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Abstract

Mycoplasma gallisepticum is a serious pathogen for poultry that causes chronic respiratory

disease in chickens. Increased embryonic mortality, as well as reduced weight gain and egg

production have been found in infected chickens, which can lead to considerable economic

losses in poultry production. Increased antibiotic resistance compromises the use of tetracy-

clines, macrolides and quinolones in the farm environment. In the present study, danofloxa-

cin concentrations were simulated below the MIC99, between the MIC99 and MPC (the

mutant prevention concentration), and above the MPC in an in vitro dynamic model against

M. gallisepticum. The relationship between the simulated danofloxacin pharmacokinetics,

pharmacodynamics (PK/PD) parameters and development of resistance for M. gallisepti-

cum was explored based on the available data obtained from various dosing regimens in the

in vitro model. Danofloxacin concentration, counts of viable cell and susceptibility were

determined during the experiment. The mutations in gyrA, gyrB, parC and parE as well as

efflux pumps were examined. The MIC of danofloxacin against M. gallisepticum was

increased when drug concentrations were between the lower and upper boundaries of the

mutant selection window. The upper boundary of the selection window in vitro was esti-

mated as a Cmax/MPC value of 1. The lower boundary was estimated as Cmax/MPC value of

0.05. Both in terms of the MIC and resistance frequency, M. gallisepticum resistance was

developed when danofloxacin concentrations fell inside the mutant selection window (ratios

of Cmax to MPC between 0.05 and 1). The single mutation in gyrA (Ser-83!Arg) was found

in all mutants, while double mutations in gyrA and parC (Ala-64!Ser) were observed only in

the mutant with the highest MIC. In addition, no change of susceptibility in the mutants was

observed in the presence of reserpine and carbonyl cyanide 3-chlorophenylhydrazone

(CCCP). This suggested that ATP-binding cassette superfamily (ABC transporter) and

major facilitator superfamily (MFS transporter) did not play a role in danofloxacin efflux.
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Introduction

Mycoplasma gallisepticum is a major pathogen causing chronic respiratory infections in poul-

try [1]. Infected birds exhibit mostly respiratory signs including ocular and nasal discharge,

rales and sneezing. In some instances, infected flocks have high mortality rates. Mild cases are

reflected in reduced egg production and feed conversion rates [2]. M. gallisepticum transmis-

sion throughout avian populations occurs by both horizontal and vertical routes. Even though

numerous control measures are in place to eradicate this disease, a heavy reliance on antibiot-

ics has become the de facto control strategy. The quinolones, macrolides, tetracyclines and

pleuromutilin are all effective against M. gallisepticum [3, 4]. Danofloxacin, is now widely used

in China for controlling the respiratory disease from M. gallisepticum in chickens.

The “mutant selection window” (MSW) hypothesis is a concept devised by Zhao and Drlica

[5], which postulates resistant mutants selectively and amplify at antibiotic concentrations

within the mutant selection window (MSW). The lower boundary of the range is the MIC99

(inhibition of 99% of the cells) that serves as a threshold for restricting the growth of the

majority of susceptible bacteria. The mutant prevention concentration (MPC) that inhibits

growth of the least susceptible single-step mutant subpopulation is defined as the upper

boundary [6]. The MSW hypothesis has been tested in several in vitro and in vivo models [7–

12].

M. gallisepticum is minute in size and completely lacks a bacterial cell wall. It can only be

cultivated on specially formulated media due to its dependence on external sources of precur-

sor molecules for macromolecular syntheses [13, 14]. Moreover, quantitative cultures by viable

count estimation (CFU determination) are complicated owing to these strict nutritional condi-

tions and the long growth cycle (7 days). Hence, there are few reports concerning PK/PD inte-

gration of antimicrobials against M. gallisepticum and its drug resistance mechanisms. In the

current study, we simulated different danofloxacin dosing regimens using an in vitro dynamic

model to obtain the related PK/PD parameters. Our objective was to investigate the relation-

