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An exploration on retro-construction of plasma drug 
concentration-time curves from corresponding urine excretion 
data and single-point plasma concentrations using a simplified 
and idealized method
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Background: Despite the availability of various tools of modeling and simulation, clinical pediatric 
pharmacokinetic (PK) studies remain far less efficient than those on adults due to ethical constraints. One 
of the optimal solutions is to substitute urine to blood sampling based on explicit mathematic relationships 
between them. However, this idea is limited by three main knowledge gaps associated with urine data, i.e., 
complicated excretion equations with excessive parameters, insufficient frequency that is hard to fit, and the 
mere expression of amounts with no in vivo distribution volume information involved.
Methods: To overcome these obstacles, we sacrificed the precision from mechanistic PK models with 
complex excretion equations to expediency of compartmental model in which a constant ke is used to cover 

all the internal parameters. And the total cumulative amounts of urinary drug excretion ( )uX∞  were estimated 
and introduced to the excretion equation so that urine data were likely to be fitted using a semi-log-terminal 
linear regression method. In addition, urinary excretion clearance (CLr) could be calculated by single point 
plasma data to anchor the plasma concentration-time (C-t) curve based on the assumption that CLr was kept 
constant throughout the PK process.
Results: After sensitivity analysis of two subjective judgements (the selection of the compartmental model 
and the selection of plasma time point to calculate CLr), the performance of the optimized models was 
assessed using desloratadine or busulfan as model drugs in a variety of PK scenarios, from i.v. bolus/infusion 
to p.o. administration, from a single dose to multiple doses, and from rats to children. The fitting plasma 
drug concentrations of the optimal model were close to the observed value. Meanwhile, the drawbacks 
inherent to the simplified and idealized modeling strategy were fully identified.
Conclusions: The method proposed by this tentative proof-of-principle study was able to deliver 
acceptable plasma exposure curves and shed light on the future refinements. 

Keywords: Pediatric; pharmacokinetics; modeling

Submitted Oct 09, 2022. Accepted for publication Mar 15, 2023. Published online Apr 20, 2023.

doi: 10.21037/tp-22-505

View this article at: https://dx.doi.org/10.21037/tp-22-505

860

https://crossmark.crossref.org/dialog/?doi=10.21037/tp-22-505


Li et al. Retro-construction of PK profile from the urinary data846

© Translational Pediatrics. All rights reserved.   Transl Pediatr 2023;12(5):845-860 | https://dx.doi.org/10.21037/tp-22-505

Introduction

In recent years, health and drug regulators around the world 
have introduced a number of incentives and regulations for 
the industry in order to ensure children’s access to innovative, 
safe, and effective medications (1). Accordingly, related 
basic research has become increasingly active and fruitful, 
resulting in better understanding of the difference between 
children and adults in drug absorption, distribution, 
metabolism, and excretion (ADME) characteristics caused 
by age/maturation-related enzyme/transporter expression 
and other physiological/pathological specifications (2,3). All 
the new knowledge can boil down to the best-known saying 
that children are not small adults (4).

Despite the amazing progress in basic research, few 
of the findings have been translated into clinical dosing 
recommendations due to inadequate clinical validation (5). 
Consequently, pediatric patients have not fully benefited 
from the achievements of pharmacological research. For 
instance, pediatric medications and drug development still 
lag far behind demand, such as pediatric exclusive medicines 
or extended applications in young populations from adult 
drugs. In addition, without adequate clinical data, “off-label” 
use and intuitive doses frequently occur in pediatric clinic, 
which is likely to trigger potential drug-induced toxicity, 
drug-drug interactions or treatment failure (6,7). It seems 
that children still remain “therapeutic orphans” proposed 
initially by Dr. Shirkey in 1962 (8,9).

Obviously, the main obstacle to this area is the lack 
of clinical pharmacokinetic (PK) data due to the limited 
number of children with a particular disease and the 

difficulty in finding subjects restricted by ethical concerns. 
Another core problem is the fact that a full-sampling 
sophisticated clinical PK trial is undoubtedly infeasible in 
such fragile populations. Therefore, the quality of pediatric 
data with absence of individual PK profiles is extremely 
poor.

