

)]
+
∑𝑇
𝑘=1

[(
�̂�𝑘−1 − �̂�𝑘

)]
∑𝑇
𝑘=1 �̃�𝑘;Θ2

𝑚

[
𝐸(𝑡𝑘)

]
−
∑𝑇
𝑘=1

[
(�̂�𝑘−1 − �̂�𝑘)

] ,

and

𝐵𝑚𝑟 =

∑𝑇
𝑘=1

[(
𝑖𝑘−1 − 𝑖𝑘

)]
+
∑𝑇
𝑘=1 �̃�𝑘;Θ2

𝑚

[(
𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘)

)]
+
∑𝑇
𝑘=1

[(
�̂�𝑘−1 − �̂�𝑘

)]
∑𝑇
𝑘=1

[
𝑖𝑘
]
−
∑𝑇
𝑘=1 �̃�𝑘;Θ2

𝑚

[
𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘)

]
−
∑𝑇
𝑘=1

[
�̂�𝑘−1 − �̂�𝑘

] . (5.24)

3. Update Θ𝑚 in (5.23) with Θ𝑚+1, and repeat step 2 until Θ2
𝑚+1 stops noticeably changing.

Remark 5.5. We are left to find expressions for the expected values of the missing data at random ∑𝑇
𝑘=1 �̃�𝑘;Θ2

𝑚

[(
𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘)

)]
, ∑𝑇

𝑘=1 �̃�𝑘;Θ2
𝑚
[𝑍𝑡𝑘 ], 

and ∑𝑇
𝑘=1 �̃�𝑘;Θ2

𝑚

[
𝐸(𝑡𝑘)

]
in (5.23)-(5.24).

1. It is easy to see from the model equations (2.1)-(2.4), that we iteratively obtain the following

[𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘)] = [𝑆(𝑡𝑘−1) −𝑆(𝑡𝑘)] + [𝐼(𝑡𝑘−1) − 𝐼(𝑡𝑘)] − [𝐶𝐼𝑅(𝑡𝑘−1)],

𝐸(𝑡𝑘) =𝐸(𝑡0) +
𝑘∑
𝑗=1

(
[𝑆(𝑡𝑗−1) − 𝑆(𝑡𝑗 )] + [𝐼(𝑡𝑗−1) − 𝐼(𝑡𝑗 )]

)
−

𝑘∑
𝑗=1

[𝐶𝐼𝑅(𝑡𝑗−1)]. (5.25)

Recall Definition 5.2[2.], that 𝐸(𝑡0) = 𝑒0 is assumed known. Furthermore, from (3.14)-(3.16), 𝐶𝐼𝑅(𝑡𝑘) ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐼(𝑡𝑘), 𝑃𝐼𝑅(𝑡𝑘)). Thus, applying the 
conditional expected value operator �̃�𝑘;Θ2

𝑚
defined in (5.22), to (5.25), we obtain the following.

𝑇∑
𝑘=1

�̃�𝑘;Θ2
𝑚

[(
𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘)

)]
=

𝑇∑
𝑘=1

[𝑠𝑘−1 − 𝑠𝑘] +
𝑇∑
𝑘=1

[𝑖𝑘−1 − 𝑖𝑘] −
𝑇∑
𝑘=1

�̃�𝑘;Θ2
𝑚
[𝐶𝐼𝑅(𝑡𝑘−1)]

=
𝑇∑
𝑘=1

[𝑠𝑘−1 − 𝑠𝑘] +
𝑇∑
𝑘=1

[𝑖𝑘−1 − 𝑖𝑘] −
𝑇∑
𝑘=1

[𝐼(𝑡𝑘−1)𝑃𝐼𝑅(𝑡𝑘−1)]

=
𝑇∑
𝑘=1

[𝑠𝑘−1 − 𝑠𝑘] +
𝑇∑
𝑘=1

[𝑖𝑘−1 − 𝑖𝑘] −
𝑇∑
𝑘=1

[
𝑖𝑘−1

(
1 − 𝑒𝛿𝑚𝑟 Δ𝑡

)]
.

Similarly,

𝑇∑
𝑘=1

�̃�𝑘;Θ2
𝑚

[
𝐸(𝑡𝑘)

]
=

𝑇∑
𝑘=1
𝑒0 +

𝑇∑
𝑘=1

𝑘∑
𝑗=1

(
[𝑠𝑗−1 − 𝑠𝑗 ] + [𝑖𝑗−1 − 𝑖𝑗 ]

)
−

𝑇∑
𝑘=1

𝑘∑
𝑗=1

�̃�𝑘;Θ2
𝑚

[
𝐶𝐼𝑅(𝑡𝑗−1)

]
=

𝑇∑
𝑘=1
𝑒0 +

𝑇∑
𝑘=1

𝑘∑
𝑗=1

(
[𝑠𝑗−1 − 𝑠𝑗 ] + [𝑖𝑗−1 − 𝑖𝑗 ]

)
−

𝑇∑
𝑘=1

𝑘∑
𝑗=1

[
𝑖𝑗−1

(
1 − 𝑒𝛿𝑚𝑟 Δ𝑡

)]
.

2. We use the following argument to find a plausible expression for ∑𝑇
𝑘=1 �̃�𝑘;Θ2

𝑚
[𝑍𝑡𝑘 ]. From Definition 3.2, it can be deduced that when Θ2

𝑚 and all 
other terms in the conditional expected value operator �̃�𝑘;Θ2

𝑚
in (5.22) are given, 𝑍𝑡𝑘 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆

𝑚
1,𝑘), where 𝜆𝑚1,𝑘 is selected such that it is proportional 

to 𝜆𝑚Δ𝑡, i.e. 𝜆𝑚1,𝑘 ∝ 𝜆
𝑚Δ𝑡. Hence, from (5.22), the conditional expected value sum

𝑇∑
𝑘=1

�̃�𝑘;Θ2
𝑚
[𝑍𝑡𝑘 ] ∝

𝑇∑
𝑘=1

[𝜆𝑚1,𝑘]. (5.26)

6. A theoretical example for the EM-algorithm in the SEIR epidemic model

In this section, we present a theoretical numerical example on influenza epidemics, to explore the application of the EM-algorithm given in 
Algorithm 5.1. Since this study is focused on introducing the multi-level hierarchical data EM-algorithm, only the parameter estimation for the 
SEIR model in Theorem 3.2 is presented. That is, we find a ML-estimate (MLE) for Θ2 = (𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟)𝑇 . Note that this example is not intended to be 
informative about influenza epidemics, but simply to exhibit the applicability of the Algorithm 5.1. A more proper study of the statistical inferences 
in influenza SEIR models, with real data, and applying the EM-algorithm will appear elsewhere.

6.1. Testing the EM-algorithm on simulated influenza epidemic data

The influenza data [1, 5] for the state of Georgia (GA), U.S.A. for the 2017 − 2018 flu season is used to illustrate the EM-algorithm presented in 
Algorithm 5.1. The flu data consists of 52 weeks of measurements collected by the WHO and the NREVSS (National Respiratory And Enteric Virus 
Surveillance System) in collaboration with laboratories networking with CDC. Using the data, the ML-estimate of the parameter Θ2 = (𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟)𝑇 for 
the SEIR Markov chain {𝑋(𝑡𝑘; 𝑘 ≥ 0)}, with governing equations (2.1)-(2.4), and transition probabilities in Theorem 3.2. Note that this example is 
hypothetical, and the following assumptions are used.

(1) The population consists of 𝑛 = 10519475 individuals, similar to the size of the population of GA, USA in 2018 [5]. Furthermore, the population 
size is fixed over the 52 weeks. (2) The variant of influenza virus considered is type A virus; the weekly new infections are exhibited in Fig. 2 obtained 
from [1]. All reported cases are assumed to be infectious, i.e. the exposed class is not observed. It is also assumed that there is no readily supply of 
17
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Fig. 2. Shows a time-series over a period of 52 weeks for the number of people susceptible (b) and infected (a) with influenza type A virus.

the vaccine for the virus during this period. Moreover, the estimates for the susceptible population comparable to GA in 2018 are summarized in 
Fig. 2.

(3) It is assumed that the incubation and infectious periods, 𝑇1 and 𝑇2, respectively, are random, and beyond this period, the exposed person 
becomes infectious, while the infectious person fully recovers and removed, respectively. New births are not considered. Hence, from (2)-(3) it is 
easy to see that the initial susceptible population decreases continuously over the 52 weeks considered because of the continuous infection and 
removal processes. Hence, the number of infectious individuals present in any week are those infected at the beginning of the week.

(4) It is also assumed for simplicity that, initially only one person is exposed, that is, 𝑒0 = 1 is exposed (cf. [39]); 8 people are initially infectious, 
and nobody is assumed to be removed in the population initially.

From the above assumptions (1)-(4), and the data in [1, 5] exhibited in Fig. 2, the following are obtained by employing the Algorithm 5.1 to the 
influenza data.

Note that employing Algorithm 5.1 to the influenza data to find the ML- estimate Θ2
𝑚+1 in the (𝑚 + 1)𝑡ℎ step is basically substituting values 

for 𝐼(𝑡𝑘) = 𝑖𝑘, 𝑆(𝑡𝑘) = 𝑠𝑘 over 𝑘 = 0, 1, 2, … , 𝑇 , to the formulas in (5.23)-(5.24) and Remark 5.5, where in the influenza data in Fig. 2, the weekly 
counts of infectious cases are values for 𝐼(𝑡𝑘) = 𝑖𝑘, and the values for 𝑆(𝑡𝑘) = 𝑠𝑘 are the weekly count for the susceptible state. Furthermore, the time 
𝑘 = 0, 1, 2, … , 𝑇 represents the 52 weeks.

