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Abstract: Intact intestinal barrier function is essential for maintaining intestinal homeostasis. A
dysfunctional intestinal barrier can lead to local and systemic inflammation through translocation of
luminal antigens and has been associated with a range of health disorders. Butyrate, a short-chain
fatty acid derived from microbial fermentation of dietary fibers in the colon, has been described as an
intestinal barrier-strengthening agent, although mainly by using in vitro and animal models. This
study aimed to investigate butyrate’s ability to prevent intestinal hyperpermeability, induced by
the mast cell degranulator Compound 48/80 (C48/80), in human colonic tissues. Colonic biopsies
were collected from 16 healthy subjects and intestinal permeability was assessed by Ussing chamber
experiments. Furthermore, the expression levels of tight junction-related proteins were determined
by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Pre-treatment with
5 mM butyrate or 25 mM butyrate did not protect the colonic tissue against induced paracellular
or transcellular hyperpermeability, measured by FITC-dextran and horseradish peroxidase passage,
respectively. Biopsies treated with 25 mM butyrate prior to stimulation with C48/80 showed a reduced
expression of claudin 1. In conclusion, this translational ex vivo study did not demonstrate an acute
protective effect of butyrate against a chemical insult to the intestinal barrier in healthy humans.

Keywords: intestinal barrier function; butyrate; intestinal permeability; tight junctions;
Ussing chamber

1. Introduction

The intestine is the main organ involved in the uptake of nutrients and water. The intestinal barrier
provides an essential separation between the intestinal lumen and the internal body environments
and, thereby, between luminal antigens and the body’s immune system. As the subject of constant
dynamic regulation, intestinal barrier function helps the human body to react to external influences
and to maintain homeostasis. The intestinal barrier consists of a physical barrier (intestinal mucus
layer, epithelium and underlying tissue including the vascular endothelium) and a chemical barrier
(digestive secretions, anti-microbial peptides, immune molecules and inflammatory mediators) [1].
A well-functioning intestinal barrier, thereby, allows the uptake of nutrients and simultaneously
serves as an appropriate defense against the translocation of potentially harmful substances such as
lipopolysaccharides (LPSs) or microorganisms that could trigger the immune system. The passage of
these substances through a dysfunctional intestinal barrier may lead to local or systemic inflammation
and thus have negative consequences for both intestinal and systemic health. Ongoing inflammation
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processes can, in turn, result in a compromised intestinal barrier, leading to a vicious circle. Accordingly,
intraperitoneal injections of clinically relevant doses of LPSs in mice lead to a pro-inflammatory state
in the intestine and increased intestinal tight junction permeability [2]. In humans, altered intestinal
permeability has been associated with the pathogenesis of several gastrointestinal disorders including
inflammatory bowel diseases (IBDs), irritable bowel syndrome (IBS) and celiac disease [3,4]. Beyond
the gut, increased intestinal permeability has been associated with diseases such as diabetes [5] and
autism [6,7]. Further, these diseases have also been associated with low-grade systemic inflammation,
gut microbiota dysbiosis and lower levels of butyrate-producing bacteria in the gut [8–13].

Butyrate is a short-chain fatty acid (SCFA) derived from microbial fermentation of dietary fibers
in the colon. Luminally produced butyrate is rapidly absorbed by the colonic mucosa and almost
completely used as an energy source by colonocytes [14–16]. Only relatively small amounts of butyrate
enter the bloodstream [17–19]. As butyrate is known to be a histone deacetylase inhibitor with, among
others, reported anti-inflammatory, oxidative stress-reducing and intestinal barrier strengthening
effects [20,21], it has become an interesting research target for novel treatment and prevention strategies.

