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Background: The presence of coronaviruses on surfaces in the patient environment is a
potential source of indirect transmission. Manual cleaning and disinfection measures do
not always achieve sufficient removal of surface contamination. This increases the
importance of automated solutions in the context of final disinfection of rooms in the
hospital setting. Ozone is a highly effective disinfectant which, combined with high
humidity, is an effective agent against respiratory viruses. Current devices allow con-
tinuous nebulization for high room humidity as well as ozone production without any
consumables.
Aim: In the following study, the effectiveness of a fully automatic room decontamination
system based on ozone was tested against bacteriophage F6 (phi 6) and bovine coronavirus
L9, as surrogate viruses for the pandemic coronavirus SARS-CoV-2.
Methods: For this purpose, various surfaces (ceramic tile, stainless steel surface and
furniture board) were soiled with the surrogate viruses and placed at two different levels
in a gas-tight test room. After using the automatic decontamination device according to
the manufacturer’s instructions, the surrogate viruses were recovered from the surfaces
and examined by quantitative cultures. Then, reduction factors were calculated.
Findings: The ozone-based room decontamination device achieved virucidal efficacy
(reduction factor >4 log10) against both surrogate organisms regardless of the different
surfaces and positions confirming a high activity under the used conditions.
Conclusion: Ozone is highly active against SARS-CoV-2 surrogate organisms. Further
investigations are necessary for a safe application and efficacy in practice as well as
integration into routine processes.
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Introduction

The spread of viruses with pandemic potential due to indi-
rect contact transmission is controversial. Even in the current
pandemic situation of Covid-19, the persistence of SARS-CoV-2
on inanimate surfaces and the role of contaminated surfaces as
transmission pathway is not clear. A current study showed
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stability of SARS-CoV-2 on different surface material (copper,
cardboard, stainless steel and plastic) for 8e72 h under
experimental conditions [1]. Therefore, touching con-
taminated surfaces might be a potential source of viral trans-
mission [2]. Recent studies conducted in China and Hong Kong
during the SARS-CoV-2 pandemic showed viral RNA in the
patient environment [3,4]. It therefore seems rational to
reduce the microbial load by disinfection. This assumption was
supported by investigations that revealed contamination with
viral RNA on surfaces even after final cleaning and disinfection
of a patient room [5,6]. In addition, several studies demon-
strated that environmental cleaning in hospitals is frequently
lacking. It has been shown that less than 50% [7] respectively
averagely 57% [8] of surfaces were cleaned adequately fol-
lowing patient discharge.

To improve this problem and prevent environment-borne
transmission, the usage of automated room disinfection sys-
tems could be an additional method of disinfection in hospital
settings [5]. Currently aerosolized and vapourized hydrogen
peroxide, ozone, chlorine dioxide and ultraviolet radiation are
mechanisms used for room decontamination after the dis-
charge of patients [9,10].

Ozone is not a common reagent, because of the need for
permanent moisture to achieve effectiveness [11]. Con-
sequently, only a few studies reported using ozone for room
decontamination in general but not yet in the hospital setting
[10,12,13]. In a current study, Dubuis et al. showed that ozone
combined with high relative humidity is an effective dis-
infectant for respiratory viruses [14]. Because of recent tech-
nologies which enable ozone to be generated from atmospheric
oxygen in combination with an integrated nebulizer for con-
trolled increase of room humidity, the aim of this study was to
evaluate the effectiveness of an automatic room disinfection
unit based on ozone combined with high relative humidity
against SARS-CoV-2 surrogates.

As a consequence of biosafety concerns and high demands
for working with SARS-CoV-2, surrogate viruses were used in
this study. Bacteriophages are known as suitable surrogates for
human respiratory viruses owing to great similarities in size,
shape, surface properties and environmental persistence,
however they are non-pathogenic to humans [15]. Due to its
lipid envelope, bacteriophage F6 (phi 6) from the family of the
Cystoviridae has been suggested as a surrogate for coronavi-
ruses [16e19].

