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The identification of functional modules in gene interaction networks is a key step in 
understanding biological processes. Network interpretation is essential for unveiling 
biological mechanisms, candidate biomarkers, or potential targets for drug discovery/
repositioning. Plenty of biological module identification algorithms are available, although 
none is explicitly designed to perform the task on single-cell RNA sequencing (scRNA-
seq) data. Here, we introduce MTGO-SC, an adaptation for scRNA-seq of our biological 
network module detection algorithm MTGO. MTGO-SC isolates gene functional 
modules by leveraging on both the network topological structure and the annotations 
characterizing the nodes (genes). These annotations are provided by an external source, 
such as databases and literature repositories (e.g., the Gene Ontology, Reactome). 
Thanks to the depth of single-cell data, it is possible to define one network for each cell 
cluster (typically, cell type or state) composing each sample, as opposed to traditional 
bulk RNA-seq, where the emerging gene network is averaged over the whole sample. 
MTGO-SC provides two complexity levels for interpretation: the gene-gene interaction 
and the intermodule interaction networks. MTGO-SC is versatile in letting the users define 
the rules to extract the gene network and integrated with the Seurat scRNA-seq analysis 
pipeline. MTGO-SC is available at https://github.com/ne1s0n/MTGOsc.

Keywords: single cell, RNA-seq, enrichment, gene network, clustering, gene module, annotation, scRNA-seq

INTRODUCTION

In contrast to bulk tissue RNA-sequencing, which allows mapping gene networks under the 
assumption of an “average” cell type, single-cell RNA sequencing (scRNA-seq) presents the 
unprecedented chance to study gene networks at the level of each cell type/state (usually 
identified by a cell cluster). In recent years, single-cell data repositories started to emerge, such 
as the Broad Institute Single Cell Portal1, scRNASeqDB2, and JingleBells3. Not surprisingly, a 

1 https://portals.broadinstitute.org/single_cell
2 https://bioinfo.uth.edu/scrnaseqdb
3 http://jinglebells.bgu.ac.il
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plethora of novel scRNA-seq computational tools have been 
recently published as well, addressing specific scRNA-seq 
data analysis challenges. To date, scRNA-tools4, a catalog of 
software packages designed for the analysis of scRNA-seq 
data, reports hundreds single-cell bioinformatics tools. These 
in silico methods are pipelines for scRNAseq downstream 
analysis, comprising quality control, imputation of drop-outs, 
batch effect correction, normalization, scaling, highly variable 
gene detection, clustering, and cluster characterization.

Interestingly, an unexplored niche in scRNAseq data analysis 
is gene network interpretation, i.e., grouping genes in functional 
modules to understand signal origins and cell functional 
organization. Gene modules are labeled with specific cellular 
function(s), such as metabolic pathways or signal transduction 
systems, and provide a picture of how the cellular machinery is 
organized. Gene network interpretation greatly benefits from 
computational tools, as hundreds to thousands of genes cannot 
be grouped without an automated approach. The interpretation 
of gene networks is a key step toward applications such as omics 
data integration, protein/gene function discovery, molecular 
mechanism comprehension, and drug target discovery/
repositioning. In contrast with bulk RNA-seq, scRNA-seq data 
unlock the possibility to understand the different heterogeneous 
gene subnetworks underlying not a tissue as a whole but each 
cell community within that specific tissue. For example, in a 
tissue sample comprising different types of neural cells, it would 
be possible to isolate several gene networks corresponding to 
different types of neural cells, each one with its specific functional 
modules. This is particularly important if uncommon cell 
types are present since infrequent signals could be diluted and 
impossible to catch with bulk RNA-seq analysis. This motivates 
the need for a tool to find gene functional modules specifically 
designed for scRNA-seq data. This tool would analyze gene 
networks and, more importantly, would extract gene modules, 
specific for cell type/cell state, i.e., it would unveil a deeper level 
of mapping if, compared to bulk RNA-seq, gene networks built 
on the cell signal averaged over all the cells of the tissue sample.

