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Abstract 22 

Objective. Brain-Computer Interfaces (BCIs) hold significant promise for restoring communication in 23 

individuals with partial or complete loss of the ability to speak due to paralysis from amyotrophic lateral 24 

sclerosis (ALS), brainstem stroke, and other neurological disorders. Many of the approaches to speech 25 

decoding reported in the BCI literature have required time-aligned target representations to allow 26 

successful training – a major challenge when translating such approaches to people who have already lost 27 

their voice. Approach. In this pilot study, we made a first step toward scenarios in which no ground truth 28 
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is available. We utilized a graph-based clustering approach to identify temporal segments of speech 29 

production from electrocorticographic (ECoG) signals alone. We then used the estimated speech 30 

segments to train a voice activity detection (VAD) model using only ECoG signals. We evaluated our 31 

approach using held-out open-loop recordings of a single dysarthric clinical trial participant living with 32 

ALS, and we compared the resulting performance to previous solutions trained with ground truth acoustic 33 

voice recordings. Main results. Our approach achieves a median error rate of around 0.5 seconds with 34 

respect to the actual spoken speech. Embedded into a real-time BCI, our approach is capable of providing 35 

VAD results with a latency of only 10 ms. Significance. To the best of our knowledge, our results show for 36 

the first time that speech activity can be predicted purely from unlabeled ECoG signals, a crucial step 37 

toward individuals who cannot provide this information anymore due to their neurological condition, such 38 

as patients with locked-in syndrome. Clinical Trial Information. ClinicalTrials.gov, registration number 39 

NCT03567213. 40 
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Introduction 43 

Several neurological disorders, including amyotrophic lateral sclerosis (ALS), can result in severe paralysis 44 

and loss of speech, having devastating effects on the quality of life of affected individuals. Recent 45 

advances in implantable Brain-Computer Interfaces (BCIs) have raised hope for the restoration of 46 

communication in this clinical population1,2 by utilizing neural activity acquired directly from the cerebral 47 

cortex to control a neuroprosthetic device that produces text3–7 or synthesizes speech7–13. Those BCIs are 48 

currently trained using supervised learning paradigms where neural activity is mapped onto target 49 

representations14,15, such as phonemes or acoustic units, and are therefore dependent on accurate 50 

temporal alignments to achieve proper outputs. For this reason, many prior studies in the field have relied 51 

on datasets collected from patients who had normal speaking capabilities, such as epilepsy patients8,13,16,17 52 

or patients who underwent surgery for glioma removal9,11 – datasets where the temporal alignment can 53 

be obtained from simultaneous acoustic recordings.  54 

In recent years, clinical trials have begun exploring the extent to which approaches previously used in 55 

normal speaking subjects can be translated to people in actual need for such a technology3,7,18,19, and while 56 

those enrolled clinical-trial participants were speech impaired, their diseases had not yet been progressed 57 
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into a state of total paralysis that prevented inferring such an alignment. However, in cases where the 58 

disease has already progressed to the locked-in syndrome (LIS)20,21, it may not be possible to infer the 59 

temporal alignment at all from acoustic data. In pioneering work by Guenther et al.22, a participant living 60 

with LIS was able to accurately synthesize vowels continuously using a Kalman filter-based decoding 61 

approach with closed-loop neurofeedback. Additionally, more recent work by Chaudhary et al. gave a 62 

completely locked-in patient a novel means of communications by spelling sentences using a paradigm 63 

that required modulating firing rates with respect to auditory feedback23.    64 

In this study, we make a first step toward acoustic-free model training by assuming that no temporal 65 

alignment can be obtained from simultaneous microphone recordings. For this early work, we focus only 66 

on localizing and identifying neural activity related to speech processes. Voice Activity Detection (VAD) 67 

systems play a crucial role in acoustic speech processing fields, such as automatic speech recognition24 or 68 

speaker diarization25, where they may be used in early processing stages to exclude non-speech data when 69 

computing acoustic features or embedding vectors. Similarly, many recent BCI studies have also utilized 70 

approaches to locate and isolate neural activity related to speech production in their pipelines as an 71 

intermediary step to constrain the solution space of speech decoding tasks, both for word recognition19,26 72 

and synthesis applications18. Another application for these neural Voice Activity Detection (nVADs) 73 

systems of particular relevance to BCIs is to prevent leakage of speech-related activity into computation 74 

of baseline statistics within real-time systems.  Decoding performance can degrade over time because the 75 

feature space may shift linearly beyond the range expected from the training data. nVAD techniques could 76 

help here to determine which parts of the neural data should be considered when updating a running 77 

baseline, rather than relying only on a fixed time window containing both speech and non-speech activity. 78 

