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Abstract: This paper proposes a novel microdroplet generator based on the dielectrophoretic (DEP)
force. Unlike the conventional continuous microfluidic droplet generator, this droplet generator is
more like “invisible electric scissors”. It can cut the droplet off from the fluid matrix and modify
droplets’ length precisely by controlling the electrodes’ length and position. These electrodes are
made of liquid metal by injection. By applying a certain voltage on the liquid-metal electrodes,
the electrodes generate an uneven electric field inside the main microfluidic channel. Then, the uneven
electric field generates DEP force inside the fluid. The DEP force shears off part from the main matrix,
in order to generate droplets. To reveal the mechanism, numerical simulations were performed to
analyze the DEP force. A detailed experimental parametric study was also performed. Unlike the
traditional droplet generators, the main separating force of this work is DEP force only, which can
produce one droplet at a time in a more precise way.
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1. Introduction

Droplet-based microfluidics have been extensively applied in multiple fields, including cosmetics,
medicine [1–3], chemistry [4,5], and biological detections [6]. Usually, droplets are manipulated by
several methods, to implement droplet splitting [7], merging [8–10], and migration [10]. Particularly,
the droplet can load certain quantities of samples, including proteins [1], cells [11], and even bacteria
solutions. Using droplets as reaction vessels facilitates the measuring rate [1], enhances reaction rate [2],
and even eradicates the contamination [6]. Because of its remarkable superiority, there are copious
amounts of research on how to generate droplets in an efficient and source-saving way.

There are active or passive methods to generate droplets. Concretely, an active method utilizes an
external force to cut one or several droplets from bulk fluid, and the cutting time is always decided by
manipulators. While in a passive method, the droplets are continuously generated when the generating
system is set. Droplets generated via a passive method are always identical. There are two typical
passive generators: the T-junction [12–14] generator and the flow-focusing [15–21] generator. They both
use two immiscible fluids to generate droplets and control the size of droplets by modulating the flow
rates or the pressure of two phases [22]. Although the passive control possesses multiple superiorities,
like the high monodispersity [15–21] of droplets, the high-throughput, and the marvelous automation,
it still has a fatal drawback, low operation flexibility, resulting in the impossibility of producing
diversities of droplets. It is also hard to operate robustly [23] and control the droplet-production
time [24], since the long-lived and chaotic oscillations exist in the devices, causing the flow to vary
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uncontrollably and making it difficult to reach a steady state [25]. In contrast, the active methods can
generate droplets and control droplet size promptly and precisely. The utilized external forces always
stem from the application of these technologies, including thermodynamics [26–30], mechanics [31–36],
magnetism [14,37], and electricity [24,38–46].

Electricity is one of the most powerful, convenient, and promising methods to generate droplets
precisely and instantly [24]. Electrical control comprises direct current (DC) control and alternative
current (AC) control. Initially, electricity was introduced to the mechanical control to facilitate the
procedure of obtaining ultra-fine droplets [46]. The electric field force in a flow-focusing generator
made it possible to produce charged droplets as small as femtoliters and recombine, separate,
and sort these droplets quickly [24]. The AC also facilitated the stable emulsification process at
high voltage, producing tiny droplets (less than one microliter) through the formation of Taylor
cone [47]. Furthermore, the utilization of AC electric field directly at the flow-focusing junction
promoted the precise modification of droplet sizes in the emulsification process [48], without any
environmental influence.

AC control contains two forms, the low-frequency (30–300 kHz) control and high-frequency
(3–30 MHz) control. Initially, AC control was applied in the exploration of forming droplets and
the observation of the relaxation oscillation phenomenon in a low-frequency electric field [36,49].
High-frequency control was also used to generate droplets, the size of which can be adjusted by
modulating the frequency and root-mean-square amplitude of the AC voltage [11,36]. Although AC
could generate droplets precisely, it still has some transparent drawbacks.

The droplet-producing process and results based on electricity are restricted by several factors.
The side effects of the external environment still existed until the sealed channels occurred in the
electrowetting experiments [50]. Electrolysis caused by espousing electrode to the electrolyte limited
the ceiling capability of electrowetting (less than several hundred millivolts [51]) until the electrowetting
on the insulator-coated electrode (EICE) [52] appeared. The integration of EICE and the flow-focusing
configuration facilitated the droplet transferring [53], which modulated the droplet size and produced
frequency by adjusting the applied voltage and the pulses [54], merged droplets with high efficiency
up to 98% [55], and guaranteed the detailed on-demand droplet generation [55]. The application of
finer orifice in the design also enhanced the precise modulation in the droplet dimension [55–57],
and the results showed that droplet size increased with the increase of applied voltage amplitude in the
conical-spraying regime [57]. The accumulation of surfactant also reduced the droplet size and enabled
it to be around 1 to 2 microns in the tip-streaming regime [58]. Later, the implementation of Norland
Optical Adhesive (NOA) material promoted the small aspect ratio of channels [59] and lifted the low
stiffness restriction for the device. Eventually, the non-contact electrode [48,60] fabricated by injection
ceased the fouling of the solution and electrode in the device [61] and reduced the droplet-formation
time to milliseconds [62].