ship between the danofloxacin PK/PD indices and mutant selection enrichment of M. gallisep-
ticum. The gyrA, gyrB, parC and parE genes in danofloxacin resistant strains were sequenced

to identify mutations in the quinolone resistance-determining region (QRDR). Furthermore,

the active danofloxacin efflux that has never been evaluated in M. gallisepticum was also exam-

ined. It was expected that our investigation would illustrate the relationship between dosing

regimens and mutant selection enrichment, and more clearly elucidate genetic mutations asso-

ciated with danofloxacin-resistant subpopulations of M. gallisepticum.

Materials and methods

Danofloxacin powders were provided by Guangdong Wens Dahuanong Biotechnology Co.

Ltd. (Xinxing, China). M. gallisepticum strain S6 used in this study was supplied by the Chinese

Veterinary Microorganism Culture Collection Center (Beijing, China). The components used

for PCR (polymerase chain reaction) were obtained from Takara Bio (Ohtsu, Japan).

MIC99, MIC, and MPC Determinations

The minimum inhibitory concentration (MIC) of danofloxacin was determined by the agar

dilution method as described elsewhere [15]. Briefly, 10 μL samples of M. gallisepticum culture

(107 CFU/mL) were inoculated onto agar plates containing two-fold serial dilutions of dano-

floxacin to determine the minimal drug concentration that resulted in no growth in 7 days.

MIC99 and MPC measurements were performed following the previously described method

with modifications [16]. For MIC99, 107 CFU/mL log phase cells were diluted in a 10-fold

series and 10 μL of each diluted suspension were applied to agar plates containing linearly
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decreasing danofloxacin concentrations. The two modifications of the measurement of MIC99

were as following: Firstly, these concentrations were based on the MIC value and decreased

10% per step in a range of 1 × MIC to 0.5 × MIC instead of 20% steps. Obviously, the 10% per

sequential decrease was used to improve the accuracy of MIC99 determination, which was

more complicated than ever done in the past. Secondly, the inoculum size of M. gallisepticum
was 10 uL. This parts have been explained in more detail in the other article [17]. Colony num-

bers were determined using an inverted microscope after 7-days at 37˚C in a 5% CO2 humidi-

fied atmosphere. Drug concentrations versus colony recoveries were plotted and MIC99 was

calculated by interpolation.

For MPC, more than 1010 CFU were spread on agar plates containing a series of danofloxa-

cin concentrations. Provisional mutant prevention concentration (MPCpr) was defined as the

lowest antimicrobial concentration that prevented colony formation. These cells were then

cultivated on plates that utilized linear danofloxacin concentration decrements (about 20% per

sequential decrease). The MPC was recorded as the lowest drug concentration preventing

100% growth.

In vitro dynamic model and the pharmacokinetic profiles

The in vitro dynamic model has been described previously [18, 19]. The in vitro PK/PD simu-

lation model used in this study is shown in Fig 1. Briefly, the model is connected by three glass

flasks. The first one containing fresh medium without antimicrobials; the second is the exter-

nal compartment [EC] that consists of a three-necked flask containing 320 mL medium and a

cellulose dialysis tube whose 10 mL interior volume is defined as the internal compartment

[IC]; the third is the waste flask. The IC is made of cellulose membrane that restricts the pas-

sage of large molecules. It contains medium and inoculum, while the EC contains only the

medium. The EC is a three-necked flask maintained at 37˚C with constant stirring. The drug-

free medium is pumped continuously into the EC from the reservoir to dilute the drug, and a

second pump ensuring the discharging.