To the best of our knowledge, all previous methods have relied on supervised learning machines trained 79 

directly on acoustic ground truth18,19,27 or labeled information26 inferred from behavioral cues28 – 80 

suggesting that such approaches may not translate to individuals where their disease does not allow 81 

vocalization or any observable articulatory movements. 82 

Here, we present first results on unsupervised detection of neural voice activity from unlabeled ECoG 83 

signals. We did so by setting up an experiment in which a clinical trial participant was instructed to read 84 

single words, and where the majority of time for each recording session did not carry speech activity – a 85 

design decision we actively exploited to automatically assign identified segments as either speech or non-86 

speech classes. We utilized a graph-based clustering approach29 to find structural patterns with a fixed 87 

temporal context in high-gamma activity extracted from ECoG recordings, and used those estimated 88 
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clustering labels to train a recurrent neural network (RNN). In our evaluation, we first quantified the 89 

alignment error between estimated labels from the clustering approach and ground truth acoustic speech 90 

information to determine ranges of expected error rates. Next, we compared the performance of our RNN 91 

architecture trained on those estimated labels with respect to baseline models previously proposed in the 92 

literature trained on VAD labels inferred from acoustic speech. From here, we then inspected how well 93 

our model translated to unseen words. 94 

Material and Methods 95 

Participant and experiment design 96 

We conducted an experiment with a clinical trial participant (CC01, male) in his 60s with dysarthria due to 97 

ALS, who had been implanted with two ECoG arrays with 64 electrodes each (4-mm center-to-center 98 

spacing, 2-mm diameter) covering speech and upper-limb cortical areas (Figure 1a). The participant could 99 

speak, but his speaking capabilities were limited, and continuous speech was mostly unintelligible due to 100 

his neurological condition18,19 (speech was rated with 1 point out of 5 on the ALSFRS-R measure30). In a 101 

speech production task, we presented single words on a monitor in front of him and gave instructions to 102 

read them out loud. For each trial, the target word was presented for 2 seconds following an inter-trial 103 

interval of 3 seconds. Overall, the word pool consisted of 50 words3, and each word was repeated twice 104 

in each session. We repeated this experiment across 10 days over a period of 9 weeks. Furthermore, we 105 

also collected single word data from a larger word pool of 688 words, which we used to quantify 106 

generalization towards unseen words. In this corpus, each word only appeared once, and none appeared 107 

in the training data. At the start of each recording day, we conducted a syllable repetition task, which was 108 

used for normalizing the neural data. The syllable repetition task was constant across all days to achieve 109 

similar statistics for the baseline, in accordance with a prior publication with the same study participant18.  110 

Neural data was digitized using a NeuroPort System (Blackrock Neurotech, Salt Lake City, UT, USA) with a 111 

sampling rate of 1 kHz. Audio data was recorded at 48 kHz using an external microphone (BETA® 58A, 112 

SHURE, Niles, IL). We used BCI200031 for stimulus presentation and for aligning neural and acoustic signals 113 

for offline analysis. The clinical trial (ClinicalTrials.gov, NCT03567213) was approved by the Johns Hopkins 114 

University Institutional Review Board (IRB) and by the FDA (under an investigational device exemption) to 115 

test the safety and preliminary efficacy of a brain-computer interface composed of subdural electrodes 116 

and a percutaneous connection to external EEG amplifiers and computers. The participant gave informed 117 
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consent after being counseled about the nature of the research and implant-related risks, and was 118 

implanted with the study device in July 2022. 119 

Cortical mapping 120 

The positioning of both subdural ECoG grids was determined via anatomical landmarks from pre-operative 121 

structural (MRI) and functional imaging (fMRI). After the surgical implantation of the grids, we conducted 122 

a post-operative CT scan, which was co-registered to a pre-operative MRI for verification of the anatomical 123 

locations of the two grids. Figure 1a shows a rendering of the participant’s brain and the locations of both 124 

electrode grids, where the 64 electrodes highlighted in orange were relevant in this study with respect to 125 

prior observations18 about encoded speech activity. 126 

Signal processing and feature extraction 127 

We obtained speech-related features from raw ECoG signals by extracting the high-gamma (HG) band, 128 

which has shown to track closely the location and timing of speech production neural activation32,33 and 129 

has been successfully employed in previous studies for speech BCIs4,18,19,34–36. 130 