Several studies, using cell culture models and animal models, have shown that butyrate can
strengthen barrier function and decrease intestinal permeability [22–27]. Paracellular permeability is,
to a great extent, controlled by tight junctions, and disrupting their integrity and assembly results in
increased permeability (“leaky gut”) [28]. Butyrate has been shown to affect the expression of tight
junction proteins including claudin 1, claudin 2, claudin 7 and occludin in human cell culture models
and in the small intestine of rats [29–34], suggesting this as a possible mechanism by which butyrate
beneficially affects intestinal permeability. However, most of the knowledge on butyrate’s effect on
barrier function and intestinal permeability comes from in vitro work and animal models and more
studies addressing butyrate’s role on intestinal permeability in humans need to be performed before
we can consider its therapeutic use. Thus, the aim of this study was to investigate butyrate’s ability to
prevent induced intestinal hyperpermeability in human colonic tissues by applying an ex vivo setting.

2. Materials and Methods

2.1. Study Participants and Ethics

Sixteen healthy subjects aged between 18 and 65 years were included in the study. Subjects were
recruited via advertisements placed at Örebro University campus. Exclusion criteria included previous
complex abdominal surgery, a hypertonic condition demanding medical treatment, a diagnosed
psychiatric disease, usage of prescribed medications (except oral contraceptives) during 14 days
preceding the intervention, premenstrual syndrome, being pregnant or breast feeding, or a diagnosed
gastrointestinal disease (e.g., IBDs). The study was approved by the Regional Ethical Review Board
in Uppsala (Dnr 2013/037). The principles of the Helsinki declaration were followed throughout the
study and all participants signed an informed consent before participation.

2.2. Ussing Chamber Experiment

2.2.1. Collection of Colonic Biopsies

Study participants (n = 16) underwent a sigmoidoscopy in the morning after 10 h fasting. No
bowel cleansing procedure was performed in order to avoid affecting mucosal integrity. Colonic
biopsies were obtained from the unprepared sigmoid colon, at the crossing with the common ileac
artery, using non-spiked Captura biopsy forceps (Cook Medical, Bloomington, IN, USA) and were
immediately transferred to ice-cold oxygenated modified Krebs–Ringer bicarbonate buffer (aqueous
solution with 115 mM NaCl, 1.25 mM CaCl2, 1.2 mM MgCl2, 2 mM KH2PO4 and 25 mM NaHCO3, set
to a pH of 7.2 with 1 M hydrochloric acid solution and then oxygenated with gas containing 95% O2

and 5% CO2; from now on, called KRB). Biopsies were transported in KRB buffer to the laboratory
within 10 min.
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2.2.2. Experimental Setup

A total of twelve biopsies from each participant were used per experiment. Six biopsies were used
as experimental controls—three biopsies were left unstimulated and three biopsies were stimulated
with 10 ng/mL C48/80 (Sigma-Aldrich, Saint Louis, MO, USA), a previously described mast cell
degranulator used to induce hyperpermeability [35,36]. The remaining biopsies were divided in two
treatment groups—three biopsies were pre-treated with 5 mM sodium butyrate (Sigma-Aldrich) and
three biopsies were pre-treated with 25 mM sodium butyrate before stimulation with 10 ng/mL C48/80.

2.2.3. Experimental Procedure

Biopsies were mounted in 1.5 mL Ussing chambers (Harvard apparatus Inc., Holliston, MA, USA).
Within the chambers, the biopsies were held in between two polyester films that exposed a round
area of 1.77 mm2 of the mounted biopsy, as described previously [37]. Both half chambers were filled
with ice-cold KRB. Buffers facing the serosal side of the tissue contained glucose (0.01 M), whereas
buffers on the mucosal side contained mannitol (0.01 M). Throughout the experiment, every chamber
was continuously oxygenated with 95% O2 and 5% CO2 and held at 37 ◦C. To monitor tissue viability,
the electrophysiological parameters transepithelial electrical resistance (TER), potential difference
(PD) and short-circuit current (Isc) were measured every 30 s throughout the experiment. Biopsies
with a PD > 0.5 were excluded due to uncertain viability [37]. After 10 min of equilibration, buffers
on both sides were exchanged with fresh 37 ◦C warm buffers. Sodium butyrate (Sigma-Aldrich)
was added to the mucosal side of the chamber, with a final concentration of 5 or 25 mM. Twenty
minutes thereafter, C48/80 (10 ng/mL) or KRB (unstimulated group) was added to the serosal side of
the designated chambers. The C48/80 concentration used has previously been optimized for Ussing
chambers within our laboratory [38]. The paracellular permeability marker FITC-dextran 3000–5000
(FD4, Sigma-Aldrich; 2.5 nM) and the transcellular permeability marker 45 kDa protein horseradish
peroxidase (HRP; Type IV, Sigma-Aldrich; 5.38 µM) were added to the mucosal side. Permeability was
assessed at baseline (T0), 30 min (T30) and 60 min (T60) after the markers were added. After the Ussing
experiment, biopsies were quickly removed from the chambers and stored in RNALater (ThermoFisher
Scientific, Waltham, MA, USA) at 4 ◦C overnight and further kept at −20 ◦C until RNA isolation.