For all experiments, 10 mL of culture containing 109 CFU/mL of M. gallisepticum was inocu-

lated into the IC as the starting inoculum. At time zero, danofloxacin was added to both

Fig 1. The in vitro model that simulates the pharmacokinetics of danofloxacin in lung tissues of the M.

gallisepticum infected chickens and determines a drug’s effect on growth and susceptibility of M. gallisepticum.

https://doi.org/10.1371/journal.pone.0202070.g001

Danofloxacin PK/PD parameters and emergence of resistance of Mycoplasma gallisepticum in In Vitro model

PLOS ONE | https://doi.org/10.1371/journal.pone.0202070 August 29, 2018 3 / 12

https://doi.org/10.1371/journal.pone.0202070.g001
https://doi.org/10.1371/journal.pone.0202070


compartments in order to allow rapid equilibrium. The danofloxacin concentrations in lung tis-

sues of the M. gallisepticum infected chickens were simulated using this in vitro model. A series of

monoexponential profiles that mimic once-daily administration of danofloxacin was simulated

for 5 consecutive days. The simulated half-life of danofloxacin of 10 h was consistent with that

reported in chickens [20–22]. With danofloxacin-exposed cells, the simulated C0 in the in vitro
model were 0.1, 0.3, 0.675, 1.25, 2, 7, and 13 mg/L (C0 was the initial danofloxacin concentration).

After each administration, 1 mL samples were collected at 1, 3, 6, 9, 12, and 24 h from EC to deter-

mine danofloxacin concentration. Additionally, the samples from the IC were also collected to

generate a time-killing curve and monitor the potential loss of danofloxacin susceptibility.

Determination of danofloxacin concentration

EC samples were stored at -20˚C until they were assayed. The concentrations of danofloxacin

were analyzed using high performance liquid chromatography with fluorescence detection

(HPLC-FD) (Agilent Technologies, USA). The sample (1 ml) was added to 0.5 mL acetonitrile,

vortexed for 1 minute and incubated in a 45˚C water bath for 10 min to precipitate proteins.

The samples were centrifuged at 10, 000 × g for 5 min at 4˚C. Then 0.5mL supernatant was

transferred to a centrifuge tube containing 0.5 mL ultra-pure water. Finally, the mixture was

vortexed for 30 s and filtered through a 0.22 μm syringe filter prior to HPLC analysis. An Agi-

lent TC-C18 column (250 mm × 4.6 mm, 5 μm) was was used for isocratic separation with a

mobile phase of trimethylamine phosphate (pH 2.4): acetonitrile (19:81, v/v) at 0.8 mL/min. A

calibration curve was established in triplicate with seven danofloxacin concentrations (0.001–

0.1 μg/mL).

PK/PD indices such as AUC24/MIC99 (the area under the concentration-time curve over 24

h divided by the MIC99), AUC24/MPC (the area under the concentration-time curve over 24 h

divided by the MPC), Cmax/MIC99 (the peak concentration divided by the MIC99), and Cmax/

MPC (the peak concentration divided by the MPC) were calculated using the WinNonlin pro-

gram (version 6.1, Pharsight Corporation, Mountain View, CA, USA).

The time-killing study and susceptibility changes

In each experiment, samples were obtained daily before and during the danofloxacin treat-

ment (at 24 h after every administration and at 48 h after the termination of treatment). The

time-killing study and the potential loss of susceptibility were monitored throughout the

observation period. The potential loss of susceptibility was measured using the MIC determi-

nation and the fraction of surviving mutants. In brief, half of each sample was incubated in

drug-free growth medium and the MIC was determined according to the agar dilution method

as mentioned above. The other part of the collected sample was diluted serially in growth

medium and spotted on agar plates that were either free of drug or contained danofloxacin at

1 × MIC. After incubation in a 5% CO2 humidified incubator at 37˚C for 7 days, colonies were

counted to determine the fraction of mutants in the population. The resistant mutants were

also selected randomly. After susceptibility determination, the mutants displaying increased

MICs to danofloxacin were screened for QRDR mutations in of gyrA, gyrB, parC, and parE. In

addition, the selected single colonies were passaged for 5 times. The isolates were then sub-

jected to danofloxacin susceptibility testing and screened for QRDR mutations to detect

whether the mutations could be inherited steadily.