Coronaviruses form a large and pleomorphic family that is
further divided into groups based on serological findings and
phylogenetic analysis [20e22]. The bovine coronavirus (BCoV)
from the genus Betacoronavirus is genetically closely related
to SARS-CoV, MERS-CoV and the pandemic SARS-CoV-2 viruses
and can be handled outside a BSL-3 safety laboratory. There-
fore, we used the BCoV and F6 as surrogate organisms for the
present experiments.
Methods

To evaluate the efficacy of an ozone-based device for
automated room disinfection (STERISAFE� Pro version 1.0,
STERISAFE ApS, Ole Maaløe’s vej 5, DK e 2200 Copenhagen,
Denmark), carriers contaminated with two different surrogate
viruses of SARS-CoV-2 were decontaminated in a 6 m3 gas-tight
test room furnished with a shelf.
Surrogate virus bacteriophage F6 (DSM 21518) and the
bacterial host strain Pseudomonas syringae pv. Syringae (DSM
21482) were purchased from Leibniz-Institute DSMZe Deutsche
Sammlung von Mikroorganismen und Zellkulturen GmbH
(Braunschweig, Germany). Initial lysate of bacteriophage F6
with a titre of 4 � 1011 plaque forming units (pfu)/mL was
produced using a top agar overlay technique as described by
the manufacturer. Then, 20 mL of a 1:10 dilution was struck out
and dried on ceramic tiles (5 � 5 cm, #3709PN00, Villeroy &
Boch, Mettlach, Germany), stainless steel carriers (#0344818,
Modulor GmbH, Berlin, Germany) and furniture boards
(melamine-coated solid core panels). After each experiment
F6 from both treated and untreated carriers was recovered by
rinsing the surfaces with 1 mL tryptic soy broth (TSB) þ 5 mM
CaCl2 medium 15 times. A quantitative plaque assay was
performed using top agar overlay with tryptic soy agar (TSA) þ
5 mM CaCl2 culture media after ten-fold serial dilution
(detection limit: <10 pfu/mL). Plates were incubated at 23�C
for 24 h.

In the same way, further carriers were contaminated with
50 mL of virus inoculum of BCoV strain L9. BCoV L9 and the host
U373 cells (passage 8) were obtained from G. Zimmer, Institute
of Virology, School of Veterinary Medicine, Hannover, Ger-
many. For preparation of test virus solution, a monolayer of
U373 cells were infected with BCoV L9. After an incubation
period of 24e48 h, cells were lysed by a rapid freeze/thaw
cycle. Cellular debris was removed, and the supernatant was
mixed with bovine serum albumin (BSA) (final concentration:
0.3 g/L BSA). After each experiment an endpoint dilution assay
was performed. Therefore, the treated and untreated carriers
were rinsed with 1 mL medium without fetal calf serum (FCS).
Remaining infectivity was determined by transferring 0.1 mL of
appropriate 10-fold serial dilutions into eight wells of a
microtitre plate with a preformed monolayer of U373 cells
(10e15 � 103 cells per well), beginning with the highest dilu-
tion. Before addition of virus, cells were washed twice with
Eagle’s minimum essential medium (EMEM) and incubated for 3
h with 100 mL EMEM with trypsin. Microtitre plates were incu-
bated at 37�C in a 5% CO2-atmosphere. The cytopathic effect
was read using an inverted microscope after five days and the
infective dose TCID50/mL was calculated.

For the decontamination experiments, contaminated car-
riers were placed horizontally at two different heights on the
shelf to represent the efficacy at high and low room levels.
Three prepared carriers of each material and surrogate virus
were positioned at the high (1.69 m) and two at the low (0.07
m) positions. For both surrogate organisms in each experiment,
two contaminated control carriers were placed in a room
without treatment. For bacteriophage F6, additional control
experiments at 90% relative humidity and 22�C were performed
in a climate chamber.