To fulfill this task, here, we present MTGO-SC (MTGO 
for single-cell RNA seq). The algorithm is based on MTGO, 
presented by Vella et al. (2018), a novel system for biological 
network interpretation recently published by our group, which 
outperforms state-of-the art algorithms on module detection 
in protein networks. In particular, MTGO outperforms 
existing methods on different benchmark data sets and, more 
importantly, sharply increases the detection of sparse/small 
modules, which are typical in biological networks. MTGO-SC 
is a tool to perform module identification of gene networks 
tailored for scRNAseq, and it is intended to provide an additional 
postprocessing step in the scRNA-seq pipeline analysis (Figure 1).  
MTGO-SC is designed to produce an interpretable gene 
interaction network for each cell cluster resulting from scRNA-
seq analysis. MTGO-SC allows the users to navigate the network 
on two interlaced levels, i.e., the gene-gene interaction and the 
module-module interaction. The gene-gene interaction network 
is the traditional gene network view, where each node is a gene 

4 http://www.scrna-tools.org/

and each edge is an interaction (for example, a gene expression 
correlation). Genes are grouped by MTGO-SC into functional 
modules characterized by a representative label (e.g., a GO term 
or a pathway), therefore greatly easing network interpretability. 
This is fundamentally different from a typical gene enrichment 
result, which provides only some statistically significant terms 

FIGURE 1 | Schema of MTGO-SC. scRNA-seq data are analyzed through 
the typical pipeline including quality control, rescaling, normalization, and 
clustering. MTGO-SC provides a further postprocessing step, in which a 
cell cluster is analyzed to extract the gene network and by integrating it with 
an annotation source, such as the GO or Reactome, each gene network is 
parsed into modules describing the cell machinery. 
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related to the whole network (as a group of genes to enrich). 
From the gene-gene interaction network, it is possible to extract 
the module-module interaction network, i.e., a network where 
each node is a labeled functional module (a group of genes). In 
summary, MTGO-SC provides both labeling terms and relational 
networks to study how genes and modules are interacting and 
relating to each other (Figure 1), thus opening a window over 
the cell machinery. MTGO-SC is also natively integrated with 
Seurat, a popular tool for scRNAseq downstream analysis by 
Butler et al. (2018).

MATERIALS AND METHODS

MTGO-SC is designed as postprocessing step of single-cell data 
analysis pipelines (Figure 1). Once the cells in a data set have been 
clustered, for example, by the analysis tool Seurat Butler et al. 
(2018), MTGO-SC extracts for each cell cluster a gene interaction 
network and identifies its gene modules. MTGO-SC pipeline has 
four steps: creation of the gene expression correlation matrix, 
network thinning, invocation of MTGO, and visualization of 
resulting network(s). MTGO-SC is an algorithm intended to 
extract functional modules from single-cell gene networks, not 
to clusters cells.

Gene Expression Matrix
Given a gene expression matrix E = [eij], with eij≥0 representing 
the expression of gene i in cell j, we define the symmetric 
correlation expression matrix C = [cik] through the selection of a 
commutative metric function f (x1,x2), so that cik = cki = f (Ei, Ek), 
with Ei and Ek being two full rows of expression matrix E. The 
selected function must measure the expression similarity of two 
genes through the full set of the analyzed cell cluster. In addition, 
it must be robust to noise and minimize the impact of dropouts 
and data sparseness, two well-known problem in scRNA-seq, as 
discussed by Haque et al. (2017).