The electricity (like electrowetting) only acted in a supporting role until the dielectrophoresis
(DEP) appeared in the droplet generators. Initially, T.B.Jones et al. [63] proposed a smart DEP generator
to form finite droplets (~60 nanolitres [64]) after the voltage is removed. Then, RaviPrakash et al. [65]
utilized this theory and demonstrated an extensively rapid and well-controlled microactuator of
aqueous samples, with dispensers that varied from nanolitre to picolitre. Even though these DEP
droplet choppers above can form droplets instantly with the assistance of specific structures, they cannot
work well without the unique structures.

Herein, we presented a universal and robust active microdroplet generator based on the
dielectrophoresis theory. The device had a T-junction in the flow channel where the two phases
met and a controllable interface was formed. Different from the devices using AC electric field as an
assistant tool in the flow-focusing field [48], this droplet generator directly utilized DC electric field to
introduce DEP forces as the main separating force to generate size-controllable droplets. It is easy to
obtain droplets with different sizes by modulating the electrode length and distribution, changing the
value of voltages applied on the certain electrode, or modulating the interface of two phases. Therefore,
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these “scissors” can provide droplets with a range of sizes and be applied to medicine [1–3] and
chemistry [4,5] fields. Simulations were demonstrated to understand how the DEP force sheared liquid
into drops and analyze the droplet-generation process clearly. Finally, the exhaustive experimental
parametric study was implemented. The proposed device may have potential applications in drug
screening, single-cell extraction, pharmaceutical synthesis, biochemistry detection, etc.

2. Experiments and Methods

2.1. Dielectrophoresis Droplet Generator

The active T-junction droplet generators were fabricated by the standard soft lithography [66].
The transparent mask with the design was utilized to create an SU-8 2050 (MicroChem Corp.,
Westborough, MA, USA) mold for microchannels. After being vacuumed for over 2 hours, in order to
remove the bubbles, Polydimethylsiloxane (PDMS), the Sylgard 184 silicone elastomer (a mixture of a
base and a curing agent at a 10:1 ratio per weight, Dow Corning Corp.) was poured onto the SU-8 2050
master mold. Then, the PDMS was heated on the hot plate at 65 ◦C, for around 2.5 hours before it was
peeled off from the mold. The fluid and electrodes’ channels had the same height (50 µm) since they
were also patterned simultaneously. This PDMS slab with channels was then bonded to another empty
PDMS slab after air plasma treatment (plasma cleaner, YZD08-2C, Tangshan Yanzhao Technology).

There are two distinct schemes to generate droplets. Figure 1 showed that scheme 1 and
scheme 2 had the same design size, while the material-filled-in-Channels 2/3/6 were different.
The material-filled-in-Channels 2/3/6 in scheme were PDMS, while that in scheme 2 was air. To form
electrodes, Channels 1/4/5/7 were assembled by Ga75.5In24.5 (75.5 wt.% Ga, 24.5 wt.% In, melting point:
15.7 ◦C; Shanxi Zhaofeng Gallium Co., Ltd., Yangquan, Shanxi, China) via injection with syringe pumps
(LSP10-1B, Longer Precision Pump Co, Ltd., Baoding, China). The width w1 and w2 were 70 and
470 µm, separately. Furthermore, the gaps between Channels 1/2/3/4/5/6/7 (w3) were 80 µm. The gaps
between Channels 2/3 and the side channel (w4) were 30 µm. Meanwhile, the width of the side channel
(w5) and the main channel (w7) were both 60 µm. Moreover, the gap between Channels 1/2/3/4/5/6/7
and the main fluidic channel (w8) were 30 µm. Furthermore, the width of Channels 2/3 (w) and that of
Channel 6 (w6) were both 470 µm.
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Figure 1. Structure of the dielectrophoresis droplet generator. (a) Droplet generator of scheme 1;
(b) droplet generator of scheme 2. The only difference between scheme 1 and scheme 2 was the filling
material of non-electrode Channel 2/3/6, with air in scheme 1 and PDMS in scheme 2.