2.2.4. Measurement of Median TER

Baseline TER values were measured in a time window of 10 min before any treatment or stimulation
(time period between T-30 and T-20), and median TER values (MTER) were calculated. MTER was used
to access baseline paracellular integrity and to exclude any significant selection bias before treatments
were applied.

2.2.5. Measurement of FITC-dextran and HRP

FITC-dextran passage was determined by fluorescence measurement at ∆ex = 485 nm and ∆em =

530 nm using an EnSpire Multimode Plate Reader (PerkinElmer, Waltham, MA, USA). Horseradish
peroxidase was measured by ELISA using the QuantaBlu Fluorogenic Peroxidase Substrate Kit (Thermo
Fisher Scientific) as previously described [38]. Measurements were performed in duplicates with a
standard curve. FITC-dextran and HRP passages are expressed as ∆T60-T0.

2.3. RNA Isolation

Biopsies were homogenized with a TissueRuptor (Qiagen, Venlo, The Netherlands) in 500 µL
Trizol reagent (Thermo Fisher Scientific) per biopsy. The manufacturer’s instructions were followed
until phase separation with the addition of two changes: 200 µL chloroform was used per biopsy and
the centrifugation was performed at 21,000× g. The aqueous phase was then transferred to a Qiagen
RNeasy mini column and the manufacturer’s instructions were followed to isolate RNA. RNA was
eluted in diethylpyrocarbonate (DEPC)-treated water (Invitrogen by Thermo Fisher scientific, Waltham,
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MA, USA) and RNA quantity and quality were assessed by a BioAnalyzer 2100 using a RNA Nano
6000 kit (Agilent technologies, Santa Clara, CA, USA), according to the manufacturer’s instructions.
RNA integrity numbers (RIN) of 5 and higher were accepted for qRT-PCR analyses. All the biopsies
from one participant were excluded because of poor RNA quality.

2.4. Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR)

Complementary DNA (cDNA) of 100 ng isolated RNA transcripts were made using a Superscript
Vilo cDNA synthesis kit (Thermo Fisher Scientific) with a 20 µL final volume according to the
manufacturer’s instructions, and subsequently stored at −20 ◦C.

For the real-time PCR, 1.5 µL cDNA in 13.5 µL mastermix was used per well in a 96-well MicroAmp
fast optical reaction plate (Thermo Fisher Scientific). The mastermix contained 7.5 µL LuminoCt qPCR
Ready Mix (Sigma-Aldrich), 0.45 µL ROX dye (Sigma-Aldrich), 0.375 µL TaqMan FAM-MGB probe
(Thermo Fisher Scientific) and 5.175 µL PCR-grade water (Sigma-Aldrich) per well. The TaqMan
probes used were claudin 1 (Hs00221623_m1CLDN1), claudin 2 (HS00252666_s1CLDN2), claudin 7
(HS00600772_m1CLDN7), occludin (HS00170162_m1OCLN), and IkB-alpha (Hs00355671_g1NFKBIA).
GAPDH (probe: Hs99999905_m1GAPDH) was used as a reference gene. The qPCR reaction was
performed in a 7900HT Fast Real-Time PCR System (Applied Biosystems by Thermo Fisher Scientific,
Waltham, MA, USA) with one cycle at 95 ◦C for 20 s, and 40 subsequent cycles at 95 ◦C for 2 s and
60 ◦C for 20 s. A fixed threshold among plates was used per probe. Triplicate values of Ct were
accepted when the standard deviation was below 0.3 and a PCR-efficiency of 100 ± 10% was verified
by a standard curve of serial dilutions. Relative quantification was performed by calculating the ∆∆Ct
according to Livak and Schmittgen [39] using Ctreference gene-Ctgene of interest as the ∆Ct. The qPCR
results are presented as log fold changes (∆∆Ct) of unstimulated or C48/80 plus butyrate-treated vs.
C48/80–stimulated biopsies alone.