Network Extraction
Gene expression correlation matrix C can formally be considered 
as the matrix representation of a weighted gene network, with 
each element Cik representing the weight on the edge connecting 
gene i to gene k. The described network is always fully connected, 
with all genes having an edge with all other genes. Moreover, 
the weights distribution is expected to be highly skewed, with 
the majority of genes showing little to no correlation and only 
a limited subset showing high (positive or negative) correlation. 
For this reason, we implemented a network extraction step to 
extract the meaningful subnetwork and remove uninformative 
connections. This step comprises two parts, namely, (a) calculation 
of the coexpression matrix and (b) thinning. A parameter 
combination to run MTGO-SC therefore depends on (a) the 
correlation method and (b) the thinning method. To calculate 
the expression network, the users can choose among Spearman, 
Person, Kendall, p, and φ correlations Skinnider et al. (2019). 
To thin the resulting network, the users can proceed by either 
fitting the network by selecting the top percentile coexpression 
(MTGO-SC considers top 10, 20, 30, 40, and 50 percentiles) or 

pruning the network to fit a scale-free law. A scale-free network 
is a network whose degree distribution follows a power law, 
typically with γ ∈ [2,3] Choromański et al. (2013). Biology is rich 
of scale-free network examples, including metabolic, protein, 
and gene networks Khanin and Wit (2006). In the case of gene 
networks, the scale-free principle is well integrated in modeling 
their evolution Zhang et al. (2015). We therefore designed a 
network thinning function that extracts an optimally scale-
free subnetwork from the fully connected network. MTGO-SC 
thinning function implements a grid search over a set of cutoff 
values, i.e., a set of thresholds that edge weights must surpass in 
absolute value. For each cutoff value, edges (correlations) smaller 
in absolute value than the considered cutoff are removed from 
the network. It is then measured the goodness of fit on a power 
law of the obtained subnetwork. The cutoff value resulting in the 
best fit is selected and the resulting subnetwork is prepared for 
further elaboration.

A summary of the user-defined parameters for network 
extraction and MTGO processing v reported in Table 1. Once the 
networks are extracted from the subsection of the gene expression 
matrix corresponding to each cell cluster, they are individually 
processed with MTGO to infer their functional modules.

Assessing Extracted Networks
To help the users to choose the best parameter combination 
for gene network extraction (i.e., coexpression and thinning 
methods), we prepared a function to benchmark the extracted 
networks against a ground-truth network (GTN). The GTN is an 
experimentally confirmed collection of biological complexes. The 
level of overlapping between the modules found by MTGO-SC 
and the modules in the GTN is used as index of reliability 
of the proposed method in the form of a p-value derived 
from the affinity score (AS). The AS is defined as the squared 
number of homologous edges in the two networks divided by 
the multiplication of the number of edges for each network, 
as follows:

 AS N GTN h N GTN
N NEN EGTN

( , ) ( , )=
∗

2
 (1)

Here, N is the extracted gene network with a specific 
parameter combination; GTN is the ground-truth network; 
h(N,GTN) is the number of homologous edges of N and GTN; 
NEN is the number of edges of N; NEGTN is the number of edges 
of GTN. After calculating the AS, we generate a population of 
equivalent random networks by rewiring the edges of N while 
preserving the original degree distribution. By comparing the AS 
with the rewired networks, we obtain a p-value associated to N. 
In this way, users can rank all the possible extracted networks for 
each cell type of their data, with the top scoring ones producing 
networks closest to the selected GTN. These results are visualized 
using a −log(p−valueN) heatmap to find the best parameter 
combination for the different cell type (Figure 2). Different cell 
types (i.e., different heatmap rows) show different performances 
(i.e., colors in heatmap cells) over the methods. A dot marks 
the best performing ones. A detailed example of how to run 
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MTGO-SC to find the best extraction method for each cell type 
is reported in the MTGO-SC package vignette.