2.2. Droplet Generation System

Deionized water and silicon oil were pumped into the channels at constant pressure,
using a microflow static pressure system (MFCSTM-EZ, Fluigent, Villejuif, France). Because this
droplet-generation system is not used for generating a lot of droplets continuously at a time, no surfactant
is necessary to added into the system to prevent uncontrollable coalescence [47]. First, the whole
system was filled with silicon oil to form a very thin oil-film on the inner surface of the microchannels.
This ultra-thin oil-film will help the silicon oil flow easily along the wall to “cut” the water. Then,
the water was pumped into the main channel from the dispersed phase inlet as shown in Figure 1.
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The silicon oil was pumped into the side channel from the continuous phase inlet. After that, the flow
pressure of the water (Pwater) and that of the silicon oil (Psilicon oil) were adjusted to around 50 mbar
and 40 mbar, respectively, and a stable interface between water and silicon oil was formed near the
junction of main channel and side channel. The uneven electric field was induced by applying voltage
on just one electrode with a high voltage power supply (HVS448 6000D, Lab Smith, Inc., Livermore,
CA, USA). The voltage utilized ranged from 2600 to 3000 V. The voltage was only applied on the
Channel 5 (marked as “DC” in Figure 2), leaving others grounded. All the videos and pictures were
recorded by a fluorescence microscope (Axio Observer Z1, Carl Zeiss, Oberkochen, Germany).
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Figure 2. The droplet generation process under 2600 V voltage. (a) Droplet generation process in
scheme 1; (b) droplet generation process in scheme 2. Voltage was applied on the electrode marked as
“DC” (Channel 5). The scale bars are 100 µm.

3. Results and Discussion

3.1. Droplet Generation

Figure 2 demonstrated that the voltage (2600 V) applied to electrode marked as “DC” induced
the meniscus at nearly the same location both in schemes 1 and 2, after the interface was formed.
The liquid column was torn into two and generated a droplet around the meniscus place in both
schemes. The length of the droplet in the two schemes was almost the same (around 660 µm). Notably,
a similar phenomenon also appeared when the voltage changed to 2700, 2800, 2900, and 3000 V. All the
experiments under different occasions were performed three times. As shown Figure 3, the pinch-off

point was a little closer to the upstream at low voltage, while that shifted further toward downstream at
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higher voltage. The volume of droplets indicated small differences which could be ignored in scheme 1
and scheme 2 (Figure 3), with the relative error of less than 3%.
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The water column break-up and droplet generation process contains four main steps (Figure 2).
(I) The deionized water was pumped into the main channel and stopped with its tip staying at the
T-junction by carefully controlling the pressure of the two phases. (II) The voltage was applied and a
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necking area began to show up. (III) The neck shrinked continuously as the silicon oil accumulated
in the vicinity. (IV) The neck broke and formed a new droplet at its right side. The next step was
to remove voltage and reduce Psilicon oil to transfer the droplet downstream. A new cycle would not
begin until the interface stabilized at the T-junction by carefully controlling Pwater and Psilicon oil again.
The potential field acted like “invisible scissors”, cutting the water into droplets as desired.

The reason for the droplet generation can be explained as follows. The voltage applied to the
electrode induced an uneven electric field, which could move the polarized water molecules via
the electric field forces. Since the intensity and direction of the electric field force applied to the
molecules were different, the molecules would migrate to different places with diverse velocities [67,68].
The dielectrophoretic (DEP) force acting on a dipole could follow Equation (1):

→

F =
→
m×∇

→

E (1)

where
→
m represents the dipole moment of the particle, and

→

E represents the electric field strength [67].
Supposing polarized water molecules as particles

→
m could be described as Equation (2):

→
m = 4πεmRe[CM(ω)]r3

→

E (2)

where εm represents the dielectric permittivity of silicon oil; r represents the radius of a particle;
and Re[CM(ω)] represents the Clausius–Mossotti factor. Then, the DEP force could be simplified as
Equation (3):

→

F = 2πεmr3Re[CM(ω)]∇
→

E
2

(3)

As for the water in oil with the voltage frequencies ranging from zero to several MHz, Re[CM(ω)]

equals to 1 [69]. Our experiments were under this condition as DC voltage was applied to the electrode.
There was a presumption that the DEP force acted on the deionized water could induce the orientated
migration of the water molecules, which induced the orientated migration of the liquid. Thus, the DEP
force triggered the droplet generation. As the silicon oil accumulated around the snip-off point
(the trigger point), the water column also bore the shear stress from the silicon oil. Eventually, the water
column broke into two, and the droplet was generated. Since the droplet generation triggering process
depended on the value of DEP force, droplet generation occurred in scheme 1 and scheme 2 only when
the DEP force applied on the trigger point was large enough. Similarly, the break-up point or the
length of droplet also varied with the voltage applied on the electrode, because the change of electric
field led to the change of DEP force.