Resistance analysis

Mutants in which the MIC increased to 0.3, 1.2, 2.4 and 4.8 mg/L using the agar diffusion

method were selected for DNA extraction using a previously described protocol [23]. The
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mutant colonies were randomly selected from the agar plates, and three mutant strains at each

MIC were selected to study the resistance mechanisms. The QRDR gens gyrA, gyrB, parC and

parE were amplified by the specific primers designed from the strain S6 of M. gallisepticum
[24]. Amplified reaction was achieved as described previously with modification [25]. PCR

mixture was consisted of 2.5 μL 10 × Ex Taq buffer (Mg2+ plus), 2.5 μL dNTP, 0.5 μL primer F

(10 μmol/mL), 0.5 μL primer R (10 μmol/mL), 1 μL extracted M. gallisepticum DNA, 0.25 μL

Ex Taq (5U/μL) and 17.75 μL distilled water. Positive control (M. gallisepticum strain S6) and

negative control (distilled water) were also performed concurrently for each reaction. The

region of the gene gyrA, gyrB, parC and parE were amplified. Amplification was carried out at

94˚C for 5 min, 94˚C for 45 s, 55˚C for 45 s, 72˚C for 1 min for 30 cycles. The final extension

cycles were at 72 ºC for 5 min.

Analysis of quinolone efflux

In order to prove whether an active efflux mechanism was involved in danofloxacin resistance

mutants, the mutants selected above for DNA extraction were also employed to determine the

danofloxacin MICs in the presence of the two kinds of efflux pump inhibitors: carbonyl cya-

nide 3-chlorophenylhydrazone (CCCP) (20 mg/L) and reserpine (20 mg/L) using the broth

dilution method as described previously [17, 26–28]. Danofloxacin was diluted in a two-fold

series from 0.019–4.8 mg/L, and then the exponential-phase cells were added. CCCP and

reserpine were individually added to a 1:100 dilution of cells. The plates were sealed with a gas

permeable film and incubated in a 37˚C, 5% CO2 humidified incubator.

Results

Susceptibility determination

The MIC, MIC99, and MPC of danofloxacin against M. gallisepticum strain S6 using the agar

dilution method were 0.15, 0.1, and 2.4 mg/L, respectively.

Effect of danofloxacin concentrations on the susceptibility changes

An HPLC method was developed to detect danofloxacin concentrations. The detection and

quantification limit of HPLC-FD was 0.003 and 0.006 mg/L. The simulated C0 of danofloxacin

in the in vitro model were 0.12, 0.38, 0.94, 1.74, 2.40, 8.31 and 13.55 mg/L. These values agreed

very closely to the initial experimental design values of 0.1, 0.3, 0.675, 1.25, 2, 7, and 13 mg/L.

When the time course of danofloxacin killing was measured, the drug produced marked

reductions in growth from 3.76 to 7.65 Log10 CFU/mL compared with the starting inoculum.

The regimen in which the simulated C0 of danofloxacin (13 mg/L) in the in vitro model was

achieved the maximal effect with a 7.65 Log10 CFU/mL reduction over 96 h. However,

regrowth was observed in the regimen that simulated C0 values of of 0.1 and 0.3 mg/L in the in
vitro model (Fig 2).

When M. gallisepticum was cultured at danofloxacin concentrations below the MIC99, at

the upper part of the window, or above the MPC (Fig 3 panels A1, A5, A6 and A7), no resistant

mutants with increased MICs were selected (Fig 3 panels B1 and C1; B5 and C5; B6 and A6; B7

and C7). When danofloxacin concentrations overlapped the lower window boundary or were

at the lower part of the MSW (Fig 3, panel A2 and A3), the MIC increased prominently to 4.8

mg/L (Fig 3, panel B2 and B3). When danofloxacin concentrations at the middle part of the

MSW (Fig 3, panel A4), this resulted in slightly decreased susceptibility because the MIC

increased to 1.2 mg/L during danofloxacin treatment (Fig 3, panel B4). Therefore, selection of

resistant mutants occurred when danofloxacin concentrations were in the lower portion of the
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selection window rather than the upper portion. This was indicated by increases in both the

MIC and the fraction of mutants.