While users can define their own GTN, the default one in 
MTGO-SC collects complexes derived from four different sources 
to maximize the experimental knowledge coverage used to evaluate 
the method. The four collections come from CORUM database 
Giurgiu et al. (2018), a protein interaction map Ramani et al. (2008), 
and String and Reactome databases Skinnider et al. (2019). The 
GTN involves 5,727 nodes and 67,756 edges. It has to be noted that 
our experimental knowledge on the biological complexes is still 
limited, and a GTN necessarily covers only partially and unevenly 
all the gene connections involved in a living organism. This problem 
is discussed in Section 3, along with suggestions to mitigate it.

MTGO Principles
As MTGO-SC applies the MTGO algorithm for module 
identification, here, we report a summary of how MTGO works. 
MTGO is an algorithm for module identification in biological 
networks Vella et al. (2018). It is designed to consider two key 

aspects, i.e., the topological properties of the network (the 
connection arrangement) and the a priori knowledge about the 
biomolecules involved, represented by literature annotations, 
such as the Gene Ontology (GO).

With the goal of identifying relevant modules, MTGO 
iteratively builds network partitions, improving the quality at 
each iteration until a steady state is reached. A partition is a 
subdivision of the graph (i.e., the gene interaction network) 
into subgraphs, covering all the network nodes. MTGO 
generates at each step a new partition by mixing the nodes 
among the clusters. The result consists of both a network 
partition, thus a set of clusters, and a set of functional modules, 
representing the biological entities (pathway, complex, 
process, and component) associated to each cluster. The 
modules are reshaped taking into account two factors, i.e., the 
biological annotations and the graph topology. At the end of 
each iteration, MTGO measures the modularity (Q) Newman 
and Girvan (2004) and Quality GO (QGO) Vella et al. (2018) 
reached. Q represents the global quality of the partition in 
terms of modularity and is a state-of-the-art function aiming 
to evaluate graph partitions Fortunato (2010). Conversely, 
QGO evaluates the agreement between C and Φ, where C is 
the cluster partition, and Φ is the subset of the annotation 
source terms selected by MTGO to describe the biological 
functions linked to the partition C of the network. The ideal 
solution would have C and Φ overlapping, i.e., the algorithm 
should find the optimal modularity and optimal fitting for the 
annotation source constraints.
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Ck is the partition for the iteration k; Hk is the number of 
topological modules of the partition k; eh

k  is the total number 
of edges in the hth topological module; dh

k  is the sum of the 
node degrees of the hth topological module. E is the set of all the 
relationships between network node pairs. We define it as E  = 
{ei,j | 1 < i,j < N, I ≠ j}. Q ranges from −1 to 1. A positive value 
implies that there are more links within topological modules 
than expected at random.

 

QGO C
c

N
k

B h
k

h
k

h H

AnnSo

k( )
| ,

=
∩

< <∑ δ
1

 (3)

Here, B,hk is an annotation term for the topological module 
h at the iteration k, whereas δ B h

k
, ) is the functional module 

minimizing the Selection γ function for the topological 
module ch

k . The aim of Selection γ function is to choose an 
annotation term as model to drive the building process of a 
topological module. NAnnSo is the total number of nodes with 
at least one δp assigned. δp is set of network genes associated 
to a p annotation term.

TABLE 1 | MTGO-SC main parameters.

Function name Function description Parameters

write.coexpressionMatrix Compute and save the 
correlation matrix

Location, overwriting 
options, gene interaction 
metric function (defaults 
to cor)

write.edges Thins the network and 
saves the result

Location, overwriting 
options, thinning 
function (defaults to 
thinning_abs_threshold)

write.dictionary Create and save a 
gene-term dictionary 
file

Location, the dictionary 
tuplets

export.network.modules Save visual 
representation of 
functional modules

Module collapse toggle

thinning_abs_threshold Subset a coexpression 
network for 
thresholded absolute 
values

The threshold value

thinning_percentile Subset a coexpression 
network to the desired 
percentile

The percentile value

thinning_scale_free Subset a coexpression 
network to maximise 
free scale fit

The target gamma, plus 
a grid of thresholds to be 
compared

coexpr_propr Compute gene 
coexpression via 
proportionality 
functions

The selected function, 
plus any extra 
parameters

call.MTGO Invoke the MTGO 
execution

Location containing all 
the data and config file
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We terminate the algorithm when two consecutive iterations 
show a negligible variation of Q and QGO, specifically when 
|Qk+1 – Qk < T | and QGOk – QGOk – 1 < T |, with threshold T = 10−4.