Denote the final step ML-estimate of Θ2 = (𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟) by Θ̂2 = (�̂�, �̂�, 𝛿𝑒, 𝛿𝑟). It is easy to see that the values of Θ̂2 = (�̂�, �̂�, 𝛿𝑒, 𝛿𝑟) are obtained when 
the algorithm converges. Indeed, employing the Algorithm 5.1 to the influenza data in Fig. 2, leads to the estimates in Table 1.

Note from Algorithm 5.1 that the ML-estimate for 𝜆 is obtained iteratively by applying the steps in the algorithm, until convergence, utilizing 
the formula for 𝜆𝑚+1 in (5.23) and (5.26), that is,

𝜆𝑚+1 =

∑𝑇
𝑘=1 �̃�𝑘;Θ2

𝑚
[𝑍𝑡𝑘 ](∑𝑇

𝑘=1[Δ𝑡]
) .

In addition, the algorithm converges after 41 steps, to the ML-estimate for 𝜆, denoted by �̂� = 𝜆41 = 2.0∕𝑑𝑎𝑦. The convergence to �̂� = 𝜆41 = 2.0∕𝑑𝑎𝑦 is 
shown in Fig. 3.

Also, the ML-estimate for 𝑝 is obtained iteratively by applying the steps in the algorithm, until convergence, utilizing the formula for 𝑝𝑚+1 in 
(5.23) and (5.26), that is,

𝑝𝑚+1 =
∑𝑇
𝑘=1

[
�̂�𝑘−1 − �̂�𝑘 + 1

]∑𝑇
𝑘=1

[
�̂�𝑘−1 − �̂�𝑘 + 1

]
+
∑𝑇
𝑘=1

[
�̂�𝑘

] .
The algorithm converges to the ML-estimate for 𝑝, denoted by �̂� = 0.3176 per week = 0.0454 per day.

The ML-estimates for 𝛿𝑒 and 𝛿𝑟 are also iteratively obtained by applying the steps in the algorithm, until convergence, utilizing the formula for 
𝛿𝑚+1𝑒 and 𝛿𝑚+1𝑟 in (5.23) and (5.26), that is,

𝛿𝑚+1𝑒 = 1
Δ𝑡

log
[
𝐴𝑚𝑒 + 1

]
,

𝛿𝑚+1𝑟 = 1
Δ𝑡

log
[
𝐵𝑚𝑟 + 1

]
,

where
18
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Fig. 3. Shows the 𝑚𝑡ℎ step estimate for the MLE over the number of steps 𝑚 = 0, 1, 2, 2, …. The initial estimate for 𝜆0 = 0.2. Beyond the 41st step, the EM-algorithm 
converges to the MLE of �̂� = 2.0∕𝑑𝑎𝑦.

Fig. 4. Shows the 𝑚𝑡ℎ step estimate of the MLE of the parameters 𝛿𝑒 in (a), and 𝛿𝑟 in (b), over the number of steps 𝑚 = 0, 1, 2, 3, …. The initial estimate for 𝛿0
𝑒
= 𝛿0

𝑟
= 0.01. 

The convergence to 𝛿𝑒 = 2.185118 occurs after 13 iterations; the convergence to 𝛿𝑟 = 0.8513226 occurs after 18 iterations.

𝐴𝑚𝑒 =

∑𝑇
𝑘=1 �̃�𝑘;Θ2

𝑚

[(
𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘)

)]
+
∑𝑇
𝑘=1

[(
�̂�𝑘−1 − �̂�𝑘

)]
∑𝑇
𝑘=1 �̃�𝑘;Θ2

𝑚

[
𝐸(𝑡𝑘)

]
−
∑𝑇
𝑘=1

[
(�̂�𝑘−1 − �̂�𝑘)

] ,

and

𝐵𝑚𝑟 =

∑𝑇
𝑘=1

[(
𝑖𝑘−1 − 𝑖𝑘

)]
+
∑𝑇
𝑘=1 �̃�𝑘;Θ2

𝑚

[(
𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘)

)]
+
∑𝑇
𝑘=1

[(
�̂�𝑘−1 − �̂�𝑘

)]
∑𝑇
𝑘=1

[
𝑖𝑘
]
−
∑𝑇
𝑘=1 �̃�𝑘;Θ2

𝑚

[
𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘)

]
−
∑𝑇
𝑘=1

[
�̂�𝑘−1 − �̂�𝑘

] .

It is easy to see from Fig. 4 that the algorithm converges to the ML-estimates for 𝛿𝑒 and 𝛿𝑟, respectively, given by 𝛿𝑒 = 2.185 per week and 𝛿𝑟 = 0.851
per week. Moreover, the convergence to 𝛿𝑒 = 2.185118 occurs after 13 iterations; the convergence to 𝛿𝑟 = 0.8513226 occurs after 18 iterations.

The ML-estimates 𝛿𝑒 = 2.185 per week and 𝛿𝑟 = 0.851 per week, respectively, for 𝛿𝑒 and 𝛿𝑟 are plausible. Indeed, these estimates imply that 
the estimate for the mean incubation period 𝜇𝑇1 = 𝔼[𝑇1] =

1
𝛿𝑒

for the influenza virus is �̂�𝑇1 = 1
𝛿𝑒

= 0.458weeks = 3.2days. Also, the estimate for 

the mean infectious period or mean influenza contagious period, 𝜇𝑇 = 𝔼[𝑇2] =
1 , for an individual in this population, without treatment, is 
2 𝛿𝑟
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Table 1. Shows the MLE for the parameters (𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟) obtained for 
the influenza exhibited in Fig. 2. A measure of variation using the 
standard deviation (sd) is also given for each estimate.

Parameter Definition MLE

𝑝 transmission rate/ contact/day 0.0454

𝜆 Mean number of contacts/ day 2.0 (see Fig. 3)

𝛽 transmission rate/day �̂��̂� = 0.0907(𝑠𝑑 = 0.081)
1
𝛿𝑒

Mean incubation period (days) 3.2(𝑠𝑑 = 0.307)
1
𝛿𝑟

Mean infectious period (days) 8.2(𝑠𝑑 = 0.446)

�̂�𝑇2 =
1
𝛿𝑟

= 1.175 weeks = 8.2 days. Observe from the sources [2, 3] that these estimates for 𝜇𝑇1 = 𝔼[𝑇1] and 𝜇𝑇2 = 𝔼[𝑇2] fall in the expected range of 
values for these parameters, for typical influenza epidemics. That is, the estimate �̂�𝑇1 = 3.2 days lies in the expected range of 1- 4 days (cf. [2, 3]) 
for symptoms of influenza to appear; the estimate �̂�𝑇2 = 8.2 days lies in the expected range of values of 7-10 days (cf. [2, 3]), for an infected person 
to remain contagious. The ML-estimates for Θ2 = (𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟) are summarized in the Table 1. Note that finding an analytical measure of variation for 
the estimators Θ2

𝑚, 𝑚 ≥ 1 in Algorithm 5.1, from a given sample path of the stochastic process, 𝑌 , given in Definition 5.1, is not trivial because of the 
high interdependence of the state of the system over time. However, the following approach was used to estimate the variances/standard deviation 
(sd) of the ML-estimates Θ̂2 = (�̂�, �̂�, 𝛿𝑒, 𝛿𝑟), given in Table 1.

Using the values of the MLEs in Table 1 in place of the parameters (𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟) in the stochastic model {𝑋(𝑡𝑘; 𝑘 ≥ 0)} in Theorem 3.2, a thousand 
sample paths for the stochastic process were generated in a similar manner as the example in [Section 3.3, Fig. B.6]. For every sample path 
generated over time 𝑡𝑘, 𝑘 = 0, 1, 2, … , 𝑇 = 500, the estimates Θ̂2 = (�̂�, �̂�, 𝛿𝑒, 𝛿𝑟) were obtained by applying Algorithm 5.1. The sample variances for 
the MLEs Θ̂ = (�̂�, �̂�, 𝛿𝑒, 𝛿𝑟) were estimated from the sample variances of the 1000 observations for Θ̂2 = (�̂�, �̂�, 𝛿𝑒, 𝛿𝑟) from the 1000 sample paths. 
The standard deviation (sd) of the estimates are given in Table 1. The choice for 𝑇 = 500 is guided by the existence of a quasi-stationary ergodic 
distribution for the process over sufficiently long time.

Indeed, it is easy to see from Theorem 3.2 that the stochastic model {𝑋(𝑡𝑘; 𝑘 ≥ 0)} has a finite state space Ω𝑋 (𝑡𝑘), 𝑘 ≥ 0. Moreover, every state is 
accessible from each other. In addition, self-loops are possible in the Markov chain, since the chance that the state remains the same over consecutive 
discrete times is positive. Therefore, the Markov chain is positive recurrent and aperiodic. Also, since the total population size remains constant, i.e. 
𝑁(𝑡𝑘) = 𝑆(𝑡𝑘) + 𝐸(𝑡𝑘) + 𝐼(𝑡𝑘) +𝑅(𝑡𝑘) =𝑁 > 0, the epidemic ultimately ends (cf. [8]), and the process is absorbed in a state, where lim𝑘→∞ 𝐼(𝑡𝑘) = 0. 
See [8] for more details. Thus, for the process {𝑋(𝑡𝑘; 𝑘 ≥ 0)}, there exists an ergodic quasi-stationary distribution.

7. Conclusion

In this study, a general model for multi-level hierarchical data (HD) is presented for discrete data. The EM-algorithm scheme to find ML-

estimates for the parameters of the system is derived, where the observed sample 𝑌 is either a finite sequence of independent and identically 
distributed random variables, or a sequence of dependent and identically distributed random variables (such as a time series in a stochastic process); 
the missing data in the system follows the multi-level HD structure derived. DTMC SEIR epidemic models are used to formulate examples for the 
multi-level HD. Moreover, the multi-level HD EM-algorithm derived is employed to find ML-estimates of the parameters of the DTMC SEIR model, 
where missing data are of two different categories, namely, (1) part of the missing data is non-hierarchical in structure, and the other part of the 
missing data is (2) HD composed of hidden components in the disease transmission rate of the DTMC SEIR model.