2.5. Statistical Analyses

The significance of treatments in FITC-dextran and HRP passage in Ussing experiments were
analyzed by repeated measures one-way ANOVA and Bonferroni’s post-hoc multiple comparisons
correction. Differences in MTER and the reduction in relative TER were tested by one-way ANOVA
with Bonferroni post-hoc multiple comparison correction and the Kruskal–Wallis test with Dunn’s
post-hoc multiple comparison test, respectively. Gene expression data was analyzed on ∆∆Ct values
using the Friedmann test with Dunn’s post-hoc multiple comparisons test. Correlations between age
and intestinal permeability were tested using linear regression. The influence of sex on the effects
of the stressor C48/80 or butyrate on permeability was tested with a two-way ANOVA and Sidak’s
post-hoc multiple comparisons correction. Normal distribution was tested with the Shapiro–Wilk test.
For normally distributed data, ANOVA tests were used. For non-parametric data, the Kruskal–Wallis
test and the Friedmann test were used. Differences were considered significant at p < 0.05 and trends
for statistically significant differences were recognized at p < 0.10.

3. Results

A total of 16 experiments were conducted. A threshold of 20% difference between the unstimulated
group and the C48/80 group in either of the permeability markers (FITC-dextran or HRP) was established
in order to assure a substantial stressor effect. Five experiments were excluded because the stressor
C48/80 failed to increase intestinal permeability in the biopsies tested and one experiment was excluded
because of technical problems with the Ussing chambers. Only results from the experiments with
increased permeability are included in the results and discussion if not stated differently. The full
dataset is visualized in Figure S1 of the supplements. Information about the distribution of age and
sex in the study population is shown in Supplementary Table S1.
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3.1. Electrophysiological Changes

All groups had similar paracellular integrity before treatments and stimulations, as shown by the
not significantly different median transepithelial electrical resistance (MTER) values in Figure 1.
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Figure 1. Median baseline TER (MTER) for the different treatment groups. Boxplots show MTER with
the marked median, and whiskers visualize minimum and maximum values. MTER was determined
within a time period of 10 min (T-30 to T-20) prior to any treatment or stimulation of colonic biopsies
mounted in Ussing chambers. n = 10.

The electrophysiological parameters TER, PD and Isc were monitored over time. PD was confirmed
to be within a viable range throughout the experiments (≤0.5 mV). Moreover, the absolute TER values
dropped similarly among the groups without any significant differences throughout the 60 min of the
Ussing experiment (Supplementary Table S2).

Changes in relative TER values for the duration of the experiment are shown in Table 1, with 30
min intervals. TER at the beginning of the experiment (T0) was set as 100%, and values for T30 and
T60 were normalized to T0. No significant differences were observed between groups, but a tendency
(p = 0.062) towards lower relative TER was seen after 60 min in the C48/80 plus 25 mM butyrate group
compared to the C48/80 group.

Table 1. Relative transepithelial electrical resistance (TER) values (mean ± s.d.) normalized to baseline
(T0).