A detailed description of the functioning of MTGO, including 
the pseudocode, is provided by Vella et al. (2018). An MTGO 
user manual is provided in its repository5.

Visualization of Functional Modules
MTGO-SC produces a partition of the genes in a set of 
functional modules. MTGO-SC uses the visNetwork R 
package6 to produce a customizable graphical representation 
of MTGO numeric results. At the highest level, MTGO-SC can 
show the connection between functional modules, with the 
weight of the connection represented as edge thickness and 
the list of genes for each module reported via tooltip (Figure 
3B). It is also possible to not collapse the genes into modules 
and produce the full network of examined genes (Figure 
3A). In this case, modules are color-coded and reported in 
each gene’s tooltip. Finally, it is possible to isolate separated 
networks, one per module, for finer examination.

5 https://gitlab.com/d1vella/MTGO
6 https://github.com/datastorm-open/visNetwork

RESULTS AND DISCUSSION

MTGO-SC is a tool to infer gene-gene networks in scRNA-seq. 
MTGO-SC provides a further layer to scRNA-seq analysis—the 
study of gene-gene interactions—by isolating the different gene 
modules and labeling them with a specific enrichment term. 
MTGO-SC analysis grants flexibility as the users controls key 
parameters to define the gene network. In particular, how to select 
the nodes (genes), the method to calculate the gene coexpression 
network, including a function to benchmark all combinations 
of methods an parameters over a selected GTN (Figure 2), and 
one to compare the different methods over each single-cell type 
(Supplemental Figure 1); how to calculate gene interactions; 
and how the (weighted) edges of the network are defined, which 
annotation source is used for labeling (as default, we provide the 
GO and Reactome pathways, but users can use their own).

The clustering coherence for two extracted networks is the 
number of genes that ends up in the same cluster at the end of 
the processing divided by the average number of genes in the 
two extracted networks. This can be collected in an N × N square 
matrix (graphically, in a heatmap) where N is the total number 
of methods tried (i.e., all coexpression metrics × all network 
extraction algorithms). If rows and columns of the heatmap are 
sorted by AS, a good result will show a “hot spot” in the top right 

FIGURE 2 | Ranking of all the network extraction approaches (coexpression metric combined with thinning technique) applied to the different cell types, based on 
affinity score (AS). The heatmap colors depend on the per-row rescaled −log (P-value) (blue to red). The best method per cell type is marked with a dot. Although 
some methods seem to fit many cell types a clear cut, one-size-fit-all solution does not emerge. The users can therefore tailor the network extraction method to the 
different cell types in his/her data.
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corner, meaning that top ranking methods show higher coherence 
to each other, and lower ranking methods are more scattered. 
An example of this comparison is provided in Supplemental 
Figure 1, showing the extraction method coherence for bladder 
smooth muscle cells.

To extract gene modules, MTGO-SC leverages not only the 
topological properties of the network but also the previous 
biological knowledge provided by the users. This knowledge 
comes in two forms, namely, (a) a GTN to find the best 
parameter combination for the gene network extraction and 
(b) an annotation source to partition the previously extracted 
gene network into functional modules. The drawback of using 
previous knowledge is that all sources are inherently biased. For 
example, the sources we used to build the GTN come from gene 
and protein databases, which in turn are usually not derived 
from the granularity of single-cell experiments. A gene network 
measured on the tissue level implies the assumption of an average 
cell-per-tissue type, therefore not considering the heterogeneity 
of cells unveiled in detail by single-cell analysis. Even if the 
source is diligently measured on the cell-type level, more studied 
cell types might weight more than less studied ones in the gene 
network definition. Finally, even the knowledge of single gene 
and protein interactions is unbalanced toward “superstar” genes 
or proteins, which are more studied than others Lam et al. 
(2016); Marini et al. (2018). Users should select the gene label 
annotation source carefully and according to the problem they 
want to analyze. For example, if the studied cells are affected by 
a specific condition, the source should ideally reflect that (i.e., it 