To overcome the drawbacks mentioned above, a variety 
of advanced technologies and novel research strategies have 
been applied to increase the accessibility and acceptability of 
the pediatric clinical PK data. For example, to facilitate the 
sampling process, strategies like micro-volume sampling, 
sparse sampling, opportunistic sampling, and surrogate 
sampling (such as saliva, exhaled gas) have been used in 
pediatric clinical trial protocols (10,11). Alongside that, a 
series of mathematical modeling methods has been used in 
data mining to maximize findings from limited data. There 
are two main strategies in modeling and simulation (M&S). 
One is the top-down modeling strategy, represented by 
population PK (popPK) analysis, which integrates sparse 
data to characterize the PK of pediatric populations 
or extrapolates the pediatric PK from adults’ data by 
means of statistics (12). The other one is the bottom-up 
modeling strategy, represented by physiologically based 
pharmacokinetic (PBPK) modeling, which combines 
the physiochemical property of the compound and the 
physiological parameters of the population to predict 
the PK properties using mechanism-based mathematic 
tools (13). Both M&S tools help to replace or reduce 
pediatric clinical data requirements to some extent (10), 
but neither can fully address the challenges of pediatric 
clinical studies, such as the lack of subjects, time-consuming 
experimentation, and the absence of individual full exposure 
curves. Frankly, the data quality has not been substantially 
improved. 

So far, the public perception has been changed from 
“it is unethical to test drugs in children” to “it is unethical 
to give children medications without sufficient clinical 
verifications”. In the meantime, the same evidentiary 
criteria for adults should be adopted for pediatric innovative 
drug approval (14). However, this is virtually impossible 
without high-quality individual exposure curves. Therefore, 
it is imperative to develop a novel approach that can 
quantitatively depict the individual full PK profiles within 
practical and ethical compliance.

Non-invasive sampling is considered the most promising 
method, where urine is an optimal surrogate matrix 
to analysis with significant advantages. In detail, urine 
collection is easy without any ethical concerns so that 

Highlight box

Key findings
•	 A non-invasive sampling strategy in which urine is used as 

surrogate matrix in PK trial was introduced and validated in this 
study.

What is known and what is new?
•	 There are three main knowledge gaps about urinary data, which 

are the complicated excretion mechanism, insufficient frequency 
sampling, and the absent volume information.

•	 Using simplified and idealized tactics to cross the gaps, the 
present modeling approach was able to produce acceptable plasma 
exposure curves with some limitations which were fully discussed.

What is the implication, and what should change now?
•	 The proposed method might promote the good practice of clinical 

trials in pediatric populations by updating the research paradigm.
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the number of children enrolled in clinical trials will be 
increased by the reduced burden of blood sampling, and 
therefore the quality of PK data will be enhanced by the 
availability of full description of individual PK profiles.

The primary task of this vicarious method is the 
construction of a mathematical model that can bridge the 
drug exposure between urine and plasma. Several major 
knowledge gaps during modeling have to be overcame 
and the corresponding solutions we proposed are listed as 
follows. (I) Urinary drug excretion is a complex procedure 
(filtration, secretion, and reabsorption) with multiple factors 
that can hardly be quantified exhaustingly. Our workaround 
is using the urinary drug excretion rate constant (ke) to 
cover all the parameters in urinary excretion no matter 
how complicated the mechanism is. In other words, the 
classical compartmental models characterized by simplicity, 
appearance, and approximation were used in our modeling 
instead of the contemporary commonly accepted PBPK 
models characterized by complexity, mechanism, and 
precision. (II) Even on a simple compartmental model, 
based on insufficiently frequent urine samples, the urinary 

excretion equation is too complex to fit. To fix this problem, 
the total cumulative amounts of urinary drug excretion ( )uX∞

  
were estimated and the residual urinary amounts ( )u uX X∞ −  
were calculated, leading to a simplified equation that can 
be fitted. Take the simplest one-compartment model with 
i.v. bolus administration in Figure 1, the uX t−  curve 
was transformed to ( )u uX X t∞ − −  curve in the first step 
for easier fitting. The fitted slope (exponential term, -α) 
of ( )u uX X t∞ − −  curve was found to be of the same slope 
as concentration-time (C-t) curve. That means the slop 
of plasma C-t curve could be fitted by urinary data. (III) 
However, since there is no any volume information in 
urinary equations, to construct a plasma C-t curve equation, 
urinary clearance (CLr) as an indispensable parameter was 
calculated using a single-point plasma concentration based 
on an assumption that CLr was constant during the whole 
ADME procedure. Finally, the definite plasma C-t curve 
equation could be constructed approximately.