The disinfection process using the STERISAFE� Pro system
was investigated in two independent experiments for each
organism. According to the manufacturer’s instructions, the
decontamination time was 60 min with a target ozone con-
centration of 80 ppm and a target relative humidity of 90%
generated with the integrated humidifier and ozone generator
[23,24]. Ozone concentration and relative humidity were
continuously measured by integrated instruments and dis-
played on a mobile tablet computer outside of the room, as
well as being recorded by the instrument (Supplementary
Figure S1) [24]. After completion of the disinfection process,
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Figure 1. Microbial load of bacteriophage F6 (a) and bovine coronavirus (CoV) (b) on different surfaces before and post ozone decon-
tamination and comparison of the reduction factors achieved (c). The boxplots represent the variation of contamination with bacter-
iophage F6 (plaque forming units/mL) on ceramic tile, stainless steel and furniture board examined before and after automated room
decontamination (a). The control boxplots result from four samples of each material, whereas post ozone boxplots include 10 values per
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the ozone was converted back into pure oxygen
(Supplementary Figure S1) and by-products were removed in an
air-purification phase. When the process was displayed as fin-
ished on the tablet computer, the room could be entered again
immediately [24]. The ozone concentration in the treated room
then complied to usual limit values of 0.1 ppm (exposure limit
for 8 h per day carrying out light work) set by Occupational
Safety and Health Administration (OSHA) or The National
Institute for Occupational Safety and Health (NIOSH) [25]. Both
surrogate viruses were investigated together in two inde-
pendent experiments and reduction factors were calculated by
subtracting log10 of untreated and treated samples. As defined
elsewhere, virucidal efficacy was suggested if the mean
reduction factor was >4 log10 [26].
Results

The aim of the present study was to evaluate the virus-
inactivating properties of ozone in the presence of high rela-
tive humidity against surrogate BCoV and bacteriophageF6 in a
setting of room disinfection. Initial desiccation of bacter-
iophage F6 resulted in mean concentrations of 1.4� 107, 3.2 �
107 and 4.5 � 105 pfu/mL on ceramic tiles, stainless steel and
furniture board, respectively. Initial desiccation of BCoV
resulted in mean concentrations of 2.5 � 105, 4.0 � 105, and
6.4 � 105 TCID50/mL on ceramic tiles, stainless steel and fur-
niture board, respectively. The stability of both surrogate
organisms in the desiccation phase allowed further inves-
tigations to determine virucidal activity.

After the decontamination process with STERISAFE� Pro,
independent of the carrier material used or the room height,
no plaque forming units of bacteriophage F6 could be recov-
ered from the surfaces (Figure 1a). The STERISAFE� Pro ach-
ieved mean log10 reduction factors of 6.15 on ceramic tiles,
4.29 on furniture board and 5.31 on stainless steel surfaces for
the surrogate virus bacteriophage F6 (Figure 1c). Control
experiments with high humidity without additional ozone as
disinfectant revealed a minor decrease of viral activity
(Supplementary Figure S2), indicating that the observed viru-
cidal activity can only be reached by a combination of ozone
and humidity.

For BCoV, post ozone application, no residual virus could be
detected independent of the carrier material used or the
position in the room (corresponding to 3.16 TCID50/mL)
(Figure 1b). For the BCoV, mean log10 reduction factors of 4.88
on ceramic tiles, 5.03 on furniture board and 5.31 on stainless
steel surfaces could be determined (Figure 1c). STERISAFE�
Pro showed virucidal efficacy (reduction factor >4 log10) for
both surrogate organisms on all investigated surfaces.
Discussion

Previous studies have shown the distribution and trans-
mission of nosocomial pathogens due to surface contamination
material. Likewise, variation of viral load on surfaces contaminated
result from six (control) and 10 (post ozone) samples for each surf
experiments. The dashed lines (a, b) display the detection limits re
bacteriophage F6 and bovine CoV determined for different surfaces i
factor of four, which means virucidal effectiveness.
[11,27]. A common reason seems to be inadequate manual
cleaning and disinfection, which fail to remove surface bio-
burden [9,11,27]. To improve the effectiveness of surface
disinfection and to increase patient and occupational safety,
automated room disinfection systems could be a useful
method. Based on previous studies showing the efficacy of
ozone against respiratory viruses, the aim of the present study
was to test the efficacy of an ozone-based automatic room
decontamination device against surrogate viruses of the pan-
demic coronavirus SARS-CoV-2 [14].

The present results indicate a virucidal effectiveness
(reduction factor >4 log10) of ozone in combination with high
relative humidity for both tested surrogate viruses (bacter-
iophage F6 and BCoV), independent from the surface mate-
rial. The virucidal effect could be detected at different levels
in the test room. Therefore, a distribution of ozone and
humidity can be assumed as sufficient for successful decon-
tamination. Interestingly, on the furniture board, for bacter-
iophage F6, the calculated extent of the reduction was lower
than on the other materials tested. Differences in the reduc-
tion of bacteriophage F6 mainly are due to reduced recovery
of phages after initial contamination of control surfaces,
which probably results from random fluctuation or specific
surface conditions.