should ideally derive from, or at least include, cells from samples 
marked by that condition). MTGO-SC parameters can be tuned 
to curb their influences to mitigate the influence of this implicit 
source bias in both GTN and annotation source. First, in the 
network extraction phase, if users cannot find a GTN fitting the 
purpose of their study, they can focus the thinning to best fit the 
power law. Not only this makes sense biologically but from our 
empirical assessment (Figure 2), fitting the power law seems to 
provide best or high results in the largest part of the analyzed 
cell types. Secondly, in the module discovery phase, the influence 
of the annotation source can be greatly limited by the selection 
of MTGO partition which maximizes the mean cluster density, 
therefore weighting more the adherence of the discovered 
modules to the network structure (topology) and less on the 
overlapping between discovered modules and annotation source 
[this topic is treated in detail in the MTGO paper of Vella et al. 
(2018)]. In this way, users can reduce the influence (and therefore 
the bias) introduced by the GTN and annotation source.

Gene Modules Out of the Mouse Gene 
Atlas and Reactome
To test our pipeline, we applied it to the bladder and peripheral 
blood mouse tissue provided by batch-removed MCA data sets 
of the corresponding tissues, described by Han et al. (2018). We 
obtained 2,297 and 2,356 cells for bladder and peripheral blood, 
respectively, with an MCA cell-type label. We then filtered the 
said cell clusters for minimum number of genes expressed per cell 
(500), maximum UMIs per cell (10,000), and maximum fraction 

FIGURE 3 | An example of gene network, extracted from basal epithelial cells of mouse bladder scRNA-seq. The whole gene network (A) is visualized with 
nodes colored by gene module (i.e., the annotation labels attributed by MTGO-SC to gene groups). The gene module network (B), with each node representing 
a module extracted by MTGO-SC, has the gene belonging to the same functional module sharing the same color. The edge thicknesses reflect node correlation. 
The module network edges show self-loops representing the interactions of the genes within the modules. The thickness of these self-loops reflects the level of 
within-module correlation.
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of expressed mitochondrial genes per cell (0.1), obtaining two 
reduced sets of 2,297 and 2,117 cells for bladder and peripheral 
blood, respectively. Finally, we discarded the cell clusters with 
less than 50 cells. Our retained cell clusters were characterized in 
bladder as stromal cells (two clusters, Dpt high or Car3), vascular 
endothelial cells, urothelium cells, smooth muscle cell, basal 
epithelial cells, epithelial cell (Upk3a high), mesenchymal stromal 
cells, and umbrella cells; and in peripheral blood as B cells (two 
clusters, Ly6d or Vpreb3 high), erythroblasts, macrophages (two 
clusters, Ace or S100a4 high), monocytes (two clusters, Elane or 
F13a1 high), neutrophils (two clusters, Camp or Il1b high), NK 
cells, T cell (two clusters, Gm14303 or Trbc2 high).

We selected the highly variable genes according to the Seurat 
pipeline (FindVariableGenes, mean.function = ExpMean, 
dispersion.function = LogVMR, x.low.cutoff = 0.5, x.high.
cutoff  = 8, y.cutoff = 0.5, num.bin = 20). Gene networks were 
computed with a grid search along all the parameter combinations 
(coexpression and thinning methods) and selecting the best ones 
according to our assessment method based on the AS 2.2.1. 
Characteristics of the cell types and of the obtained networks are 
reported in Supplemental Tables 1 and 2.