Practically, more complicated scenarios have occurred 
than the one-compartment model with i .v.  bolus 
administration in Figure 1, such as multiple compartmental 

Figure 1 A schematic description of the proposed method to retro-construct a plasma drug concentration time curve by the urinary 
excretion data and a single-point plasma concentration, taking one-compartment model with i.v. bolus administration as example. ① The 

observed cumulative urinary excretion data was transformed into the residual urinary drug amount. ② The resulting ( )u uX X t∞ − −  curve was 
fitted to get the parameters α and KeA, which ③ was further used to calculate CLr based on a single-point plasma concentration (⋆). Then 
④ the C-t curve could be anchored by CLr and ⑤ could be verified by comparing the predicted and the observed plasma concentrations at 
each time point. C-t, concentration-time; CLr, urinary clearance.
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models with i.v. infusion, p.o., and/or multiple doses. 
To cover these scenarios, desloratadine and busulfan 
(the reported PK characters of them are summarized in  
Table S1), both are first-line drugs in pediatric for anti-
allergy and anti-leukemia treatments, were selected as model 
drugs. In addition, there are two subjective judgments that 
need to be made in the modeling process: one is the selection 
of a compartmental model, and the other is the selection of 
a time-point plasma concentration to calculate CLr. Both are 
optimized by sensitivity analysis, and the proximity of the 
final model to the observed value is assessed either in rats or 
in children. We present the following article in accordance 
with the ARRIVE reporting checklist (available at https://
tp.amegroups.com/article/view/10.21037/tp-22-505/rc).

Methods

Rationale

The model was based on assumption that elimination 
pathways of the test drug in vivo should include renal 
excretion whose process is consistent with first order 
kinetic with a constant ke. To specify the compartmental 
models  and the dosing regimens,  the model  was 
preliminarily divided into 6 scenarios and listed below. The 
corresponding equations were quoted from reference (15) 
with minor rearrangement for more explicit illustration 
of the relationship in drug exposure between urine and 
plasma.

Scenario 1, one-compartment model after single dose 
i.v. bolus administration
The  in vivo drug amount-time profile of the one-
compartment distribution model after single dose i.v. 
administration follows Eq. [1.1]

αtX Ae−= 	 [1.1]

The urinary drug excretion rate follows Eq. [1.2]

αtu
e e

dX k X k Ae
dt

−= = 	 [1.2]

The real solution of Eq. [1.2] is the cumulative urinary 
drug excretion-time curve, see Eq. [1.3]

( )αte
u

k AX 1 e
α

−= − 	 [1.3]

The total urinary excretion of the drug minus the 
amount excreted in urine, the residual urinary drug amount 

at time t is obtained, see Eq. [1.4].
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Eq. [1.1] is transformed to Eq. [1.5] to obtain the plasma 
drug concentration-time curve.
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where CLr can be obtained from the ratio of the urinary 
excretion rate to the plasma drug concentration at time t, 
see Eq. [1.6].
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Scenario 2, two-compartment model after single dose 
i.v. bolus administration
The central compartment drug amount-time profile of the 
two-compartment distribution model after single dose i.v. 
administration follows Eq. [2.1].

αt βtX Ae Be− −= + 	 [2.1]

The urinary drug excretion rate follows Eq. [2.2].
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The real solution of Eq. [2.2] is the cumulative urinary 
drug excretion time curve, see Eq. [2.3].
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The total urinary excretion of the drug minus the 
amount excreted in urine, the residual urinary drug amount 
at time t is obtained, see Eq. [2.4].
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so, in the terminal phase, Eq. [2.5] is obtained.
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Eq. [2.1] is transformed to Eq. [2.6] to obtain the plasma 
drug concentration-time curve.
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where CLr can be obtained from the ratio of the urinary 
excretion rate to the plasma drug concentration at time t, 
see Eq. [2.7].

( )
u

αt βte
r

t t

dX
kdtCL Ae Be

C C
− −= = + 	 [2.7]

Scenario 3, three-compartment model after single dose 
i.v. bolus administration
The central compartment drug amount-time profile of the 
three-compartment distribution model after single dose i.v. 
administration follows Eq. [3.1].

αt βt γtX Ae Be Pe− − −= + + 	 [3.1]

The urinary drug excretion rate follows Eq. [3.2].

( )αt βt γtu
e e

dX k X k Ae Be Pe
dt

− − −= = + + 	 [3.2]

The real solution of Eq. [3.2] is the cumulative urinary 
drug excretion time curve, see Eq. [3.3].
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The total urinary excretion of the drug minus the 
amount excreted in urine, the residual urinary drug amount 
at time t is obtained, see Eq. [3.4].
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The Eq. [3.1] is transformed to Eq. [3.6] to obtain the 
plasma drug concentration-time curve.
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where CLr can be obtained from the ratio of the urinary 
excretion rate to the plasma drug concentration at time t, 
see Eq. [3.7].
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Scenario 4, two-compartment model after single dose 
p.o. administration
The central compartment drug amount-time profile of the 
two-compartment distribution model after single dose p.o. 
administration follows Eq. [4.1].