Stimulation and Treatment T0 T30 T60

Unstimulated 100.00 84.37 ± 9.75 80.43 ± 10.42
C48/80 100.00 88.49 ± 14.30 84.74 ± 16.25

C48/80 plus 5 mM butyrate 100.00 82.06 ± 9.05 78.29 ± 10.06
C48/80 plus 25 mM butyrate 100.00 76.68 ± 9.37 72.96 ± 9.48

3.2. Pre-Treatment with Butyrate Did Not Affect Human Intestinal Permeability Ex Vivo

Colonic biopsies stimulated with C48/80 exhibited increased permeability, as demonstrated by a
significantly higher passage of the paracellular marker FITC-dextran (p = 0.018) and the transcellular
permeability marker HRP (p = 0.013) compared to the unstimulated biopsies (Figure 2). Pre–treatment
with 5 mM butyrate or 25 mM butyrate did not significantly affect paracellular or transcellular
permeability compared to biopsies that were stimulated with C48/80 alone (Figure 2).
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Figure 2. Effects of butyrate on intestinal permeability in colonic biopsies mounted in Ussing chambers.
Paracellular permeability (A) and transcellular permeability (B) are displayed with dots connected
by a line for each participant. Biopsies were analyzed in biological triplicates with no stimulation,
stimulation with C48/80 (10 ng/mL) alone or in combination with 5 mM sodium butyrate or 25 mM
sodium butyrate, respectively. * p < 0.05, n = 10.

3.3. Butyrate Did Not Increase the Expression of Tight Junction Proteins in Colonic Biopsies

The expression level of claudin 1 was significantly decreased in the biopsies treated with C48/80
plus 25 mM butyrate compared to the biopsies stimulated with C48/80 alone (p = 0.002) (Figure 3). No
other significant differences in the expression levels of claudin 1, claudin 2, claudin 7, occludin and
NF–κB inhibitor alpha (IkB–alpha) were observed, both when comparing the C48/80 plus butyrate (5 and
25 mM) groups to the C48/80 group and when comparing the C48/80 group to the unstimulated group.
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4. Discussion

In recent years, several studies have linked intestinal barrier dysfunction to a variety of disorders
and diseases. Indeed, different diseases including IBDs, IBS, celiac disease and type 2 diabetes
have been associated with increased intestinal permeability and are all characterized by sustained
increased immune and inflammatory activity [3,4,40]. Substances such as LPSs that can evoke an
immune response are abundant in the intestinal lumen. An intact intestinal barrier efficiently prevents
translocation of these substances to the internal body environment. However, in a scenario of impaired
barrier function with increased intestinal permeability, both local and systemic inflammation cascades
might be triggered by the translocation of luminal components into the host. Impaired intestinal barrier
function is now seen as a hallmark of IBDs, and immunity and intestinal barrier function appear to be
closely interconnected to their pathophysiology on both the cellular and molecular levels [41]. Given
the importance of the intestinal barrier for health, knowledge on how intestinal barrier function can be
improved is of great value.