Correlation of PK/PD Indices with mutant enrichment and amplification

We calculated the AUC24h/MIC99 and Cmax/MIC99 values to estimate the mutant enrichment

of M. gallisepticum under danofloxacin treatment. Increase in the MIC did not occur when the

Cmax was below 0.1 or above 2 μg/mL. However, there was a loss of susceptibility under the

simulated Cmax concentrations of 0.3, 0.675, and 1.25 mg/L (Table 1). With the AUC24h/MIC99

and AUC24 h/MPC, the mutant selection window ranged from 9.04 h to 347.26 h and from

0.37 h to 14.47 h, respectively. When Cmax/MIC99 and Cmax/MPC were considered, the mutant

selection window ranged from 1.15 to 24.03 and from 0.05 to 1, respectively (Table 1).

Mechanism of danofloxacin resistance in M. gallisepticum
There were no differences in the MICs and mutations before and after the passages. M. galli-
septicum strain S6 and the four mutants with increased MIC values 0.3 (M1), 1.2 (M2), 2.4

(M3) and 4.8 (M4) mg/L were selected for QRDR gene analysis. The amino acid changes in

gyrA, gyrB, ParC, and ParE of danofloxacin–resistant mutants are shown in Table 2. An amino

acid substitution (Ser-83!Arg) was observed in the four mutant strains, corresponding to

position 83 in the gyrA of E. coli. An additional amino acid substitution (Ala-64!Ser) was

observed in M4, corresponding to position 64 in parC of E. coli. None of the four mutants pos-

sessed any base changes in gyrB and parE.

Quinolone efflux mechanism

Four representative mutants (MI, M2, M3 and M4) were used to determine the MICs in the

presence and absence of the efflux pump inhibitors CCCP and reserpine. Surprisingly, no

Fig 2. Effect of danofloxacin dose on inhibition of M. gallisepticum growth in vitro. The simulated C0 concentrations (where C0 is the initial

danofloxacin concentration) were administrated once daily for 5 days. Colony-forming units were monitored at 24 h intervals before the initiation of

danofloxacin in treatment and ending 2 days after the termination of danofloxacin treatment.

https://doi.org/10.1371/journal.pone.0202070.g002
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MIC changes were found when CCCP and reserpine were added to the medium. This may

prove that no active efflux mechanism was involved in danofloxacin resistance mutants.

Discussion

In the past decades, the important place of the antibiotics that control bacterial infections has

been threatened by the emergence and spread of antimicrobial resistance among nearly all

pathogens [29]. The development of antimicrobial resistance in bacteria has been driven by

sustained exposure to antimicrobials. The potential role responsible for antimicrobial resis-

tance has been contributed by such selective pressure, which was accomplished by the long-

Fig 3. Effect of danofloxacin concentration on loss of susceptibility and mutant enrichment. M. gallisepticum strain S6 was inoculated into the IC and exposed for

five consecutive days to once-daily danofloxacin replenishments in the in vitro dynamic model. Panels A1 to A7: Danofloxacin concentrations at the indicated times

after the administration of each dose. Panels B1 to B7: Loss of susceptibility shown as an increase in average MIC for each group. Panels C1 to C7: The fraction of

resistant mutants in each group was determined daily as the number of colonies grown on danofloxacin-containing agar (1 × MIC) relative to the number that grew on

drug-free agar.

https://doi.org/10.1371/journal.pone.0202070.g003

Table 1. Values of PK/PD parameters and change of MIC at different simulated concentrations.