3.2. Simulation and Parametric Study

To gain a better understanding of the droplet-formation principle, numerical simulations were
implemented, using COMSOL. The geometry of the channels was the same as the chips in experiments.
The x axis is set along the main channel, and the y axis is set along the side channel. Models neglected the
affect of Channel 3, Channel 4, and Channel 7 since they rarely influenced theoretic and experimental
results. Here, we suppose voltage applied on Channel 5 was 3000 V since the voltage value change
(ranging from 2600 to 3000 V) had a moderate effect on the break-up point. As is apparent from
Figure 4, there was no distinct difference between the electrical potential of scheme 1 and scheme, but it
showed that there was an obvious sharp decrease between the left and the right of the the intersection
of the pair of electrodes.
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Near the top wall, the minimal value in scheme 1 and scheme 2 bottomed at nearly –8.53 × 1014

kg2
·m/(s6

·A2) at −764 µm and −8.27 × 1014 kg2
·m/(s6

·A2) at −762 µm, respectively. Near the bottom,
the maximal value in schemes 1 and 2 peaked at around 4.36 × 1014 kg2

·m/(s6
·A2) near –644 µm and

3.69 × 1014 kg2
·m/(s6

·A2) around –647 µm, separately. It meant that the DEP force could trigger droplet
generation around these points as the magnitude of the extrusion force there was almost 10 times of
that in other places. Generally, the droplet generation only occurred when the DEP force was strong
enough. Clear from Figure 3, the place where droplets were generated was near the intersection of
the pair of electrodes. It was not hard to see that it was near the midpoint of the top break-up point
and the bottom break-up point in simulation results. Thus, we took the midpoint as the point where
droplet generation was activated. As shown in Figure 6, the simulation results were highly consistent
with the experiments.
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on the water and the shear force from silicon oil. Due to the extrusion force from the top and bottom,
the neck of the water column shrank and triggered the accumulation of silicon oil there. With the
continuous accumulation of oil, the water column bore the shear force from the oil, resulting in a
slender neck. Eventually, the neck was snipped off when it could not bear the DEP force and the shear
stress from silicon oil, generating a droplet with a certain length. It is not difficult to generate a droplet
with a certain length when the interface between water and oil is fixed or defined by the “T-junction”.

Thus, the pair of electrified electrodes worked like a pair of “invisible” scissors to cut the droplet
off from the bulk. Using these “scissors”, the volume of droplet can be well controlled by designing the
distribution of the electrodes. As shown in Figure 6, the volume of the droplet varies with w in Scheme
1. The w ranged from 420 to 820 µm, with an interval of 50 µm, and the volume of the droplet got larger
with it. We did three sets of experiments for each value of w. Figure 6 indicated that the numerical
simulation matched the corresponding experimental results well. As shown in Figure 6, the volume
of the droplet is highly linear with w. The maximal relative error of the experiments was less than
8%. The cause of error between the numerical results and experimental results came mainly from the
slight flunctuation of the interface between oil and water at the T-junction, and the inaccuracies of the
channel parameters during the fabrication process. Furthermore, the slight flunctuation of the interface
might be the factor bringing the droplet volume change under the same voltage, as the break-up point
was fixed. The difference of the gap w8 between experiments and simulations also made the shift of
the electric field, leading to the position change of the break-up point.
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On the other hand, besides designing different value of w to control the droplet size, the droplet
volume can also be controlled in a more “dynamic” way. As shown in Figure 7, a series of electrodes can
be fabricated in a column beside the main channel in advance. By choosing which pair of electrodes to
be electrified, the length and volume of droplet can be easily controlled. As shown in Figure 7, with the
fixed interface at the T-junction, when the first pair of electrodes on the left (Figure 6a,c) was electrified,
a longer droplet was generated, while a shorter droplet was generated (Figure 6b,d) with the second
pair of electrodes being electrified. Thus, the same droplet generator could actively generate droplets
with different size by just switching different pairs of electrodes. The applied voltage was 3000 V.
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4. Conclusions

In this work, we proposed a novel droplet generator based on liquid-metal electrodes and explored
the principle of droplet formation in an uneven electric field. Obviously, this device could generate
droplets with a certain length and volume when the interface between two phases was stabilized at the
T-junction. The electrified liquid metal electrodes worked like invisible “scissors” to cut the droplet off

from the bulk. To reveal the mechanism of the “cutting”, a model was built based on the DEP force,
and this model could successfully predict the position of the snip-off point of the droplet. By designing
different sized electrodes, the droplet size can be controlled from chip to chip. The droplet size can also
be easily controlled by selecting which pair of electrodes is to be electrified in a series of electrodes on
the same chip. This DEP droplet generator could be useful in extensive applications, such as medicine,
biologic tests, and cosmetics.
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