Butyrate has been described as an intestinal barrier-strengthening agent for more than a decade,
mainly by using in vitro and animal models [42]. The results from the present study showed that
during acute conditions, butyrate at physiological concentrations of 5 and 25 mM did not protect
human colonic tissue against C48/80–induced hyperpermeability ex vivo. Although the biopsies
incubated with C48/80 demonstrated a significant increase in both para- and transcellular permeability
compared to the unstimulated biopsies, no differences were observed between the C48/80–stimulated
biopsies and the biopsies that were pre-treated with butyrate prior to the stressor-stimulation. While
the results from the present study demonstrate that butyrate does not exert acute regulatory effects on
the intestinal permeability of human tissue ex vivo, butyrate may still have long-term regulatory effects.
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Several cell culture studies have shown that butyrate has the ability to increase the monolayer’s TER, a
broadly accepted measurement reflecting paracellular permeability and tight junction integrity [43].
Indeed, butyrate concentrations between 1 and 5 mM were shown to significantly increase TER after
24 to 96 h in Caco-2 or HT-29 cell monolayers accompanied with a decreased paracellular permeability
measured by inulin, mannitol or FITC-dextran passage [22–25,34,44]. In addition, a recent in vitro study
showed that sodium butyrate, at concentrations ranging between 1 and 10 mM and 5 days incubation
time significantly improved the epithelial barrier function in E12 human colon cells measured by
TER and FITC-dextran passage, whereas higher concentrations (50–100 mM) showed no beneficial
effects [45]. Butyrate has also been shown to partly counteract earlier induced damage to rat colonic
tissue [27,46]. However, all the aforementioned studies were conducted using in vitro or animal models
and, moreover, some preclinical studies have revealed contradictory findings to butyrate’s intestinal
barrier-strengthening effects [47–49]. In a recent ex vivo study using monolayers of primary epithelial
cells from subjects with and without ulcerative colitis, 48 h co-incubation with 8 mM butyrate increased
TNFα and IFNγ-induced barrier impairment and enhanced inflammatory responses, although the
gene expression levels of tight junction proteins indicated a strengthened barrier [49]. Since human
studies assessing butyrate’s effects on intestinal barrier function and intestinal permeability are scarce,
we employed an ex vivo human setting to explore the potential of an acute stimulation with butyrate
to prevent stress-induced hyperpermeability in human colonic biopsies. By pre-treating biopsies
with butyrate prior to adding a stressor (C48/80) that induces hyperpermeability, we were able to
mimic a more biologically relevant preventive setting. In contrast to the present study, the previously
mentioned studies have all determined the effect of butyrate without applying an insult to the model or
tested whether butyrate rescues intestinal permeability by incubating butyrate after an induced stress.

C48/80 is known to induce mast cell degranulation, leading to the release of histamine, proteases
and cytokines that, in turn, can increase tissue permeability. This has previously been shown in vitro
with the release of tryptase affecting claudin 1-expression [50] and the assembly of claudin 1, occludin
and zonula occludens 1 (ZO–1) in tight junctions [51]. Moreover, the release of TNF–alpha subsequently
activated NF–κB and changed the protein levels of ZO-1 [52] and increased the expression levels of
the pore-forming claudin 2 [53]. In the present study, stimulation with C48/80 did not significantly
change the expression level of the tight junction proteins claudin 1, claudin 2, claudin 7 and occludin
in the colonic biopsies. This could be due to insufficient incubation time or insufficient mast cell
degranulation. To which extent mast cells underwent degranulation in the biopsies used in the present
study was, however, not evaluated. Furthermore, it is possible that C48/80 affects tight junctions by
altering or disrupting their assembly, changing internalization rates or the degradation of tight junction
proteins [54], rather than affecting their expression. This could explain why we observed increased
intestinal permeability in the C48/80 group compared to the unstimulated biopsies, but no differences
in the gene expression levels of the assessed tight junction proteins. Additionally, other tight junction
proteins that were not analyzed in the present study, such as ZO–1 or other claudins, could have been
affected. The precise molecular mechanism of how C48/80 increases intestinal permeability, if not
mediated through the expression of the tight junction proteins addressed in this study, remains to be
further evaluated. Our results demonstrated a significantly lower expression of claudin 1, a sealing tight
junction protein, in the biopsies that were treated with 25 mM butyrate compared to C48/80-stimulated
biopsies alone. A reduced claudin 1 expression has been shown to increase paracellular permeability in
several studies [31,55]. However, in the present study, we did not observe an increase in permeability
in the biopsies treated with 25 mM butyrate prior to C48/80 compared to biopsies stimulated with
C48/80 alone. Moreover, previous findings of cell culture studies, showing altered expression rates of
claudin 1, claudin 2, claudin 7 and occludin following butyrate exposure [29–34,49], were not observed
in the present ex vivo study. Further, a greater variation between replicates is observed using tissues
compared to cell cultures [56].

Age and sex are possible factors influencing intestinal barrier function [57,58] and mast cell
degranulation [59]. In our dataset, however, we could not find any significant correlations between
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age and measured permeability of unstimulated biopsies, nor between age and the effects of the
stressor C48/80 or of butyrate on intestinal permeability (Supplementary Table S3). Furthermore,
no significant differences were observed when comparing the effects of the stressor or butyrate on
intestinal permeability between male and female participants (Supplementary Table S3). However,
this has to be considered with caution, as the number of individuals of each sex is quite small.