Simulated data for influenza from the state of Georgia (GA), USA, is used to create a theoretical study for an influenza epidemic, where the 
DTMC SEIR model is applied, and the HD EM-algorithm is employed to find ML-estimates for the model parameters. Note, the choice for the DTMC 
SEIR model for exhibiting the steps of the HD EM-algorithm is simply for convenience. Indeed, the scenarios for employing the HD EM-algorithm 
to find ML-estimates are enormous. However, where other types of estimators apart from ML-estimates are desired, it is easy to see that the HD 
EM-algorithm is a very complex choice for inferring parameters in (2.1)-(2.4), because of the complex nature of the hidden dynamic components 
in the disease transmission rate of the DTMC SEIR model. Other less complex alternatives for estimating the parameters include Bayesian methods, 
such as, MCMC algorithm and Gibbs sampling (cf. [39]). Other limitations are given in Remark 5.1.
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Appendix A. Proof of Theorem 3.1

Proof. Define an indicator random variable 𝑌 (𝑡𝑘) to represent the event that a susceptible person gets infected in the interval [𝑡𝑘, 𝑡𝑘+1). That is, 
𝑌 (𝑡𝑘) = 1, when the susceptible person is infected and 𝑌 (𝑡𝑘) = 0, otherwise. It is easy to see from Definitions 3.1-3.4 that

𝑃𝑆𝐸 (𝑡𝑘) = 𝑃 (𝑌 (𝑡𝑘) = 1)

=
∞∑
𝑛=0

𝑛∑
𝑗=0

𝑗∑
𝑙=𝑙
𝑃 (𝑌 (𝑡𝑘) = 1,𝑍𝑡𝑘,𝑛,𝑗 = 𝑙,𝑍𝑡𝑘,𝑛 = 𝑗,𝑍𝑡𝑘 = 𝑛),

=
∞∑
𝑛=0

𝑛∑
𝑗=0

𝑗∑
𝑙=𝑙
𝑃 (𝑌 (𝑡𝑘) = 1|𝑍𝑡𝑘,𝑛,𝑗 = 𝑙,𝑍𝑡𝑘,𝑛 = 𝑗,𝑍𝑡𝑘 = 𝑛)×

× 𝑃 (𝑍𝑡𝑘,𝑛,𝑗 = 𝑙|𝑍𝑡𝑘,𝑛 = 𝑗,𝑍𝑡𝑘 = 𝑛) × 𝑃 (𝑍𝑡𝑘,𝑛 = 𝑗|𝑍𝑡𝑘 = 𝑛) × 𝑃 (𝑍𝑡𝑘 = 𝑛). (A.1)

From Definitions 3.1&3.4, observe that 𝑃 (𝑌 (𝑡𝑘) = 1|𝑍𝑡𝑘,𝑛,𝑗 = 𝑙, 𝑍𝑡𝑘,𝑛 = 𝑗, 𝑍𝑡𝑘 = 𝑛) = 𝑝. The distribution of 𝑃 (𝑍𝑡𝑘,𝑛,𝑗 = 𝑙|𝑍𝑡𝑘,𝑛 = 𝑗, 𝑍𝑡𝑘 = 𝑛) is given by 
Definition 3.4; the distribution of 𝑃 (𝑍𝑡𝑘,𝑛 = 𝑗|𝑍𝑡𝑘 = 𝑛) is given by Definition 3.3; the distribution of 𝑃 (𝑍𝑡𝑘 = 𝑛) is given by Definition 3.2. Thus, (A.1) 
simplifies to (3.13). □

Appendix B. Numerical results for the SEIR Markov chain models

In this section, we apply a theoretical approach to validate the performance of the Markov chain model {𝑋(𝑡𝑘) ∶ 𝑘 ≥ 0} with transition proba-

bilities in Theorem 3.2. For selected values of 𝑝, 𝜆, 𝛿𝑒 and 𝛿𝑒, multiple sample paths or time-series for the process {𝑋(𝑡𝑘) ∶ 𝑘 ≥ 0} are generated; 
and different sample statistics are analyzed to determine whether the process leads to plausible predictions for the SEIR disease epidemic. Note, in 
Section 6, some ideas in this section will be used to estimate a measure of variation for the estimators derived in this paper.

Three sample paths are depicted in Fig. B.5 (contrasted with red, blue and purple lines) for each state 𝑆, 𝐸, 𝐼, 𝑅 of the SEIR Markov chain epidemic 
model {𝑋(𝑡𝑘) ∶ 𝑘 ≥ 0} in Theorem 3.2. The conditions utilized are: 𝑝 = 0.0055, and 𝜆 = 10; the average incubation 𝑇1 and infectious 𝑇2 periods are 
respectively, 𝐸(𝑇1) = 10 and 𝐸(𝑇2) = 20. Furthermore, the initial conditions used are: 𝑆(𝑡0) = 200, 000, 𝐸(𝑡0) = 500, 𝐼(𝑡0) = 1000, and 𝑅(𝑡0) = 0. Based 
on 1000 sample realizations for the states 𝑆, 𝐸, 𝐼, 𝑅 of the process {𝑋(𝑡𝑘) ∶ 𝑘 ≥ 0} at the time 𝑡40, histograms are given in Fig. B.6. Also, the 
intervals for the populations means of the states 𝑆, 𝐸, 𝐼, 𝑅 at time 𝑡40, at the 95% confidence level are respectively, 197783.9 < 𝔼[𝑆(𝑡40)] < 197794.2, 
607.8549 < 𝔼[𝐸(𝑡40)] < 611.7331, 1112.502 < 𝔼[𝐼(𝑡40)] < 1118.106 and 1983.614 < 𝔼[𝑅(𝑡40)] < 1988.112. Note 𝔼[.] is the expectation operator.

Fig. B.5 shows that infection rises in the population over time for all disease states 𝐸 and 𝐼 . The rise in infection in the population is matched 
by a decline in the susceptible state 𝑆 overtime, and a rise in recovery 𝑅, overtime. Fig. B.6 shows summaries for the distributions of the states 
𝑆, 𝐸, 𝐼, 𝑅 at the 40𝑡ℎ time-step 𝑡40 for the stochastic process. Moreover, inferring the populations for 𝑆, 𝐸, 𝐼, 𝑅 at the 40𝑡ℎ time-step 𝑡40 using the 95% 
confidence intervals, it is easy to see that there are significantly more people in the 𝑆 and 𝑅 states than in the disease states 𝐸 and 𝐼 . Although, 
there are relatively more individuals in the 𝐸 and 𝐼 at the 40𝑡ℎ time-step 𝑡40 than at 𝑡0, the disease is not yet very aggressive to the 𝑆 state by the 
time 𝑡40.

Appendix C. Proof of Theorem 4.1

Proof. From Definition 4.1, to average over the missing component 𝐶 (3), the log-likelihood function of the incomplete data is expressed as follows.

𝑙(Θ|𝑌 ) = log [𝐿(Θ|𝑌 )] = log [𝑃 (𝑌 |Θ)]
= log [𝑃 (𝑌 |Θ)] = log

∑
𝑍𝑘3

[
𝑃 (𝑌 ,𝑍𝑘3 |Θ)]

= log
∑
𝑍𝑘3

[
𝑃 (𝑌 ,𝑍𝑘3 |Θ)] × 𝑃 (𝑍𝑘3 |𝑌 ,Θ𝑚)𝑃 (𝑍𝑘3 |𝑌 ,Θ𝑚)

= log𝔼𝑍𝑘3 |𝑌 ,Θ𝑚
[
𝑃 (𝑌 ,𝑍𝑘3 |Θ)
𝑃 (𝑍𝑘3 |𝑌 ,Θ𝑚)

]

≥ 𝔼𝑍𝑘3 |𝑌 ,Θ𝑚 log
[
𝑃 (𝑌 ,𝑍𝑘3 |Θ)
𝑃 (𝑍𝑘3 |𝑌 ,Θ𝑚)

]
= 𝔼𝑍𝑘3 |𝑌 ,Θ𝑚

[
log

[
𝑃 (𝑌 ,𝑍𝑘3 |Θ)]]− 𝔼𝑍𝑘3 |𝑌 ,Θ𝑚

[
log𝑃 (𝑍𝑘3 |𝑌 ,Θ𝑚)]

=𝑄𝑍𝑘3 (Θ|Θ𝑚) +𝑅𝑍𝑘3 (Θ𝑚|Θ𝑚), (C.1)

where the inequality in (C.1) follows from Jensen’s inequality, and the Q-function with the effects of 𝐶 (3) is given by

𝑄𝑍𝑘3
(Θ|Θ𝑚) = 𝔼𝑍𝑘3 |𝑌 ,Θ𝑚

[
log

[
𝑃 (𝑌 ,𝑍𝑘3 |Θ)]] , (C.2)

and
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Fig. B.5. Shows three sample paths (contrasted with red, blue and purple lines) each for the states 𝑆, 𝐸, 𝐼, 𝑅 of the SEIR Markov chain model {𝑋(𝑡𝑘) ∶ 𝑘 ≥ 0} with 
transition probabilities in Theorem 3.2, whenever 𝑝 = 0.0055, 𝜆 = 10, the average incubation 𝑇1 and infectious 𝑇2 periods are respectively, 𝐸(𝑇1) = 10 and 𝐸(𝑇2) = 20. 
In addition, the following initial conditions are used 𝑆(𝑡0) = 200, 000, 𝐸(𝑡0) = 500, 𝐼(𝑡0) = 1000, and 𝑅(𝑡0) = 0.