After the application of MTGO-SC, each cell cluster is 
characterized by a gene network. In each gene network, genes are 
clustered in modules. Each gene module is labeled by a Reactome 
pathway characterizing the cellular machinery in which the 
group of genes is likely involved. Unlike traditional enrichment, 
MTGO-SC infers also the gene module interactions (Figure 3).

Gene Networks of the Bladder Cell Types
Almost all the cell types constituting the mouse bladder in 
MCA (7/9) showed the Formation of the Cornified envelope as 
enriched pathway. The cornified envelope is a protein structure 
with a scaffold function for lipid attachment, typical of epidermal 
regions Candi et al. (2005). In fact, the protein precursor of the 
epidermal cornified envelope is the Involucrin, also detected in 
the differentiating epithelial cells of normal tongue, oesophagus, 
and bladder Li et al. (2000).

Excluding generic terms related to metabolism, muscle 
contraction (4/9; epithelial cells Upk3a high, smooth muscle cells, 
umbrella cells, vascular endothelial cells), Molecules associated 
with elastic fibres (3/9; smooth muscle cells, stromal cells Dpt 
high, umbrella cells) and collagen biosynthesis and modifying 
enzymes (3/9; epithelial cells Upk3a high, smooth muscle cells, 
umbrella cells) resulted common highlighting the muscular and 
elastic nature of the bladder Chunhui et al. (2014).

Concerning pathways characterizing specific cell types, it is 
interesting the presence of “Post-translational modification: 
synthesis of GPI-anchored proteins” in epithelial cells Upk3a high 
and vascular endothelial cells. In fact, glycoproteins constitute 
the glycosaminoglycan (GAG) layer which has a protective role 
in the bladder providing a barrier against the penetration of toxic 
agents, urine, and bacteria Klinger (2016). In addition, Upk3a, 
highly expressed in in Epithelial cells Upk3a high, contributes 
to the formation of urothelial glycocalyx, which may play an 
important role in preventing bacterial adherence, as well as toll-
like receptor (TLR) family (urothelium bladder and vascular 

endothelial cells) which have a role in urinary tract defense 
against pathogenic microbial agents Behzadi and Behzadi (2016).

Of note, it is very interesting that the signaling by VEGF, 
collagen chain trimerization, and Heparan sulfate/heparin 
(HS-GAG) metabolism was specifically enriched in vascular 
endothelial cells. In fact, it well established the relation of 
angiogenesis with VEGF Coultas et al. (2005), collagen Feng 
et al. (2013), and heparan sulfate/heparin Chiodelli et al. (2015).

Gene Networks of the Peripheral Blood Cell Types
As for peripheral blood it is not surprising that, due to the 
nature of cell type selected, the most shared pathway concern 
immune system (neutrophil degranulation, immunoregulatory 
interactions between a lymphoid and a nonlymphoid cell, metal 
sequestration by antimicrobial proteins signaling by Interleukins, 
MHC class II antigen presentation).

In addition, mitotic spindle checkpoint and G2/M transition, 
selected for macrophage S100a4 high, were in agreement with 
the high expression of S100a4 involved in the regulation of a 
number of cellular processes such as cell cycle progression and 
differentiation Orre et al. (2013).

Similarly, different pathways related to cell cycle (mitotic 
prophase, amplification of signal from the kinetochores, S phase, 
SUMOylation of DNA replication proteins, kinesins) were 
specifically enriched in Bcell Vpreb3 high.

Of note, different pathways related to immune system 
(TNFR2 noncanonical NF-kB pathway, activation of matrix 
metalloproteinases, DAP12 signaling) were specifically enriched in 
Tcell Gm14303 high. Different studies have described the relation 
between TNRF2 and T lymphocyte Salomon et al. (2018), between 
DAP12 and T lymphocyte Haura et al. (2015); Salomon et al. (2018), 
as well as between the activation of matrix metalloproteinases and 
T lymphocyte Edsparr et al. (2011); Hayes et al. (2014).