First, we removed all bad channels (19, 38, 48 and 52) based on visual inspection and applied a common 131 

average referencing (CAR) filter across each grid independently. Next, we selected the top 64 channels 132 

with the strongest activation during overt speech production, identified in a previous study18 with the 133 

same clinical trial participant. We then used a bandpass filter (IIR Butterworth, 4th order) to extract the 134 

broadband HG band in the range of 70 - 170 Hz and a notch filter (IIR Butterworth, 4th order) to attenuate 135 

the first harmonic of the line noise in the range of 118 - 122 Hz. Finally, for each channel we computed 136 

logarithmic power features with respect to a window size of 50 ms and a frame shift of 10 ms. We 137 

normalized all features to zero mean unit variance (z-score normalization) with respect to a syllable 138 

repetition task conducted at the beginning of each recording day to calibrate the system for day-specific 139 

high-gamma changes (see supplementary Figure S1 about the stability of the ECoG signals during the study 140 

period). Before using these features for baseline model training, we augmented each frame with a context 141 

stacking of 6 consecutive intervals to model temporal dependencies of up to 300 ms in the past. This step 142 

was not included in the clustering procedure as the clustering algorithm itself manages a fixed window of 143 

past frames to account for the temporal relationships in each cluster. 144 

The acoustic data for performance evaluation was collected at 48 kHz, resampled to 16 kHz and 145 

segmented into corresponding windows of 50 ms and 10 ms frameshift to match the alignment with the 146 
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HG features. We verified that no channels had been contaminated with acoustic artifacts by using 147 

Roussel’s method37. The details of the contamination report are given in supplementary Figure S2. 148 

Unsupervised temporal localization of speech production  149 

To identify speech-associated activity in neural recordings, we adopted a graph-based clustering approach 150 

named Toeplitz Inverse Covariance-based Clustering (TICC), specifically designed for discovering common 151 

subsequences in multivariate time series data. This unsupervised algorithm defines one Markov Random 152 

Field (MRF) per cluster and describes relationships in the form of connections between input features. In 153 

our study, these connections would describe dependencies between the neural activity of different 154 

electrodes, both with respect to spatial and (potentially) causal temporal patterns.  155 

TICC’s training procedure is based on an iterative optimization method that employs a variation of the 156 

expectation maximization algorithm which first alternates cluster assignments before updating its cluster 157 

parameters. Here, the cluster assignment step is based on the path with the minimum cost, obtained 158 

using a dynamic programming paradigm. Once this path has been found, the maximization step updates 159 

the cluster parameters based on the assigned data points. The training procedure converges when no 160 

data points are assigned to a different cluster and are therefore stationary. 161 

Besides the number of clusters, the TICC algorithm can be configured with respect to the length of the 162 

temporal context and regularization parameters. By specifying multiple layers for the MRFs, data points 163 

won’t get clustered in isolation but in context to neighboring past observations, allowing it to learn cross-164 

time relationships. Note that temporal layers in the MRFs also obey the Toeplitz constraint to be time-165 

invariant. The regularization parameters β and λ signify the penalty factor for adjacent subsequences 166 

being assigned to the same cluster and denote the sparsity level in the MRF’s graph structure 167 

characterizing each cluster, respectively. A higher β value will result in a greater likelihood of adjacent 168 

subsequences being assigned to the same cluster.  169 

Figure 1b shows an illustration of the TICC clustering approach. Two MRFs segment the high-gamma 170 

activity into speech and non-speech classes. In this example, both MRFs have multiple layers to not only 171 

draw insights from spatial characteristics but also capture temporal dynamics of up to 200 ms into the 172 

past. The gray waveform at the top has been time-aligned to the neural recordings for visual attribution 173 