A previous study by Vanhoutvin et al. detected an upregulation of IkB-alpha in healthy subjects
after self-administration of 100 mM butyrate enemas daily for two weeks compared to placebo [60].
The authors suggested a potential anti-inflammatory effect of butyrate by the inhibition of NF-kB
activation—an inhibition that could potentially also protect tight junctions and the paracellular barrier
as shown in several other studies [52,61]. However, an altered expression of IkB-alpha was not observed
in the present study. This might be due to the differences in the study design, the higher butyrate
concentration used and/or the much longer exposure time to butyrate in the study by Vanhoutvin et
al. [60].

Minor and non-significant differences in MTER including slightly higher TER values in the
unstimulated group and slightly lower TER values in the C48/80 plus 25 mM butyrate group compared
to the two other groups were observed in the present study. MTER is a baseline value before any
treatment or stimulation has been performed, which could indicate a possible selection bias that was
introduced during the mounting of the biopsies. As the absolute reduction in TER throughout the
experimental duration was similar among the different treatment groups, the described variations in
MTER could have led to the trend towards a bigger relative reduction in TER seen in the C48/80 plus
25 mM butyrate group. It is also possible that the higher concentration of 25 mM butyrate led to a
higher decrease in TER. This corresponds well with the significantly lower claudin-1 expression in the
25 mM butyrate plus C48/80 group. However, this effect was not reflected in increased paracellular
permeability in that group of biopsies.

Although preclinical studies generate important data, clinical translation remains a challenge.
Discrepancies between our results and that of studies applying cell cultures and animal models may
be related to different butyrate concentrations, to the limited incubation time during the Ussing
experiment and to different mechanisms involved in the effects of butyrate on intestinal barrier function
that were not covered in this study, such as secreted mucins, trefoil factors, transglutaminase, heat
shock proteins or inflammatory factors. In the present study, we selected butyrate concentrations that
resemble physiological conditions in the human distal colon. SCFA concentrations in fecal matter from
the human proximal colon range from 70 to 140 mM and decline to 20 to 70 mM in the distal colon, with
a general ratio of 3:1:1 for the three SCFAs, acetate, propionate and butyrate [17,62]. In stool samples,
butyrate concentrations between 1.8 and 48.5 mmol/kg [63–66] and even up to 231.4 mmol/kg [67]
have been reported. Hence, the butyrate concentrations used in the present study, 5 and 25 mM,
are concentrations within a physiological range in the distal colon. In addition, the recommended
concentration of butyrate used in in vitro models is currently 0–8 mM [31].

C48/80 can increase intestinal permeability by degranulating mast cells, thereby resembling a
Corticotropin-releasing hormone (CRH)-mediated neuroimmune response to psychological stress
which is believed to be a potential pathophysiological mechanism in gastrointestinal disorders connected
to barrier defects [68]. It therefore seemed to be a valid stressor to be used in our experimental design.
However, in agreement with previous observations in human colonic biopsies mounted in Ussing
chambers [36], C48/80 did only significantly increase the permeability in 66% of the subjects included
in this study, reducing the total number of experimental replicates.

5. Conclusions

Butyrate has previously been shown to strengthen the intestinal barrier and thus prevent
the translocation of luminal antigens such as LPSs and subsequent inflammatory processes. This
translational ex vivo study showed that an acute stimulation with butyrate, at physiological
concentrations, did not protect human colonic tissue against increased permeability induced by
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a chemical stressor. Hence, further clinical studies are needed to clearly delineate the effects of butyrate
on intestinal permeability and barrier function.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/5/766/s1,
Figure S1: Effects of butyrate on intestinal permeability in colonic biopsies from all participants; Table S1: Age
and sex distribution in the study population and in its subgroups; Table S2: Absolute transepithelial electrical
resistance (TER) values (mean ± s.d.); Table S3: Correlation analysis between age and intestinal permeability and
between sex and intestinal permeability.
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