The simulant C0

(mg/L)

AUC/MIC99

(h)

AUC/MPC

(h)

Cmax/MIC99 Cmax/MPC The increased MIC

(mg/L)

0.1 9.04 0.37 1.15 0.05 no increase

0.3 62.91 2.62 3.77 0.16 4.8

0.675 113.37 4.72 9.42 0.39 4.8

1.25 179.17 7.47 17.45 0.73 1.2

2 347.26 14.47 24.03 1 no increase

7 1425.98 59.42 83.12 3.46 no increase

13 1938.74 80.78 135.47 5.64 no increase

https://doi.org/10.1371/journal.pone.0202070.t001
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time overuse and misuse of antibiotics [30]. M. gallisepticum is the major mycoplasma patho-

gen in poultry and quinolone resistance in M. gallisepticum has become common, hindering

treatment and control efforts [31]. M. gallisepticum colonizes the respiratory tract of the

infected chickens. The primary signs of M. gallisepticum infections include nasal discharge,

keratoconjunctivitis, air sacculitis and depression [32]. The danofloxacin concentrations in

lung tissues of the M. gallisepticum infected chickens were simulated by this in vitro model.

The PK of danofloxacin in M. gallisepticum infected chickens has been investigated by us in

another study [24]. In the study, danofloxacin was orally administrated to the infected chick-

ens once daily for 3 days by an established in vivo M. gallisepticum infection model. The con-

centrations of danofloxacin in lung tissues were analyzed. The results showed that the half-life

(t1/2) of danofloxacin in lung was 9.2 h. Moreover, the PK parameters (Cmax) were dose depen-

dent. A significant correlation (R2 = 0.995) was found between dose and Cmax according to the

linear relationship. If the Cmax obtained from our current in vitro model (0.12, 0.38, 0.94, 1.74,

2.40, 8.31 and 13.55 mg/L) were used to calculate the dose in that M. gallisepticum infected in
vivo model, the corresponding administration dose were 1.24, 2.14, 4.09, 6.87, 9.16, 29.67,

47.86 mg/kg, respectively.

In this in vitro model, maintaining danofloxacin concentrations above Cmax/MPC > 1 may

be a straightforward way to restrict the acquisition of resistance. If Cmax/MPC > 1 in in vitro
model were used to derive the dose in that M. gallisepticum infected in vivo model, the corre-

sponding administration dose would be>9.16 mg/kg. Therefore, these findings suggest that

danofloxacin may be effective to prevent the emergence of resistant mutants in M. gallisepti-
cum infected chickens if administrated at a dosage above 9.16 mg/kg.

In the previous in vivo studies, increased efflux pump activity was displayed in the non-

topoisomerase mutants that were selected from the lower and middle parts of the mutant selec-

tion window [33, 34]. Since many non-target resistance mutants will accumulate at low dosage,

it is difficult to obtain DNA gyrase (target) mutants that selected from high dosage. However,

in our study, concentration in the lower part of the window with low values of AUC/MPC

resulted in a rapid enrichment and selection for a mutant subpopulation and target topoisom-

erase mutants. This difference was most likely the result of a number of factors: (1) the most

susceptible and resistant cells were killed when the concentrations were in the upper portion

of the window. This was caused by a greater MPC and MIC99 ratio (selection index) for dano-

floxacin; (2) A larger variety and abundance of preexisting resistant mutant subpopulations

survived and propagated near the bottom of the window; (3) the efflux pumps were not

activated.

Table 2. Amino acid changes in gyrA, gyrB, ParC, and ParE in danofloxacin–resistant strains.

Strains Mutations in QRDR target genesa:

gyrA gyrB parC parE
S6 - - - -

M1 Ser83!Arg - - -

M2 Ser83!Arg - - -

M3 Ser83!Arg - - -

M4 Ser83!Arg - Ala64!Ser -

-: No mutant was found.
a: E. coli numbering.