of the high-gamma activity. Although the clustering assignments do not reveal which clusters belong to 174 

speech activity due to their unsupervised nature, we can infer cluster classes based on the length of their 175 

subsequences – exploiting the setup of the experiment design. Fig 1c visualizes the clustering process for 176 
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one recording session. The x-axis represents time and shows a snippet of two trials and the acoustic 177 

speech signal as a reference guide. The z-axis shows each iteration from the TICC algorithm until 178 

convergence, where found cluster alignments are plotted as curves. The y-axis indicates found speech 179 

activity. We based our initial alignments (iteration 0) on clusters found by a Gaussian mixture model, and 180 

iteratively optimized those using the TICC algorithm. 181 

Figure 1 | Overview of the experiment setup and clustering approach. a Placement of implanted 182 

electrode grids covering speech and upper limb cortical regions. Electrodes highlighted in orange were 183 

selected for this study based on previous reported results18. b Illustration of the TICC clustering approach 184 

to identify speech and non-speech segments in each trial using one Markov Random Field per cluster. c 185 

Visualization of the iterative clustering process of the TICC algorithm, starting from an initial alignment 186 

derived from Gaussian mixture clustering, until convergence. The acoustic waveform on the x-axis serves 187 

as a reference to the found speech clusters. 188 

Neural voice activity detection approach 189 

We based our nVAD model on the same recurrent neural network architecture from our previous study 190 

on synthesizing speech online18, originally inspired by the work from Zen et al.38 For this binary 191 

classification task, all recurrent layers utilize long-short term memory cells39 to learn the temporal 192 

dynamics across the individual channels. In total, the network architecture comprises three layers: two 193 

LSTM layers with 128 units each and one linear layer with 2 output units, resulting in 231,682 internal 194 

weight parameters. We used the cross-entropy loss in conjunction with the softmax activation function 195 
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to estimate the error between network predictions and target labels during network training, and 196 

employed Adam40 as our optimizer with a learning rate of 0.0001 and trained the architecture for 20 197 

epochs in each fold, while storing the best performing weights in accordance to the minimum validation 198 

loss. Network training uses the truncated backpropagation through time (BPTT) algorithm41 with 199 

hyperparameters k1 and k2 set to 50 frames of high-gamma activity, respectively, such that the unfolding 200 

procedure was limited to 50 frames (0.5 s) and repeated every 50 frames (0.5 ms). 201 

Closed-loop system design 202 

We built a real-time BCI that communicates directly with BCI2000 about any segments identified as 203 

speech. This system was implemented on top of ezmsg42 – a Python framework that facilitates the 204 

development of closed-loop streaming applications by enforcing a software architecture composed of a 205 

directed acyclic graph structure. Each node in this graph is responsible for a particular self-contained task, 206 

such as computing high-gamma features from raw ECoG signals. We used a network of such nodes to 207 

perform tasks that receive ECoG signals, compute features, predict voice activity and communicate results 208 

back to BCI2000, including logging functionality between all mentioned nodes for evaluation. In the 209 

backend, ezmsg utilizes asynchronous coroutines to enable concurrent executions of those tasks. Our 210 

closed-loop processing pipeline was capable of producing low-latency feedback as the accumulated 211 

computational cost did not exceed the frameshift of 10 ms. Communication with BCI2000 was based on 212 

ZeroMQ (ZMQ) as a networking abstraction layer.  213 

Results 214 

Identification of speech segments 215 

In this study, we only distinguished between speech and non-speech segments in the neural data, so that 216 

all words were summarized in one speech cluster. Another potential approach would be to cluster for 217 

each stimulus individually, assuming they were known upfront from the experiment design. However, 218 

preliminary analyses suggested that resulting clusters per word find less reliable cluster parameters, 219 

potentially converging towards clusters that only identify part of speech segments. We hypothesize that 220 

this is related to the inherently smaller amount of data and less variability in the neural activity. When 221 

clustering for all words, it is not required to know a specific stimulus or the number of stimuli in advance 222 

and is thus also suitable for experiment designs where open questions are asked. We obtained ground 223 

truth voice activity information from time-aligned acoustic spectrograms of the microphone recordings 224 

which were only used to quantify the accuracy of identified speech segments. We based our evaluation 225 
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metric on the Levenshtein distance to determine the minimum distance between estimated VAD labels 226 

and acoustic VAD ground truth, where all operations for changes were assigned a fixed cost of 10 ms.  227 