Again, the specific enrichment of Senescence-Associated 
Secretory Phenotype (SASP) in NK cell Gzma high is interesting. 
In fact, their relation has been recently described Ruscetti et al. 
(2018); Antonangeli et al. (2019).

Literature Search of MTGO-SC Pairs of 
Cell Type and Terms
As a further step in our analysis, we performed an automated 
literature search of the Reactome pathways attached by MTGO-SC 
to the gene modules and their related cell type. Specifically, we 
tested whether the pathways obtained with MTGO-SC, and the 
pathways enriched with over-expressed genes, were consistent 
with existing published results. We therefore performed an 
automated search on the Pubmed repository by using RISmed7, 
reported in Supplemental Figures 2 and 3 for bladder and 
peripheral blood, respectively. For each cell type, we considered 
two sets of pathways, those revealed by MTGO-SC and those 
obtained by enrichment analysis, performed with ReactomePA 
Yu and He (2016). Since the enrichment provides a large number 
of pathways, each cell type is selected a subset with a size equal to 
the set of pathways extracted by MTGO-SC, taking the pathways 

7 https://CRAN.R-project.org/package=RISmed
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with the lowest values of adjusted p-value. For the analyzed 
tissues, blood, and bladder, we considered all the possible couples 
pathways-cell type. For each obtained combination, we counted 
the number of papers that a Pubmed repository search (from 
2000 to 2019) detects by looking the corresponding string. We 
used the hypergeometric distribution to assess whether, among 
the papers concerning the selected tissue, the number of hits 
obtained by searching a combination of pathway and cell type is 
significantly higher than what expected by chance. A combination 
is considered significantly consistent with published results if the 
p-value based on the hypergeometric distribution is lower than 
0.05. In order to obtain more hits in Pubmed search, when the 
cell-type name refers to a highly expressed genes, for instance, 
“Neutrophil Il1b high”, we implemented the Pubmed search also 
after splitting the cell-type original string in the two component, 
i.e., the general cell type (Neutrophil) and the specific genes 
(Il1b). For example, in Supplemental Figure 3, “Neutrophil” 
and “Il1b” are also included in the hits matrix. Here, only the 
combinations of cell types (splitted or not) and the pathway that 
bring to a significant number of Pubmed search hits are shown. 
More detailed information about the Pubmed search hits and 
the obtained p-values is included in the Supplemental Table 1. 
Results show that the meaningful and different statistically 
significant pair of terms are retrieved by both MTGO-SC and 
ReactomePA. This outcome suggests that the two methods 
are complementary and should be combined. We therefore 
integrated the ReactomePA + RISmed literature search in the 
MTGO-SC pipeline.

CONCLUSIONS

MTGO-SC (MTGO for single-cell RNA-seq) is a novel pipeline 
for single-cell biological network interpretation. Specifically, 
MTGO-SC requires as input the digital gene expression matrix of 
scRNA-seq data, and an annotation source of gene labels, such as 
the GO. The output is the partition of the network in gene modules. 
Each of these modules is associated to a specific label present in the 
gene label source. MTGO-SC is intended to be used as an additional 
step of data interpretation in the typical scRNA-seq pipeline and, 
in particular, to be applied separately to each cell cluster previously 
emerged. Furthermore, MTGO-SC provides also a gene network 
extraction assessment function that allows the users to compare 
the networks extracted with different coexpression calculation 
methods and thinning parameters to tailor the extraction methods 

to the different cell types. MTGO-SC is presented as natively 
integrated with Seurat, a popular R tool for scRNA-seq analysis. 
MTGO-SC comes with customizable parameters to extract the 
gene network and to find the gene modules. To ease the network 
interpretation, MTGO-SC provides both gene and functional 
module networks, as well as literature enrichment.
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