𝑅𝑍𝑘3
(Θ𝑚|Θ𝑚) = −𝔼𝑍𝑘3 |𝑌 ,Θ𝑚

[
log𝑃 (𝑍𝑘3 |𝑌 ,Θ𝑚)] ,

is the entropy term representing uncertainty in 𝑍3, given the observed information 𝑌 , and the estimate of the unknown parameter Θ𝑚 at the 𝑚𝑡ℎ
iteration.

To avoid repetition and minimize space, the steps of (C.1) will be automatically employed, wherever necessary, to add the effects of 𝐶 (2) and 
𝐶 (1) in (4.7), into the Q-function (C.2), without explicitly expressing all steps in the process as it is done in (C.1).

From (C.2), observe that adding the effects of 𝐶 (2), we obtain

𝑄𝑍𝑘3
(Θ|Θ𝑚) = 𝔼𝑍𝑘3 |𝑌 ,Θ𝑚

[
log

[
𝑃 (𝑌 ,𝑍𝑘3 |Θ)]]

= 𝔼𝑍𝑘3 |𝑌 ,Θ𝑚
⎡⎢⎢⎣log

⎡⎢⎢⎣
∑
𝑍𝑘2

𝑃 (𝑌 ,𝑍𝑘3 ,𝑍𝑘2 |Θ)⎤⎥⎥⎦
⎤⎥⎥⎦

= 𝔼𝑍𝑘3 |𝑌 ,Θ𝑚
⎡⎢⎢⎣log

⎡⎢⎢⎣
∑
𝑍𝑘2

(
𝑃 (𝑍𝑘2 |𝑌 ,𝑍𝑘3 ,Θ𝑚) × 𝑃 (𝑌 ,𝑍𝑘3 ,𝑍𝑘2 |Θ)

𝑃 (𝑍𝑘2 |𝑌 ,𝑍𝑘3 ,Θ𝑚)
)⎤⎥⎥⎦

⎤⎥⎥⎦
= 𝔼𝑍𝑘3 |𝑌 ,Θ𝑚

[
log

[
𝔼𝑍𝑘2 |𝑌 ,𝑍𝑘3 ,Θ𝑚

(
𝑃 (𝑌 ,𝑍𝑘3 ,𝑍𝑘2 |Θ)
𝑃 (𝑍𝑘2 |𝑌 ,𝑍𝑘3 ,Θ𝑚)

)]]
. (C.3)

Applying Jensen’s inequality to (C.3), it is easy to see that

𝑄𝑍𝑘3
(Θ|Θ𝑚) ≥𝑄𝑍𝑘3 ,𝑍𝑘2 (Θ|Θ𝑚) +𝑅𝑍𝑘3 ,𝑍𝑘2 (Θ𝑚|Θ𝑚),

where

𝑄𝑍𝑘3 ,𝑍𝑘2
(Θ|Θ𝑚) = 𝔼𝑍𝑘3 |𝑌 ,Θ𝑚

[
𝔼𝑍𝑘2 |𝑌 ,𝑍𝑘3 ,Θ𝑚

[
log

(
𝑃 (𝑌 ,𝑍𝑘3 ,𝑍𝑘2 |Θ))]] (C.4)

and

𝑅𝑍 ,𝑍 (Θ𝑚|Θ𝑚) = −𝔼𝑍 |𝑌 ,Θ [
𝔼𝑍 |𝑌 ,𝑍 ,Θ

[
log

(
𝑃 (𝑍𝑘 |𝑌 ,𝑍𝑘 ,Θ𝑚))]] .
𝑘3 𝑘2 𝑘3 𝑚 𝑘2 𝑘3 𝑚 2 3
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Fig. B.6. Shows the approximate distributions for the states 𝑆, 𝐸, 𝐼, 𝑅 of the SEIR Markov chain model {𝑋(𝑡𝑘) ∶ 𝑘 ≥ 0} with transition probabilities in Theorem 3.2, 
whenever 𝑝 = 0.0055, 𝜆 = 10, the average incubation 𝑇1 and infectious 𝑇2 periods are respectively, 𝐸(𝑇1) = 10 and 𝐸(𝑇2) = 20. In addition, the following initial 
conditions are used 𝑆(𝑡0) = 200, 000, 𝐸(𝑡0) = 500, 𝐼(𝑡0) = 1000, and 𝑅(𝑡0) = 0. The histograms are based on 1000 sample realizations of the states 𝑆, 𝐸, 𝐼, 𝑅 at time 𝑡40 . 
Furthermore, the 95% confidence intervals for the populations means of the states 𝑆, 𝐸, 𝐼, 𝑅 at time 𝑡40 are respectively, 197783.9 < 𝔼[𝑆(𝑡40)] < 197794.2, 607.8549 <
𝔼[𝐸(𝑡40)] < 611.7331, 1112.502 < 𝔼[𝐼(𝑡40)] < 1118.106 and 1983.614 < 𝔼[𝑅(𝑡40)] < 1988.112, where 𝔼[.] is the expectation operator.

In the final step, we add the effects of 𝐶 (1) into the Q-function in (C.4) similarly as above. That is, from (C.4), adding 𝐶 (1) , we obtain

𝑄𝑍𝑘3 ,𝑍𝑘2
(Θ|Θ𝑚) = 𝔼𝑍𝑘3 |𝑌 ,Θ𝑚

[
𝔼𝑍𝑘2 |𝑌 ,𝑍𝑘3 ,Θ𝑚

(
log

(
𝑃 (𝑌 ,𝑍𝑘3 ,𝑍𝑘2 |Θ)))]

= 𝔼𝑍𝑘3 |𝑌 ,Θ𝑚
⎡⎢⎢⎣𝔼𝑍𝑘2 |𝑌 ,𝑍𝑘3 ,Θ𝑚

⎛⎜⎜⎝log
⎡⎢⎢⎣
∑
𝑍𝑘1

𝑃 (𝑌 ,𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1 |Θ)⎤⎥⎥⎦
⎞⎟⎟⎠
⎤⎥⎥⎦

= 𝔼𝑍𝑘3 |𝑌 ,Θ𝑚
[
𝔼𝑍𝑘2 |𝑌 ,𝑍𝑘3 ,Θ𝑚

(
log

(
𝐸𝑍𝑘1 |𝑌 ,𝑍𝑘3 ,𝑍𝑘2 ,Θ𝑚

[
𝑃 (𝑌 ,𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1 |Θ)
𝑃 (𝑍𝑘1 |𝑌 ,𝑍𝑘3 ,𝑍𝑘2 ,Θ𝑚)

]))]
. (C.5)

Applying Jensen’s inequality to (C.5), it is easy to see that

𝑄𝑍𝑘3 ,𝑍𝑘2
(Θ|Θ𝑚) ≥𝑄𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1 (Θ|Θ𝑚) +𝑅𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1 (Θ𝑚|Θ𝑚),

where

𝑄𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1
(Θ|Θ𝑚) = 𝔼𝑍𝑘3 |𝑌 ,Θ𝑚

[
𝔼𝑍𝑘2 |𝑌 ,𝑍𝑘3 ,Θ𝑚

[
𝔼𝑍𝑘1 |𝑌 ,𝑍𝑘3 ,𝑍𝑘2 ,Θ𝑚

[
log

[
𝑃 (𝑌 ,𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1 |Θ)]]]] (C.6)

and

𝑅𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1
(Θ𝑚|Θ𝑚) = −𝔼𝑍𝑘3 |𝑌 ,Θ𝑚

[
𝔼𝑍𝑘2 |𝑌 ,𝑍𝑘3 ,Θ𝑚

[
𝔼𝑍𝑘1 |𝑌 ,𝑍𝑘3 ,𝑍𝑘2 ,Θ𝑚

[
log

[
𝑃 (𝑍𝑘1 |𝑌 ,𝑍𝑘3 ,𝑍𝑘2 ,Θ𝑚)]]]] . (C.7)

Thus, from (C.1)-(C.7), it is easy to see that the log-likelihood function of the incomplete data satisfies

𝑙(Θ|𝑌 ) = log [𝐿(Θ|𝑌 )] ≥𝑄𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1 (Θ|Θ𝑚) +𝑅𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1 (Θ𝑚|Θ𝑚) +𝑅𝑍𝑘3 ,𝑍𝑘2 (Θ𝑚|Θ𝑚) +𝑅𝑍𝑘3 (Θ𝑚|Θ𝑚).
Hence, clearly the Q-function with the effects of all the missing hierarchical information 𝐶 (3), 𝐶 (2) and 𝐶 (1) is 𝑄𝑍𝑘3 ,𝑍𝑘2 ,𝑍𝑘1 (Θ|Θ𝑚) in (C.6), and the 
terms 𝑅𝑍 ,𝑍 ,𝑍 (Θ𝑚|Θ𝑚), 𝑅𝑍 ,𝑍 (Θ𝑚|Θ𝑚), and 𝑅𝑍 (Θ𝑚|Θ𝑚) are entropy terms. □
𝑘3 𝑘2 𝑘1 𝑘3 𝑘2 𝑘3
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Appendix D. Proof of Theorem 5.1

Proof. Given that Θ2 = (𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟) is the unknown parameter for the SEIR model in Theorem 3.2, it is easy to see that applying the method in 
(5.5)-(5.7) to find the log-likelihood function of the incomplete data, 𝑙(Θ2|𝑌 ) = 𝑙(Θ2|�̂�𝑇 , ℑ̂𝑇 ), it follows from Definition 5.1 and Definition 4.1[5.], 
that

𝑙(Θ2|𝑌 ) = 𝑙(Θ2|�̂�𝑇 , ℑ̂𝑇 ) = log [𝑃 (𝔖𝑇 = �̂�𝑇 ,ℑ𝑇 = ℑ̂𝑇 |Θ2)]

= log [ 𝑃 ( 𝑆(𝑡𝑇 ) = �̂�𝑇 , 𝐼(𝑡𝑇 ) = 𝑖𝑇 ;𝑆(𝑡𝑇−1) = �̂�𝑇−1, 𝐼(𝑡𝑇−1) = 𝑖𝑇−1;

⋯ ;𝑆(𝑡0) = �̂�0, 𝐼(𝑡0) = 𝑖0|Θ2 ) ]

= log

[
𝑇∏
𝑘=1
𝑃
(
𝑆(𝑡𝑘) = �̂�𝑘, 𝐼(𝑡𝑘) = 𝑖𝑘|𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2)]

=
𝑇∑
𝑘=1

log
[
𝑃
(
𝑆(𝑡𝑘) = �̂�𝑘, 𝐼(𝑡𝑘) = 𝑖𝑘|𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2)] (D.1)

Applying a similar method in (C.1) to (D.1), we impute the missing the missing data for 𝐸(𝑡𝑘) over 𝑘 = 1, 2, … , 𝑇 into (D.2), and apply Jensen’s 
inequality as shown below.