Recent studies have already shown that surface stability and
survival time of SARS-CoV-2 was influenced by environmental
conditions in particular temperature and relative humidity
[28e30]. Higher humidity and temperature decrease virus
survival time on surfaces [28]. However, for bacteriophage F6
we observed only a low decrease of viral activity under humid
conditions without the application of ozone. Therefore, it can
be assumed that only the combination of ozone with high rel-
ative humidity achieves full virucidal efficacy.

Because bacteriophage F6 is a small-enveloped virus, it
shares similarities with coronavirus. However, it is considered
to be more stable than coronavirus because it has a double-
stranded RNA genome [31]. In contrast, BCoV belongs to the
same family (Coronaviridae) and the same genus Betacor-
onavirus and subgenus Sarbecovirus as SARS-CoV-2. Both viru-
ses are likely to have similar properties and can be considered
as surrogate viruses for SARS-CoV-2. Therefore, it is assumed
that ozone is also effective against SARS-CoV-2. This assump-
tion is also supported by current literature reviews and initial
results from laboratory experiments that were able to show an
efficacy of ozone against SARS-CoV-2 [32e34].

The tested ozone room disinfection system represents a
safe and useful additional disinfection method that can be
implemented after the discharge of patients infected with
contagious and environmentally resistant pathogens such as
SARS-CoV-2. However, due to toxicity of ozone, doors and
ventilation diffusers must be strictly sealed to prevent
unintentional dissemination [24], resulting in an additional
workload for the operating person. Additionally, due to the
generated water aerosol, smoke detectors must also be cov-
ered to avoid unwanted alarms. During the disinfection cycle, a
with bovine CoV (TCID50/mL) were determined (b). The boxplots
ace material. All results were calculated from two independent
sulting from the method used. Moreover, reduction factor (R) of
s displayed (c). The dashed line (c) represents the log10 reduction
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concept is needed to prevent unauthorized room entrance
during the disinfection process.

Our study has several limitations. Firstly, clean conditions
were used for the experiments on solid surfaces. It has been
demonstrated that organic loading could have an inhibitory
effect on the efficacy of disinfection methods [35,36]. Further
experiments using test soiling for dirty conditions (bovine
albumin 3.0 g/L þ sheep erythrocytes 3 mL/L [26]) as well as
experiments with absorbent items need to be performed to
evaluate the virucidal effect for applications where insufficient
cleaning prior the disinfection process is expected. Secondly,
the experiments were conducted in a small room with a simple
room structure and only a few furnishings. However, in a recent
study, effectiveness against environmental resistant Enter-
ococcus faeciumwas analysed within complex room conditions.
A position-independent bactericidal effectiveness could be
shown, confirming a sufficient distribution of ozone and
humidity even in a furnished room with anteroom and bath-
room [37]. Furthermore, in order to achieve conditions that are
as close to reality as possible, we did not use standardized but
realistic room conditions for the untreated control panels that
prevailed at the time of the test. Spontaneous reductions that
could be caused by temperature and humidity fluctuations will
therefore not be excluded and assessed. Finally, before the
general implementation of such an ozone-generating device
can be recommended, further studies are needed to ensure the
safe operation in the hospital environment. The oxidizing
properties of ozone can lead to damage of many materials and
thus to a shortening of the life cycle of products [38]. Elas-
tomers and surface coatings in particular can be damaged [34].
The compatibility of ozone in connection with electronic
medical devices should be clarified with the manufacturers, as
is the case for all airborne disinfection processes. Thus, further
experiments are necessary to ensure compatibility with com-
mon furnishing and medical device materials in hospitals
[11,39]. To verify safety operation and efficacy, logging of
process data independent from disinfection device should be
recommended for practical application.

In summary, we found that ozone in combination with high
humidity as generated by an automated room decontamination
system has a high activity against SARS-CoV-2 surrogate viruses
bacteriophage F6 and BCoV on different solid surfaces in the
hospital environment, confirming the process as a virucidal
disinfection. Future work is needed to study compatibility with
different surface materials to ensure safe operation of auto-
mated room decontamination in the hospital setting.
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