To infer suitable hyperparameters for the TICC algorithm we utilized ECoG recordings from a single patient 228 

with drug-resistant epilepsy (male, between 16-20 years old) who had undergone video-EEG monitoring 229 

to localize his seizure onset zone. We particularly chose this data as the implanted ECoG grid covered 230 

cortical speech areas similar to our clinical trial participant (see supplementary Figure S3 for details about 231 

the grid placement in the epilepsy surgery patient). Note that the electrode grid in the epilepsy surgery 232 

patient was implanted in the right hemisphere, yet we were able to measure strong speech-related high 233 

gamma activity during speech production. Similar observations have previously been reported in the 234 

literature13. We ran a grid search across predefined ranges for the β and λ hyperparameters and selected 235 

those which achieved lowest alignment errors with respect to ground truth voice activity of the epilepsy 236 

patient, leading to a hyperparameter configuration of β = 50 and λ = 11e-4. 237 

Our results are summarized in Figure 2a. On a held-out day used to report intermediate results from the 238 

clustering algorithm (from now on referred to as development set), we achieved a median alignment error 239 

of 530 ms per trial, while 75% of the trials were below 752 ms (average speech duration: 1.2 s). In 8 out 240 

of 400 trials, speech could not be detected through the clustering approach and, additionally, 10 trials 241 

resulted in alignment errors above the average speech duration of 1.2 s. Figure 2b shows an excerpt of 242 

the first 5 trials of the first day in the training set for visual inspection. The top panel visualizes high-gamma 243 

activity and how frames have been clustered after applying the TICC algorithm with the same 244 

configuration of hyperparameters obtained from the epilepsy patients data. The bottom panel shows the 245 

time-aligned speech spectrogram and ground truth VAD information based on the acoustic signal. Overall, 246 

the clustering approach can identify consecutive segments of spoken speech reliably in the majority of 247 

the cases, leading to labels that can be utilized to train a supervised model that predicts speech activity 248 

for an incoming stream of high-gamma frames without calculating the minimum alignment path using 249 

dynamic programming strategies. 250 
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251 

Figure 2 | Comparison between VAD labels estimated from acoustic and high-gamma representations. 252 

a Minimum alignment error computed via Levenshtein distance between neural speech clusters and 253 

acoustic reference VAD using the development set (n = 400 trials). Box indicates boundaries between 254 

quartiles Q1 and Q3, and whiskers represent range of data within 1.5 times the interquartile range. 255 

Outliers correspond to trials for which no speech clusters could be found from the neural activity. b Visual 256 

example of the first 5 trials from the first day in the training set. Top panel shows estimated speech 257 

clusters using the TICC algorithm (dashed black line) on high-gamma features and bottom panel the 258 

corresponding time-aligned speech spectrogram from the acoustics with reference VAD (solid red line). 259 

Temporal context provides less accurate speech clusters 260 

Next, we analyzed if nVAD labels can be more accurately determined by including causal temporal 261 

contextual information. Here, we adapted the TICC algorithm to avoid repetitive information from the 40 262 

ms overlaps in the feature extraction pipeline by adding a dilation hyperparameter indicating the spacing 263 

between consecutive high-gamma frames. In accordance with Soroush et al.27, we investigated temporal 264 

dynamics up to 300 ms into the past. MRFs with only one layer correspond to no context information, 265 

with five layers up to 200 ms into the past (as represented in Figure 1b), and with 7 layers of up to 300 266 

ms, where each additional layer introduces a dilation of 5 frames to avoid repetitive information from the 267 

40 ms overlap in the feature extraction pipeline. 268 

Similar to Figure 2a, we report our observations on the development set and used the minimum distance 269 

between estimated VAD labels and ground truth labels calculated on the speech spectrogram as the error 270 

metric, again with a cost of 10 ms per off-diagonal step in the alignment matrix. Figure 3 visualizes our 271 
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results in the form of boxplots. We found that the median alignment error increased as more temporal 272 

context information was captured in each feature vector. We hypothesize that this trend stemmed from 273 

the growing number of features enabling more complex relationships in the spatio-temporal connections, 274 

which were inadequately supported by the limited amount of data, leading to increasingly inaccurate 275 

cluster parameters. We observed similar results with respect to the data used to determine appropriate 276 

hyperparameter choices; therefore, all further analyses were conducted with only one-layer MRFs. 277 