𝑙(Θ2|𝑌 ) = 𝑇∑
𝑘=1

log
⎡⎢⎢⎢⎣
∑

Ω1
𝐸(𝑡𝑘)

𝑃
(
𝑆(𝑡𝑘) = �̂�𝑘,𝐸(𝑡𝑘) = 𝑒𝑘, 𝐼(𝑡𝑘) = 𝑖𝑘|𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2)⎤⎥⎥⎥⎦

=
𝑇∑
𝑘=1

log
⎡⎢⎢⎢⎣
∑

Ω1
𝐸(𝑡𝑘)

𝑃
(
𝑆(𝑡𝑘) = �̂�𝑘,𝐸(𝑡𝑘) = 𝑒𝑘, 𝐼(𝑡𝑘) = 𝑖𝑘|𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2) ×

×
𝑃
(
𝐸(𝑡𝑘) = 𝑒𝑘|𝑆(𝑡𝑘) = �̂�𝑘, 𝐼(𝑡𝑘) = 𝑖𝑘, ;𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1,Θ2

𝑚

)
𝑃
(
𝐸(𝑡𝑘) = 𝑒𝑘|𝑆(𝑡𝑘) = �̂�𝑘, 𝐼(𝑡𝑘) = 𝑖𝑘, ;𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1,Θ2

𝑚

)] , (D.2)

where Ω1
𝐸𝑘

, 𝑘 ≥ 1 is given in (5.10)-(5.11).

Applying Jensen’s inequality to (D.2), i.e. to the average 𝔼𝐸(𝑡𝑘)|𝑆(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[⋯] with respect to the conditional mass 𝑃 (𝐸(𝑡𝑘) = 𝑒𝑘|𝑆(𝑡𝑘) =

�̂�𝑘, 𝐼(𝑡𝑘) = 𝑖𝑘, ; 𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1, Θ2
𝑚), it is easy to see

𝑙(Θ2|𝑌 ) ≥ 𝑇∑
𝑘=1

𝔼𝐸(𝑡𝑘)|𝑆(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[

log
{
𝑃
(
𝑆(𝑡𝑘) = �̂�𝑘,𝐸(𝑡𝑘) = 𝑒𝑘, 𝐼(𝑡𝑘) = 𝑖𝑘|𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2)}]

−
𝑇∑
𝑘=1

𝔼𝐸(𝑡𝑘)|𝑆(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[

log
[
𝑃
(
𝐸(𝑡𝑘) = 𝑒𝑘|𝑆(𝑡𝑘) = �̂�𝑘, 𝐼(𝑡𝑘) = 𝑖𝑘, ;𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1,Θ2

𝑚

)]]
. (D.3)

For each 𝑘 = 1, 2, 3, … , 𝑇 , define

𝑄𝐸(𝑡𝑘)(Θ
2|Θ2

𝑚) = 𝔼𝐸(𝑡𝑘)|𝑆(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[

log
{
𝑃
(
𝑆(𝑡𝑘) = �̂�𝑘,𝐸(𝑡𝑘) = 𝑒𝑘, 𝐼(𝑡𝑘) = 𝑖𝑘|𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2)}] , (D.4)

and

𝑅𝐸(𝑡𝑘)(Θ
2
𝑚|Θ2

𝑚) = −𝔼𝐸(𝑡𝑘)|𝑆(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[

log
{
𝑃
(
𝐸(𝑡𝑘) = 𝑒𝑘|𝑆(𝑡𝑘) = �̂�𝑘, 𝐼(𝑡𝑘) = 𝑖𝑘, ;𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1,Θ2

𝑚

)}]
.

It follows from (D.3) that

𝑙(Θ2|𝑌 ) ≥ 𝑇∑
𝑘=1
𝑄𝐸(𝑡𝑘)(Θ

2|Θ2
𝑚) +

𝑇∑
𝑘=1
𝑅𝐸(𝑡𝑘)(Θ

2
𝑚|Θ2

𝑚). (D.5)

Similarly to the proof of Theorem 4.1, it is easy to see that 𝑄𝐸(𝑡𝑘)(Θ
2|Θ2

𝑚) is the corresponding Q-function with the effects of only the non-

hierarchical missing data 𝐸(𝑡𝑘) over 𝑘 = 1, 2, … , 𝑇 . Also, 𝑅𝐸(𝑡𝑘)(Θ
2
𝑚|Θ2

𝑚) is the corresponding entropy term, similarly defined as in the proof of 
Theorem 4.1.

Observe from (D.4) and (5.8), that the Q-function 𝑄𝐸(𝑡𝑘)(Θ
2|Θ2

𝑚) is the average over the domain (Ω1
𝐸𝑘

) of missing values for 𝐸(𝑡𝑘) over 𝑘 =
1, 2, … , 𝑇 , of the log-likelihood function of the incomplete data contained in the sum 𝑙1(Θ2|�̂�𝑇 ) in (5.8). Thus, for each 𝑘 = 1, 2, … , 𝑇 , define by

𝑙1,𝑘(Θ2|𝑆(𝑡𝑘),𝐸(𝑡𝑘), 𝐼(𝑡𝑘);𝑆(𝑡𝑘−1), 𝐼(𝑡𝑘−1))
= log

{
𝑃
(
𝑆(𝑡𝑘) = �̂�𝑘,𝐸(𝑡𝑘) = 𝑒𝑘, 𝐼(𝑡𝑘) = 𝑖𝑘|𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2)}, (D.6)

the 𝑘𝑡ℎ component of the log-likelihood of the incomplete data contained in the sum 𝑙1(Θ2|�̂�𝑇 ) in (5.8). Thus, from (D.4) and (D.6), it follows that
24
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𝑄𝐸(𝑡𝑘)(Θ
2|Θ2

𝑚) = 𝔼𝐸(𝑡𝑘)|𝑆(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚

[
𝑙1,𝑘(Θ2|𝑆(𝑡𝑘),𝐸(𝑡𝑘), 𝐼(𝑡𝑘);𝑆(𝑡𝑘−1), 𝐼(𝑡𝑘−1))] . (D.7)

Thus, we are only left to add the hidden hierarchical data 𝑍 = {𝐶 (4), 𝐶 (3), 𝐶 (2), 𝐶 (1)} given in (5.12), into the log-likelihood function 
𝑙1,𝑘(Θ2|𝑆(𝑡𝑘), 𝐸(𝑡𝑘), 𝐼(𝑡𝑘); 𝑆(𝑡𝑘−1), 𝐼(𝑡𝑘−1)) in (D.6), and substitute the results back into (D.7) to obtain the final Q-function with the effects of the 
missing non-hierarchical data and the missing hierarchical hidden data.

Since the hidden hierarchical data 𝑍 is a four level hierarchical data, we apply Theorem 4.1& Proposition 4.1 to add 𝑍 into 𝑙1,𝑘(Θ2|𝑆(𝑡𝑘), 𝐸(𝑡𝑘),
𝐼(𝑡𝑘);𝑆(𝑡𝑘−1), 𝐼(𝑡𝑘−1)) in (D.6). Also, since this process is similar to the proof of Theorem 4.1, we omit the step-by-step process, and just present the 
result of the final step, and define the notations used.

It is easy to see from Theorem 4.1 & Proposition 4.1, that for each 𝑘 = 1, 2, … , 𝑇 , it follows from (D.4)-(D.7) that 𝑙(Θ2|𝑌 ) in (D.5)

𝑙(Θ2|𝑌 ) ≥ 𝑇∑
𝑘=1
𝑄𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙

(Θ2|Θ2
𝑚)

+
𝑇∑
𝑘=1
𝑅𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙

(Θ2
𝑚|Θ2

𝑚)

+
𝑇∑
𝑘=1
𝑅𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗

(Θ2
𝑚|Θ2

𝑚) +
𝑇∑
𝑘=1
𝑅𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛

(Θ2
𝑚|Θ2

𝑚)

+
𝑇∑
𝑘=1
𝑅𝐸(𝑡𝑘),𝑍𝑡𝑘

(Θ2
𝑚|Θ2

𝑚) +
𝑇∑
𝑘=1
𝑅𝐸(𝑡𝑘)(Θ

2
𝑚|Θ2

𝑚), (D.8)

where

𝑄𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙
(Θ2|Θ2

𝑚) = 𝔼𝐸(𝑡𝑘)|𝑆(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[

𝔼𝑍𝑡𝑘 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[ 𝔼𝑍𝑡𝑘,𝑛|𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2

𝑚
[

𝔼𝑍𝑡𝑘,𝑛,𝑗 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[ 𝔼𝑍𝑡𝑘,𝑛,𝑗,𝑙 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2

𝑚
[

𝑙1,𝑘(Θ2|𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 , 𝑆(𝑡𝑘),𝐸(𝑡𝑘), 𝐼(𝑡𝑘);𝑆(𝑡𝑘−1), 𝐼(𝑡𝑘−1))]]]]]
and

𝑙1,𝑘(Θ2|𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 , 𝑆(𝑡𝑘),𝐸(𝑡𝑘), 𝐼(𝑡𝑘);𝑆(𝑡𝑘−1), 𝐼(𝑡𝑘−1))
= log

{
𝑃
(
𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 , 𝑆(𝑡𝑘) = �̂�𝑘,𝐸(𝑡𝑘) = 𝑒𝑘, 𝐼(𝑡𝑘) = 𝑖𝑘|𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2

)}
.