M1, M2, M3, M4: mutants are listed in order of increased MIC (agar dilution method) to 0.3, 1.2, 2.4 and 4.8 mg/L, respectively.

https://doi.org/10.1371/journal.pone.0202070.t002
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The primary quinolone resistance mechanisms are mutations in DNA gyrase and topo-

isomerase IV, belong to the topoisomerase II family, which are significant for bacterial viabil-

ity. Both enzymes are composed of two kinds of subunits. DNA gyrase is consisted of gyrA and

gyrB; topoisomerase IV is consisted of ParC and ParE [35]. Our investigation revealed that all

the mutants presented single mutation in gyrA and subsequent challenge added a parC muta-

tion only in strain M4 with the highest MIC. This suggested that the MIC correlated with the

number of mutations. The substitution of Ser83!Arg in the gyrA and the Ala64!Ser substi-

tution in the parC had been previously described [36]. Unlike previous reports in which quino-

lone resistance in M. gallisepticum resulted from four different alterations in gyrB, we found no

gyrB mutations in the mutant strains. Consistent with our results, the lack of gyrB mutations

had been demonstrated with other mycoplasmas, such as Ureaplasma urealyticum and Myco-
plasma hominis [37–39]. Stepwise resistance to danofloxacin was observed in our study when

M. gallisepticum was sequentially challenged with increasing drug concentrations. This resis-

tance mechanism was most likely similar to what occurs in Gram-negative organisms; DNA

gyrase is usually the primary quinolone target and the gyrA mutation is the first common

mutational step. Furthermore, resistance mutations in parC were established when DNA topo-

isomerase IV was subjected to higher drug concentrations [5].

To date, no other mechanism of quinolone resistance has been identified in M. gallisepti-
cum. We expected that a secondary mutation would result in drug inactivation as described in

other systems [40]. Indeed, energy-dependent efflux as a mechanism of quinolone resistance is

found in Gram-negative and Gram-positive bacteria [41, 42]. We found no change of dano-

floxacin MICs in the presence of CCCP and reserpine against the danofloxacin susceptible

strain (S6) and resistant strains (M1, M2, M3 and M4) that were selected from in vitro model.

The ABC transporter (ATP-binding cassette) and the MFS transporter (major facilitator

superfamily) are present in the M. gallisepticum genome, but they were most likely not acting

on danofloxacin efflux. Danofloxacin is a substrate for multiple transporters, including P-gp

(permeability-glycoprotein) and MRP2 (multi-drug resistance associated protein 2) that are

both ABC transporters. The compounds can be pumped out of the the cellular cytoplasm by

P-gp and MRP2. Additionally, danofloxacin (the transporter-dependent secretion of antimi-

crobial) can be transferred from the basolateral site to the alveolar space in bronchial and

bronchiolar epithelium and endothelial cells. This would contribute a therapeutic advantage

against M. gallisepticum if they colonize in bronchiolar and alveolar space [43, 44]. Hence, the

danofloxacin concentrations in lung tissues are higher than in plasma in the tested animals

including chicken, sheep and cattle [20, 45, 46].

The current study indicates that when drug concentrations fall inside the MSW, resistant

mutants were selectively enriched. Maintaining drug concentrations above Cmax/MPC > 1

provides a framework for preventing the development of further resistance in M. gallisepticum.

The single mutation in gyrA (Ser-83!Arg) was found in all mutants, while double mutations

in gyrA and parC (Ala-64!Ser) were detected only in the mutant with the highest MIC.

Although the abilities of danofloxacin to prevent the resistant mutant enrichment could be

predicted by in vitro dynamic models, the MSW hypothesis also should be validated in vivo.
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36. Reinhardt A, Bébéar C, Kobisch M, Kempf I, Gautier-Bouchardon A. Characterization of mutations in

DNA gyrase and topoisomerase IV involved in quinolone resistance of Mycoplasma gallisepticum

mutants obtained in vitro. Antimicrobial agents and chemotherapy. 2002; 46(2):590–3. https://doi.org/

10.1128/AAC.46.2.590-593.2002 PMID: 11796386
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