Figure 3 | Adding temporal context leads to less accurate nVAD labels. Trend of inaccuracies for 278 

estimated nVAD labels increases with including context information. No context information and 300 ms 279 

into the past correspond to MRF’s with number of layers of 1 and 7, respectively. Evaluation was 280 

conducted on the development set to report the impact of including temporal context, however, we based 281 

our decision on using only one layer in the MRFs on the lowest error score obtained by the TICC algorithm 282 

with respect to the data from the epilepsy surgery patient.  283 

Cluster parameters suggest consistent task-specific activity in motor cortices 284 

The graphical dependency structures underlying cluster representations allow learned relationships to be 285 

interpreted and pinpointed to cortical areas known to elicit activity during speech – enabling us to verify 286 

that proper representations have been learned. We analyzed the differences between both speech and 287 

non-speech MRFs to reveal which connections between electrodes contribute to what extent to the 288 

decision-making process. Our findings are visualized in Figure 4. Each circle on the brain plot belongs to 289 

one channel. The color of the circle represents how much a particular channel contributed in the decision-290 

making process of the clustering assignment and the size indicates the total sum of the interdependencies 291 

between channels. The plot reveals that the differences in high-gamma activity features from electrode 292 

channels located in vM1 and dM1 were predominantly used to discriminate between speech and non-293 
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speech clusters in the TICC algorithm. Both of these cortical areas have already shown speech activity to 294 

various degrees in our prior publication18. Moreover, the plot suggest that the algorithm focused on a 295 

rather smaller subset of electrodes compared to our prior publication on synthesizing keywords where 296 

the supervised nVAD model based its decision on a much broader network of electrodes across motor, 297 

premotor and somatosensory cortices. We hypothesize that this is related to the different machine 298 

learning approaches (a recurrent neural network compared to the TICC algorithm), the increased number 299 

of word stimuli (50 stimuli instead of 6) and the variability in the data as some words in the 50-word 300 

corpus are longer and more effortful to articulate. 301 

Figure 4 | Cluster assignments mainly driven by differences in inter-electrode connections in vM1 and 302 

dM1. Visualization of the differences in the found MRF structures between both speech and non-speech 303 

clusters. The color coding of the circles represents electrode contributions, while the size indicates the 304 

strength of inter-channel dependencies. These relationships show that the TICC algorithm focused 305 

primarily on spatial high-gamma activity patterns between electrodes in vM1 and dM1 when deciding 306 

which cluster to assign.      307 
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Predicting speech from neural activity 308 

We evaluated our proposed approach using a leave-one-day-out cross-validation method to quantify 309 

model performance across multiple days. Moreover, this prevented day-specific information from the 310 

testing days leaking into the training set which may wrongfully bias generalization. We compared our 311 

approach trained on the estimated labels from the TICC algorithm against two other methods previously 312 

reported in the literature27, namely logistic regression (LR) and a LeNet-style convolutional neural network 313 

(CNN)43, both trained on ground truth information acquired from the acoustic speech spectrogram. For 314 

these baseline models, we followed the corresponding study by Soroush et. al.27 and used context stacking 315 

up to 300 ms into the past, with no additional sequence modeling techniques that would consider outputs 316 

from previous time steps.  317 

Our results from the cross-validation are summarized in Figure 5. For each day, we report the alignment 318 

errors for our approach (light blue) and the two baseline models (pink and yellow) as boxplots (samples 319 

per day: n1 = 306, n2 = 204, n3 = 204, n4 = 204, n5 = 204, n6 = 204, n7 = 204, n8 = 102, and n9 = 204). The 320 

dashed red line indicates the average speaking duration of 1.2 s per prompted word from our participant. 321 

Across all days from the study period, we observed median error scores between 440 and 645 ms, where 322 

50% of the trial-based errors were in the range of 380 to 710 ms. Furthermore, we also observed that in 323 

5.2% of the trials (96 out of 1836 trials) our model was not capable of detecting speech instances at all or 324 

made prediction errors that exceeded the average speaking duration. We excluded those outliers in Figure 325 