Also, the entropy terms are given as follows.

𝑅𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙
(Θ2
𝑚|Θ2

𝑚) = −𝔼𝐸(𝑡𝑘)|𝑆(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[

𝔼𝑍𝑡𝑘 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[ 𝔼𝑍𝑡𝑘,𝑛|𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2

𝑚
[

𝔼𝑍𝑡𝑘,𝑛,𝑗 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[ 𝔼𝑍𝑡𝑘,𝑛,𝑗,𝑙 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2

𝑚
[

logℙ(𝑍𝑡𝑘,𝑛,𝑗,𝑙|𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 , 𝑆(𝑡𝑘),𝐸(𝑡𝑘), 𝐼(𝑡𝑘);𝑆(𝑡𝑘−1), 𝐼(𝑡𝑘−1),Θ2
𝑚)

]]]]]
𝑅𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗

(Θ2
𝑚|Θ2

𝑚) = −𝔼𝐸(𝑡𝑘)|𝑆(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[

𝔼𝑍𝑡𝑘 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[ 𝔼𝑍𝑡𝑘,𝑛|𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2

𝑚
[

𝔼𝑍𝑡𝑘,𝑛,𝑗 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[

logℙ(𝑍𝑡𝑘,𝑛,𝑗 |𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑆(𝑡𝑘),𝐸(𝑡𝑘), 𝐼(𝑡𝑘);𝑆(𝑡𝑘−1), 𝐼(𝑡𝑘−1),Θ2
𝑚)

]]]]
𝑅𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛

(Θ2
𝑚|Θ2

𝑚) = −𝔼𝐸(𝑡𝑘)|𝑆(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[

𝔼𝑍𝑡𝑘 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[ 𝔼𝑍𝑡𝑘,𝑛|𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2

𝑚
[

logℙ(𝑍𝑡𝑘,𝑛|𝑍𝑡𝑘 ,𝑆(𝑡𝑘),𝐸(𝑡𝑘), 𝐼(𝑡𝑘);𝑆(𝑡𝑘−1), 𝐼(𝑡𝑘−1),Θ2
𝑚)

]]]
𝑅𝐸(𝑡𝑘),𝑍𝑡𝑘

(Θ2
𝑚|Θ2

𝑚) = −𝔼𝐸(𝑡𝑘)|𝑆(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[

𝔼𝑍𝑡𝑘 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[

logℙ(𝑍𝑡𝑘 |𝑆(𝑡𝑘),𝐸(𝑡𝑘), 𝐼(𝑡𝑘);𝑆(𝑡𝑘−1), 𝐼(𝑡𝑘−1),Θ2
𝑚)

]]
and

𝑅𝐸(𝑡𝑘)(Θ
2
𝑚|Θ2

𝑚) = −𝔼𝐸(𝑡𝑘)|𝑆(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[

logℙ(𝐸(𝑡𝑘)|𝑆(𝑡𝑘), 𝐼(𝑡𝑘);𝑆(𝑡𝑘−1), 𝐼(𝑡𝑘−1),Θ2
𝑚)

]
. □
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Appendix E. Proof of Theorem 5.2

Proof. The E-step of the EM-algorithm consists of finding the Q-function in (5.16) given by

𝑄(Θ2|Θ2
𝑚) =

𝑇∑
𝑘=1
𝑄𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙

(Θ2|Θ2
𝑚), (E.1)

where 𝑄𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 (Θ
2|Θ2

𝑚) is defined in (5.14). We compute the Q-function in a step-by-step manner as follows.

For each 𝑘 = 1, 2, … 𝑇 , assume that 𝑆(𝑡𝑘) = �̂�𝑘, 𝐸(𝑡𝑘) = 𝑒𝑘, 𝑍𝑡𝑘 = 𝑛, 𝑍𝑡𝑘,𝑛 = 𝑗, 𝑍𝑡𝑘,𝑛,𝑗 = 𝑙, 𝐼(𝑡𝑘) = 𝑖𝑘; 𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1, Θ
2
𝑚 are given, where the 

values of 𝑛, 𝑗, 𝑙 are given in Definitions 3.2-3.5&5.3. It follows from the distribution of 𝑍𝑡𝑘,𝑛,𝑗,𝑙 in (3.10)-(3.11) that

ℙ(𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1|𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 , 𝐼(𝑡𝑘);𝑆(𝑡𝑘−1), 𝐼(𝑡𝑘−1),Θ2
𝑚) = 𝑝

𝑚.

It is easy to see from (5.15) that

𝔼𝑍𝑡𝑘,𝑛,𝑗,𝑙 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚

[
𝑙1,𝑘(Θ2|𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 , 𝑆(𝑡𝑘),𝐸(𝑡𝑘), 𝐼(𝑡𝑘);

𝑆(𝑡𝑘−1), 𝐼(𝑡𝑘−1))
]

= log
{
ℙ
(
𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1, 𝑆(𝑡𝑘) = �̂�𝑘,𝐸(𝑡𝑘) = 𝑒𝑘, 𝐼(𝑡𝑘) = 𝑖𝑘|𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2

)}
×

×ℙ(𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1|𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 , 𝐼(𝑡𝑘);𝑆(𝑡𝑘−1), 𝐼(𝑡𝑘−1),Θ2
𝑚)

= log
{
ℙ
(
𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1, 𝑆(𝑡𝑘) = �̂�𝑘,𝐸(𝑡𝑘) = 𝑒𝑘, 𝐼(𝑡𝑘) = 𝑖𝑘|𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2

)}
×

×𝑝𝑚. (E.2)

Also, observe from (E.2) that

ℙ
(
𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1, 𝑆(𝑡𝑘) = �̂�𝑘,𝐸(𝑡𝑘) = 𝑒𝑘, 𝐼(𝑡𝑘) = 𝑖𝑘|𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2

)
= ℙ

(
𝑍𝑡𝑘 |𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2

)
×

×ℙ
(
𝑍𝑡𝑘,𝑛|𝑍𝑡𝑘 ;𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2

)
×

×ℙ
(
𝑍𝑡𝑘,𝑛,𝑗 |𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛;𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2

)
×

×ℙ
(
𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1|𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ;𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2

)
×

×ℙ
(
𝑆(𝑡𝑘) = �̂�𝑘|𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1;𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2

)
×

×ℙ
(
𝐸(𝑡𝑘) = 𝑒𝑘|𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1, 𝑆(𝑡𝑘) = �̂�𝑘;𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2

)
×

×ℙ
(
𝐼(𝑡𝑘) = 𝑖𝑘|𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1, 𝑆(𝑡𝑘) = �̂�𝑘,𝐸(𝑡𝑘) = 𝑒𝑘;𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2

)
. (E.3)

We find expressions for every term in (E.3). From (2.1)-(2.4), observe that given the observed data 𝑌 in Definitions 5.1-5.2, it is easy to see that for 
𝑘 = 1, 2, … , 𝑇

𝑆(𝑡𝑘) = �̂�𝑘 ⇔ 𝐶𝑆𝐸 (𝑡𝑘−1) = �̂�𝑘−1 − �̂�𝑘,

𝐸(𝑡𝑘) = 𝑒𝑘 ⇔ 𝐶𝐸𝐼 (𝑡𝑘−1) =𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘) + �̂�𝑘−1 − �̂�𝑘,

𝐼(𝑡𝑘) = 𝑖𝑘 ⇔ 𝐶𝐼𝑅(𝑡𝑘−1) = 𝑖𝑘−1 − 𝑖𝑘 +𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘) + �̂�𝑘−1 − �̂�𝑘,

where 𝐸(𝑡𝑘) is random, and the support is given by 𝐸(𝑡𝑘) = 𝑒𝑘 ∈Ω1
𝐸𝑘

.

From (E.3),

ℙ
(
𝑆(𝑡𝑘) = �̂�𝑘|𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1;𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2

)
= ℙ

(
𝐶𝑆𝐸 (𝑡𝑘−1) = �̂�𝑘−1 − �̂�𝑘|𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1;𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2

)
=
(

�̂�𝑘−1
�̂�𝑘−1 − �̂�𝑘

)
𝑝�̂�𝑘−1−�̂�𝑘 (1 − 𝑝)�̂�𝑘 . (E.4)

The equation (E.4) follows because, given that the 𝑍𝑡𝑘,𝑛,𝑗 = 𝑙 and 𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1, that is, the 𝑙𝑡ℎ infectious contacts with susceptible person leads to 
infection, then 𝐶𝑆𝐸 (𝑡𝑘−1) is binomial with parameters 𝑝 and �̂�𝑘−1.