5.   326 

Regarding the baseline methods, the CNN model achieved overall the lowest alignment errors with 327 

median scores between 300 and 430 ms across days, where 50% of the trials deviated between 220 and 328 

450 ms from the ground truth acoustics. For the logistic regression, the alignment errors were slightly 329 

higher between 310 and 430 ms in median, which was in line with previous findings on sEEG data27. Here, 330 

50% of the trials had alignment errors between 230 and 490 ms.  331 

Although the results from our approach were not on par with baseline models trained on ground truth 332 

VAD information, we observed that our approach was still capable of detecting the majority of spoken 333 

speech, up to 77% per day, and on average 70% across days. This would be particularly useful for filtering 334 

out speech frames during online computations to obtain normalization statistics based on streaming 335 

neural activity. 336 
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337 

Figure 5 | Cross validation results regarding the proposed approach and baseline models. Alignment 338 

errors are reported with respect to the specific held-out day in each fold. Box plots indicate that our 339 

approach achieves consistently higher error rates in the range of 140 and 215 ms than models trained on 340 

ground truth VAD information. 341 

Generalizability towards unseen words 342 

Next, we analyzed the applicability to spoken words beyond our training corpus of 50-word stimuli to 343 

quantify generalization. We recorded an additional corpus of 688 words (each word was only repeated 344 

once) across 7 sessions on one particular day (outside of the training days) and computed the mean 345 

alignment errors for all trials. The average speaking duration regarding of unseen words was 1.3 s per 346 

word. Our results do not show any substantial deviations from those word stimuli that were present in 347 

the training corpus. The median alignment errors were between 446 and 490 ms, with 50% of the trials 348 

occurring in the 340 and 650 ms range, suggesting that this approach is also applicable to unseen word 349 

stimuli. 350 

Discussion 351 

Here, we demonstrate a BCI that is capable of identifying speech activity in real-time from ECoG signals 352 

recorded from speech-related cortical areas in a clinical trial participant living with ALS. Prior studies 353 

reporting on voice activity detection from neural activity have relied on ground truth acoustic speech 354 

information to train predictive models – a major challenge when translating such findings to paralyzed 355 

individuals who have lost their ability to speak. Our approach utilizes a graph-based clustering technique 356 

to localize consecutive segments in the neural data related to speech production. We designed an 357 
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experiment paradigm that can infer which clusters most likely belong to speech activity based on their 358 

clustering lengths. By training a recurrent neural network on these estimated alignments, we were able 359 

to identify the majority of speech activity in more than 92% of the trials. 360 

While the performance of our approach was not on par with baseline models trained on ground truth 361 

acoustic speech information, it would not be reasonable to expect equivalent or better performance in 362 

the absence of ground truth. The timing and magnitude of muscular contractions preparing for and 363 

executing phonation and articulation do not have a one-to-one correspondence with the timing and 364 

magnitude of the acoustic waveform produced by speech, which serves as the ground truth for VAD.  365 

Consequently, the timing and magnitude of neural activity in sensorimotor cortex, which form the basis 366 

for nVAD, are not expected to be perfectly aligned with spoken acoustics.  Moreover, while the signal-to-367 

noise ratio of ECoG high-gamma power modulation has proven sufficient for decoding speech, it is 368 

nevertheless non-stationary and dependent on imperfect estimates of its noise floor during non-speech 369 

segments, derived here from a separate session with cued speech segments.  In spite of these challenges 370 

for nVAD, we found that our approach could detect the majority of speech. Analyses on seen and unseen 371 

word stimuli revealed that recall scores of approximately 78% could be achieved, compared to 89% from 372 

the CNN baseline models. While our current approach was not capable of always isolating each spoken 373 

word in its own unique segment, additional postprocessing strategies may help prevent such behavior. 374 

Such strategies have been used in the past to correct misclassified frames based on a fixed window of 375 

predictions44. 376 

By interpreting and comparing cluster parameters, we found that assignments were mainly driven by 377 

differences of neural activity in a subset of the electrodes in the vM1 and dM1 cortical regions and their 378 

interconnections. Even though many more electrodes show high-gamma activations during overt speech 379 

production, the clustering approach converged to similar weights and interconnection weights for both 380 

speech and non-speech MRFs on those electrodes. One explanation of this behavior might lie in the high-381 

gamma activity variability across word stimuli, and that the TICC algorithm identified those less reliably 382 

when making the binary assignment. 383 

A limitation of our study is that our participant was still able to speak, albeit with significant dysarthria 384 

and poor intelligibility. Thus, it remains to be seen if our approach translates to patients who are incapable 385 

of producing audible speech. In this study, we focused intentionally on a patient who could still speak so 386 

that we could compare the performance of our approach with ground truth speech acoustics and to 387 

estimate the extent of alignment errors – which would not have been possible if speech had been absent.  388 
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In this pilot study, we addressed the open challenge of training a BCI that identifies speech without having 389 

time-aligned neural and acoustic data. Our results show that a graph-based clustering approach can 390 

identify segments of spoken speech in neural recordings with median alignment mismatches below 500 391 

ms. Despite this inaccuracy, we were able to train VAD models and deploy them in a real-time streaming 392 

scenario to predict speech activity online. The error rate may be small enough for practical application. 393 

We believe this would be particularly useful for avoiding the inclusion of speech frames when calculating 394 

baseline neural activity during non-speech segments and for real-time gating of speech decoders in 395 

speech BCIs, including brain-to-text and brain-to-speech applications. Moreover, our approach could also 396 

benefit BCI systems by acting as a switch to toggle on the decoder when the user generates silent speech, 397 

and toggle off after some time of silence. This would prevent undesired random speech decoding when 398 

the user is doing other tasks that somehow affect motor activity. Future work is necessary to determine 399 

whether our approach is equally effective for individuals who can no longer produce audible speech. 400 

Code availability 401 

All source code supporting this study will be made publicly available on 402 

https://github.com/cronelab/corticom-neural-vad upon acceptance of the manuscript. Moreover, the 403 

repository also comes with a bash script which can be used to replicate all steps done in this study, 404 

including rendering the figures and running the real-time BCI on streamed signals.  405 

Data availability 406 

All data supporting this study will be made publicly available on www.osf.io upon acceptance of the 407 

manuscript. Neural recordings are prepared in the MATLAB file format version 5, where time-aligned 408 

anonymized acoustic speech is stored in the wav file format. 409 
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Supplementary Material 516 

Supplementary Figure S1 | High-gamma ECoG activity remained stable across all study days. Similar 517 

structures can be observed for the majority of the channels, indicating that those channels had 518 

comparable activity values and were stable during the study period. Randomized channel shifts on the x-519 

axis were conducted using the same noise profile for all days to only encode relevant information with 520 

respect to the y-axis, size and color. Bad channels 19, 38, 48 and 52 were omitted in this plot. 521 

522 

Supplementary Figure S2 | Summary of the acoustic contamination report. All recordings within our 523 

development set (D0) and the days for the open-loop recordings (D1 - D9) were checked for acoustic 524 

contamination by using Roussel‘s method37. Each histogram visualizes for one day the distribution of mean 525 

diagonal values from permutated contamination matrices (N=10,000 permutations). The vertical-colored 526 

bars represent the actual mean diagonal value of the contamination index. The statistical criterion for 527 

rejecting the null hypothesis is either displayed in green (p > 0.05) or red (p ≤ 0.05) indicating that the 528 
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neural signals have been acoustically contaminated. We observed in one channel contamination artefacts 529 

for one day (day 7) and replaced those high-gamma values with mean activity from neighboring channels. 530 

After this step, no acoustic contamination was present anymore. All recordings from the closed-loop block 531 

were omitted here as they have not been used for model training.  532 

533 

Supplementary Figure S3 | ECoG array placement in an epilepsy patient to infer a suitable 534 

hyperparameter configuration. We determined appropriate hyperparameters for the TICC algorithm by 535 

using data recorded from an epilepsy patient implanted with a 128 channel ECoG grid covering similar 536 

speech areas than our clinical trial participant. We selected the bottom 62 channels (2 electrodes covering 537 

superior temporal gyrus were excluded) to roughly match similar areas than our clinical trial participant. 538 

Although the ECoG grid in this patient was implanted on the right hemisphere we observed strong high-539 

gamma activity during speech production, supporting similar observations previously reported in the 540 

literature13. 541 
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