Also,

ℙ
(
𝐸(𝑡𝑘) = 𝑒𝑘|𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1, 𝑆(𝑡𝑘) = �̂�𝑘;𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2

)
= ℙ

(
𝐶𝐸𝐼 (𝑡𝑘−1) =𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘) + �̂�𝑘−1 − �̂�𝑘|𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1, 𝑆(𝑡𝑘) = �̂�𝑘;

𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2)
=
(

𝐸(𝑡𝑘−1)
)(
𝑃𝐸𝐼 (𝑡𝑘−1)

)𝐸(𝑡𝑘−1)−𝐸(𝑡𝑘)+�̂�𝑘−1−�̂�𝑘 (1 − 𝑃𝐸𝐼 (𝑡𝑘−1))𝐸(𝑡𝑘)−[�̂�𝑘−1−�̂�𝑘] , (E.5)

𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘) + �̂�𝑘−1 − �̂�𝑘
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where 𝑃𝐸𝐼 (𝑡𝑘−1) is defined in (3.15), and (E.5) also follows from (3.14). In addition,

ℙ
(
𝐼(𝑡𝑘) = 𝑖𝑘|𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1, 𝑆(𝑡𝑘) = �̂�𝑘,𝐸(𝑡𝑘) = 𝑒𝑘;𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2

)
= ℙ

(
𝐶𝐼𝑅(𝑡𝑘−1) = 𝑖𝑘−1 − 𝑖𝑘 +𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘) + �̂�𝑘−1 − �̂�𝑘|𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,

𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1, 𝑆(𝑡𝑘) = �̂�𝑘,𝐸(𝑡𝑘) = 𝑒𝑘;𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2
)

=
(

𝑖𝑘−1

𝑖𝑘−1 − 𝑖𝑘 +𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘) + �̂�𝑘−1 − �̂�𝑘

)(
𝑃𝐼𝑅(𝑡𝑘−1)

)𝑖𝑘−1−𝑖𝑘+𝐸(𝑡𝑘−1)−𝐸(𝑡𝑘)+�̂�𝑘−1−�̂�𝑘
×
(
1 − 𝑃𝐼𝑅(𝑡𝑘−1)

)𝑖𝑘−[𝐸(𝑡𝑘−1)−𝐸(𝑡𝑘)]−[�̂�𝑘−1−�̂�𝑘] , (E.6)

where 𝑃𝐼𝑅(𝑡𝑘−1) is defined in (3.16), and (E.6) also follows from (3.14).

From (E.3), the distribution of the hierarchical missing data is given as follows. Note that from Definitions 3.2-3.5, we deduce that

ℙ
(
𝑍𝑡𝑘 |𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2

)
= (𝜆Δ𝑡)𝑍𝑡𝑘 𝑒−𝜆Δ𝑡 1

(𝑍𝑡𝑘 )!
,

ℙ
(
𝑍𝑡𝑘,𝑛|𝑍𝑡𝑘 ;𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2

)
=
(
𝑍𝑡𝑘 = 𝑛
𝑍𝑡𝑘,𝑛 = 𝑗

)(
𝛼𝑡𝑘

)𝑍𝑡𝑘,𝑛 (1 − 𝛼𝑡𝑘)𝑍𝑡𝑘−𝑍𝑡𝑘,𝑛 ,
where 𝛼𝑡𝑘 is defined in Definitions 3.2-3.5. Furthermore, observe from Definitions 3.2-3.5 that

ℙ
(
𝑍𝑡𝑘,𝑛,𝑗 |𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛;𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2

)
= 1
𝑍𝑡𝑘,𝑛

,

and

ℙ
(
𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1|𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ;𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2

)
= 𝑝. (E.7)

It follows from (E.4)-(E.7) that

log
{
ℙ
(
𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1, 𝑆(𝑡𝑘) = �̂�𝑘,𝐸(𝑡𝑘) = 𝑒𝑘, 𝐼(𝑡𝑘) = 𝑖𝑘|𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2

)}
= log

[(
�̂�𝑘−1

�̂�𝑘−1 − �̂�𝑘

)]
+ log

[(
𝐸(𝑡𝑘−1)

𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘) + �̂�𝑘−1 − �̂�𝑘

)]
+log

[(
𝑖𝑘−1

𝑖𝑘−1 − 𝑖𝑘 +𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘) + �̂�𝑘−1 − �̂�𝑘

)]
+ log

(
1

(𝑍𝑡𝑘 )!

)

+log

[(
𝑍𝑡𝑘 = 𝑛
𝑍𝑡𝑘,𝑛 = 𝑗

)(
𝛼𝑡𝑘

)𝑍𝑡𝑘,𝑛 (1 − 𝛼𝑡𝑘)𝑍𝑡𝑘−𝑍𝑡𝑘,𝑛
]
+ log

(
1

𝑍𝑡𝑘,𝑛

)
+
(
�̂�𝑘−1 − �̂�𝑘

)
log𝑝+

(
�̂�𝑘

)
log (1 − 𝑝)

+
(
𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘) + �̂�𝑘−1 − �̂�𝑘

)
log

(
𝑃𝐸𝐼 (𝑡𝑘−1)

)
+
(
𝐸(𝑡𝑘) − [�̂�𝑘−1 − �̂�𝑘]

)
log

(
1 − 𝑃𝐸𝐼 (𝑡𝑘−1)

)
+
(
𝑖𝑘−1 − 𝑖𝑘 +𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘) + �̂�𝑘−1 − �̂�𝑘

)
log

(
𝑃𝐼𝑅(𝑡𝑘−1)

)
+
(
𝑖𝑘 − [𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘)] − [�̂�𝑘−1 − �̂�𝑘]

)
log

(
1 − 𝑃𝐼𝑅(𝑡𝑘−1)

)
+𝑍𝑡𝑘 log (𝜆Δ𝑡) − 𝜆Δ𝑡+ log (𝑝). (E.8)

To reduce unnecessary terms, we define the following random variable that is independent of the parameter Θ2, but depends on the other random 
variable 𝐸(𝑡𝑘−1), 𝐸(𝑡𝑘)𝑍𝑡𝑘 , 𝑍𝑡𝑘,𝑛, 𝑍𝑡𝑘,𝑛,𝑗 , 𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1

𝕂(𝐸(𝑡𝑘−1),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1)

= log
[(

�̂�𝑘−1
�̂�𝑘−1 − �̂�𝑘

)]
+ log

[(
𝐸(𝑡𝑘−1)

𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘) + �̂�𝑘−1 − �̂�𝑘

)]
+log

[(
𝑖𝑘−1

𝑖𝑘−1 − 𝑖𝑘 +𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘) + �̂�𝑘−1 − �̂�𝑘

)]
+ log

(
1

(𝑍𝑡𝑘 )!

)

+log

[(
𝑍𝑡𝑘 = 𝑛
𝑍𝑡𝑘,𝑛 = 𝑗

)(
𝛼𝑡𝑘

)𝑍𝑡𝑘,𝑛 (1 − 𝛼𝑡𝑘)𝑍𝑡𝑘−𝑍𝑡𝑘,𝑛
]
+ log

(
1

𝑍𝑡𝑘,𝑛

)
. (E.9)

Also define the following random variable that dependents on both the parameter Θ2, and the other random variable 𝐸(𝑡𝑘−1), 𝐸(𝑡𝑘)𝑍𝑡𝑘 , 𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,
𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1

𝕁(𝐸(𝑡𝑘−1),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1;Θ2)

=
(
�̂�𝑘−1 − �̂�𝑘

)
log𝑝+

(
�̂�𝑘

)
log (1 − 𝑝)

+
(
𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘) + �̂�𝑘−1 − �̂�𝑘

)
log

(
𝑃𝐸𝐼 (𝑡𝑘−1)

)
+
(
𝐸(𝑡𝑘) − [�̂�𝑘−1 − �̂�𝑘]

)
log

(
1 − 𝑃𝐸𝐼 (𝑡𝑘−1)

)
+
(
𝑖𝑘−1 − 𝑖𝑘 +𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘) + �̂�𝑘−1 − �̂�𝑘

)
log

(
𝑃𝐼𝑅(𝑡𝑘−1)

)
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+
(
𝑖𝑘 − [𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘)] − [�̂�𝑘−1 − �̂�𝑘]

)
log

(
1 − 𝑃𝐼𝑅(𝑡𝑘−1)

)
+𝑍𝑡𝑘 log (𝜆Δ𝑡) − 𝜆Δ𝑡+ log (𝑝). (E.10)

Thus, from (E.9), (E.11) and (E.8), we obtain the following.

log
{
ℙ
(
𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1, 𝑆(𝑡𝑘) = �̂�𝑘,𝐸(𝑡𝑘) = 𝑒𝑘, 𝐼(𝑡𝑘) = 𝑖𝑘|𝑆(𝑡𝑘−1) = �̂�𝑘−1, 𝐼(𝑡𝑘−1) = 𝑖𝑘−1;Θ2

)}
=𝕂(𝐸(𝑡𝑘−1),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1) + 𝕁(𝐸(𝑡𝑘−1),𝐸(𝑡𝑘)𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1;Θ2). (E.11)

Therefore, from (E.2) we obtain

𝔼𝑍𝑡𝑘,𝑛,𝑗,𝑙 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚

[
𝑙1,𝑘(Θ2|𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 , 𝑆(𝑡𝑘),𝐸(𝑡𝑘), 𝐼(𝑡𝑘);

𝑆(𝑡𝑘−1), 𝐼(𝑡𝑘−1))
]

=
[
𝕂(𝐸(𝑡𝑘−1),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1) + 𝕁(𝐸(𝑡𝑘−1),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1;Θ2)

]
×

×𝑝𝑚. (E.12)

The result in (5.21) follows immediately by substituting (E.12) into (5.14) and (E.1). □

Appendix F. Proof of Theorem 5.3

Proof. Given the Q-function in (5.21), observe that the gradient operator ▽Θ2 =
(
𝜕(⋯)
𝜕𝑝
,
𝜕(⋯)
𝜕𝜆
,
𝜕(⋯)
𝜕𝛿𝑒

,
𝜕(⋯)
𝜕𝛿𝑟

)𝑇
applied to 𝑄(Θ2|Θ2

𝑚) leads to

▽Θ2𝑄(Θ2|Θ2
𝑚) =

𝑇∑
𝑘=1

▽Θ2𝑄
2
𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙

(Θ2|Θ2
𝑚), (F.1)

since for each 𝑘 = 1, 2, … , 𝑇 ,

▽Θ2𝑄
1
𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙

(Θ2|Θ2
𝑚) = 0⃗.

In addition, the series of conditional expectation operators in (5.20) depend only on Θ2
𝑚 , therefore we can pass the gradient operator under the 

conditional expectation operators. That is, from (5.20),

▽Θ2𝑄2
𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙

(Θ2|Θ2
𝑚) = 𝔼𝐸(𝑡𝑘)|𝑆(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2

𝑚
[

𝔼𝑍𝑡𝑘 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[ 𝔼𝑍𝑡𝑘,𝑛|𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2

𝑚
[

𝔼𝑍𝑡𝑘,𝑛,𝑗 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[

▽Θ2𝕁(𝐸(𝑡𝑘−1),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1;Θ2)
]]]]

. (F.2)

From (5.18) observe that for each 𝑘 = 1, 2, … , 𝑇 ,

▽Θ2𝕁(𝐸(𝑡𝑘−1),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1;Θ2)

=

⎛⎜⎜⎜⎜⎜⎝

(�̂�𝑘−1−�̂�𝑘)
𝑝

− �̂�𝑘
1−𝑝 +

1
𝑝

𝑍𝑡𝑘
1
𝜆
−Δ𝑡(

𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘) + �̂�𝑘−1 − �̂�𝑘
) [ Δ𝑡𝑒−𝛿𝑒Δ𝑡

1−𝑒−𝛿𝑒Δ𝑡

]
−
(
𝐸(𝑡𝑘) − [�̂�𝑘−1 − �̂�𝑘]

)
Δ𝑡(

𝑖𝑘−1 − 𝑖𝑘 +𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘) + �̂�𝑘−1 − �̂�𝑘
) [ Δ𝑡𝑒−𝛿𝑟Δ𝑡

1−𝑒−𝛿𝑟Δ𝑡

]
−
(
𝑖𝑘 − [𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘)] − [�̂�𝑘−1 − �̂�𝑘]

)
Δ𝑡

⎞⎟⎟⎟⎟⎟⎠
(F.3)

To reduce complex notations, denote the complex conditional expectation operator in (F.3) by

�̃�𝑘;Θ2
𝑚
[⋯] = 𝔼𝐸(𝑡𝑘)|𝑆(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2

𝑚
[

𝔼𝑍𝑡𝑘 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[ 𝔼𝑍𝑡𝑘,𝑛|𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2

𝑚
[

𝔼𝑍𝑡𝑘,𝑛,𝑗 |𝑆(𝑡𝑘),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝐼(𝑡𝑘);𝑆(𝑡𝑘−1),𝐼(𝑡𝑘−1),Θ2
𝑚
[

⋯]]]] . (F.4)

Thus, using (F.4) and (F.3), the expression (F.2) becomes

▽Θ2𝑄
2
𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙

(Θ2|Θ2
𝑚) = �̃�𝑘;Θ2

𝑚

[
▽Θ2𝕁(𝐸(𝑡𝑘−1),𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1;Θ2)

]

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
𝑝
�̃�𝑘;Θ2

𝑚
[�̂�𝑘−1 − �̂�𝑘] −

(
1

1−𝑝

)
�̃�𝑘;Θ2

𝑚
[�̂�𝑘] +

1
𝑝

1
𝜆
�̃�𝑘;Θ2

𝑚
[𝑍𝑡𝑘 ] − Δ𝑡�̃�𝑘;Θ2

𝑚
[1][

Δ𝑡𝑒−𝛿𝑒Δ𝑡
1−𝑒−𝛿𝑒Δ𝑡

]
�̃�𝑘;Θ2

𝑚

[(
𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘) + �̂�𝑘−1 − �̂�𝑘

)]
−Δ𝑡�̃�𝑘;Θ2

𝑚

[(
𝐸(𝑡𝑘) − [�̂�𝑘−1 − �̂�𝑘]

)][
Δ𝑡𝑒−𝛿𝑟Δ𝑡
1−𝑒−𝛿𝑟Δ𝑡

]
�̃�𝑘;Θ2

𝑚

[(
𝑖𝑘−1 − 𝑖𝑘 +𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘) + �̂�𝑘−1 − �̂�𝑘

)]
−Δ𝑡�̃� 2

[(
𝑖𝑘 − [𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘)] − [�̂�𝑘−1 − �̂�𝑘]

)]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(F.5)
𝑘;Θ𝑚
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Hence, from (F.5) and (F.1) it follows that the vector equation

▽Θ2𝑄(Θ2|Θ2
𝑚) =

𝑇∑
𝑘=1

▽Θ2𝑄
2
𝐸(𝑡𝑘),𝑍𝑡𝑘 ,𝑍𝑡𝑘,𝑛,𝑍𝑡𝑘,𝑛,𝑗 ,𝑍𝑡𝑘,𝑛,𝑗,𝑙

(Θ2|Θ2
𝑚) = 0⃗, (F.6)

leads to the following solution for the vector Θ2 = (𝑝, 𝜆, 𝛿𝑒, 𝛿𝑟)𝑇

Θ2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑𝑇
𝑘=1 �̃�𝑘;Θ2𝑚

[
�̂�𝑘−1−�̂�𝑘

]
+
∑𝑇
𝑘=1 �̃�𝑘;Θ2𝑚

[1]∑𝑇
𝑘=1 �̃�𝑘;Θ2𝑚

[
�̂�𝑘−1−�̂�𝑘

]
+
∑𝑇
𝑘=1 �̃�𝑘;Θ2𝑚

[1]+
∑𝑇
𝑘=1 �̃�𝑘;Θ2𝑚

[
�̂�𝑘

]∑𝑇
𝑘=1 �̃�𝑘;Θ2𝑚

[𝑍𝑡𝑘 ]

Δ𝑡
∑𝑇
𝑘=1 �̃�𝑘;Θ2𝑚

[1]

− 1
Δ𝑡 log

[
1

𝐴𝑚𝑒 +1

]
− 1

Δ𝑡 log
[

1
𝐵𝑚𝑟 +1

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(F.7)

where

𝐴𝑚𝑒 =

∑𝑇
𝑘=1 �̃�𝑘;Θ2

𝑚

[(
𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘) + �̂�𝑘−1 − �̂�𝑘

)]
∑𝑇
𝑘=1 �̃�𝑘;Θ2

𝑚

[(
𝐸(𝑡𝑘) − [�̂�𝑘−1 − �̂�𝑘]

)] ,

and

𝐵𝑚𝑟 =

∑𝑇
𝑘=1 �̃�𝑘;Θ2

𝑚

[(
𝑖𝑘−1 − 𝑖𝑘 +𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘) + �̂�𝑘−1 − �̂�𝑘

)]
∑𝑇
𝑘=1 �̃�𝑘;Θ2

𝑚

[(
𝑖𝑘 − [𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘)] − [�̂�𝑘−1 − �̂�𝑘]

)] (F.8)

Recall, the only random variables are the missing hierarchical and non-hierarchical data are 𝐸(𝑡𝑘−1), 𝐸(𝑡𝑘), and 𝑍𝑡𝑘 , 𝑍𝑡𝑘,𝑛, 𝑍𝑡𝑘,𝑛,𝑗 , 𝑍𝑡𝑘,𝑛,𝑗,𝑙 = 1
defined in Definitions 5.3&5.2. Thus, (F.7)-(F.8) reduce to

Θ2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∑𝑇
𝑘=1

[
�̂�𝑘−1−�̂�𝑘+1

]∑𝑇
𝑘=1

[
�̂�𝑘−1−�̂�𝑘+1

]
+
∑𝑇
𝑘=1

[
�̂�𝑘

]∑𝑇
𝑘=1 �̃�𝑘;Θ2𝑚

[𝑍𝑡𝑘 ](∑𝑇
𝑘=1[Δ𝑡]

)
1
Δ𝑡 log

[
𝐴𝑚𝑒 + 1

]
1
Δ𝑡 log

[
𝐵𝑚𝑟 + 1

]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where

𝐴𝑚𝑒 =

∑𝑇
𝑘=1 �̃�𝑘;Θ2

𝑚

[(
𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘)

)]
+
∑𝑇
𝑘=1

[(
�̂�𝑘−1 − �̂�𝑘

)]
∑𝑇
𝑘=1 �̃�𝑘;Θ2

𝑚

[
𝐸(𝑡𝑘)

]
−
∑𝑇
𝑘=1

[
(�̂�𝑘−1 − �̂�𝑘)

] ,

and

𝐵𝑚𝑟 =

∑𝑇
𝑘=1

[(
𝑖𝑘−1 − 𝑖𝑘

)]
+
∑𝑇
𝑘=1 �̃�𝑘;Θ2

𝑚

[(
𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘)

)]
+
∑𝑇
𝑘=1

[(
�̂�𝑘−1 − �̂�𝑘

)]
∑𝑇
𝑘=1

[
𝑖𝑘
]
−
∑𝑇
𝑘=1 �̃�𝑘;Θ2

𝑚

[
𝐸(𝑡𝑘−1) −𝐸(𝑡𝑘)

]
−
∑𝑇
𝑘=1

[
�̂�𝑘−1 − �̂�𝑘

] .

Therefore, clearly from (5.17), given the 𝑚𝑡ℎ step estimate Θ2
𝑚 of the parameter Θ2, it is easy to see that the (𝑚 + 1)𝑡ℎ step estimate Θ2

𝑚+1 of the 
parameter Θ2 is given by

Θ2
𝑚+1 = Θ2

𝑚𝑎𝑥 =Θ2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∑𝑇
𝑘=1

[
�̂�𝑘−1−�̂�𝑘+1

]∑𝑇
𝑘=1

[
�̂�𝑘−1−�̂�𝑘+1

]
+
∑𝑇
𝑘=1

[
�̂�𝑘

]∑𝑇
𝑘=1 �̃�𝑘;Θ2𝑚

[𝑍𝑡𝑘 ](∑𝑇
𝑘=1[Δ𝑡]

)
1
Δ𝑡 log

[
𝐴𝑚𝑒 + 1

]
1
Δ𝑡 log

[
𝐵𝑚𝑟 + 1

]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
□
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