( ) αk tαt βtX Ae Be A B e−− −= + − + 	 [4.1]

The urinary drug excretion rate follows Eq. [4.2]

( ) αk tαt βtu
e e

dX k X k Ae Be A B e
dt

−− − = = + − +  	 [4.2]

The real solution of Eq. [4.2] is the cumulative urinary 
drug excretion time curve, see Eq. [4.3].
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The total urinary excretion of the drug minus the 
amount excreted in urine, the residual urinary drug amount 
at time t is obtained, see Eq. [4.4].
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Eq. [4.1] is transformed to Eq. [4.6] to obtain the plasma 
drug concentration-time curve.
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where CLr can be obtained from the ratio of the urinary 
excretion rate to the plasma drug concentration at time t, 
see Eq. [4.7].

( ) α
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	 [4.7]

Scenario 5, one-compartment model after single dose 
i.v. infusion
The infusion time is T (h), the infusion rate is k0 (mg/h), and 
the in vivo drug amount at the moment of T is XT (mg). The 
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one-compartment plasma drug concentration-time curve 
for infusion administration is described in two segments, 
which are the infusion phase (0 ≤ t ≤ T) and the elimination 
phase after the infusion termination (t greater than T). The 
in vivo drug amount-time profile during the infusion phase 
follows Eq. [5.1].

( ) ( )αt0kX 1 e 0 t T
α

−= − ≤ ≤ 	 [5.1]

Eq. [5.1] is transformed to Eq. [5.2] to obtain the plasma 
drug concentration-time curve.

( ) ( ) ( ) ( )αt αt0 0

T T

k kC 1 e 1 e 0 t T
αV α X C

− −= − = − ≤ ≤ 	 [5.2]

where XT is set approximately equal to X0 by neglecting the 
elimination during infusion period.

After infusion, the elimination process is consistent with 
the one-compartment model after single dose i.v. bolus 
administration, see Scenario 1.

Scenario 6, one-compartment model i.v. infusion with 
multiple dosing
The infusion interval is τ (h), the function of the nth 
infusion phase is Cn, and the function of the nth elimination 
phase is '

nC , whose equations are as Eqs. [6.1,6.2]. 
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Experiments

Male Sprague-Dawley rats (weight 200±20 g) were randomly 
divided into 4 groups with 6 rats each, corresponding to the 
four PK scenarios without setting control groups. Group 1 
was administrated with desloratadine of 0.5 mg/kg by single 
bolus intravenous injection. Group 2 was p.o. administrated 
with desloratadine of 2 mg/kg. Group 3 was administrated 
with busulfan of 2 mg/kg by single dose of 1-h intravenous 
infusion. Group 4 was administrated with busulfan of 1 mg/kg  
with a 1-h intravenous infusion for every 4 h (six times daily), 
for a total of 7 doses. Blood and urine samples of each 
single rat were collected at the specific time points or time 
intervals, and the plasma drug concentration and urinary 

excretion amounts were determined by a validated liquid 
chromatography-tandem mass spectrometry (LC-MS/
MS) method. Animal experiments were performed under 
a project license (No. IACUC-DWZX-2020-694) granted 
by ethics board of National Beijing Center for Drug Safety 
Evaluation and Research, Beijing Institute of Pharmacology 
and Toxicology, in compliance with National Research 
Council’s Guide for the Care and Use of Laboratory 
Animals, which also in compliance with guidelines of 
Association for Assessment and Accreditation of Laboratory 
Animal Care International (AAALAC). 

A clinical study was also conducted in 3 patients with 
leukemia, using busulfan as the test drug to validate the 
modeling method of Scenario 6. This study did not disturb 
any of the clinical treatment plan, neither increase any 
blood sampling for participants. Busulfan was administrated 
at the initial dose of 0.8 mg/kg b.w. by a 2-h i.v. infusion 
for every 6 h, for a total of 16 doses. In addition to the 6 
blood sampling points in the first dose period according 
the original therapeutic drug monitoring (TDM) protocol, 
this study also scavenged 3 daily blood samples that had 
been collected for routine clinical testing from day 2 to 4. 
Other blood samples, if any, during the therapy can also 
be scavenged. All urine samples within 48 h of the last 
dosing were collected. During the sampling period, the 
subjects were allowed to urinate freely, while 2-h and 6-h 
after the end of the last infusion were set as mandatory 
urine sampling points. The clinical study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). The study was approved by ethics board of Beijing 
Children’s Hospital affiliated to Capital Medical University 
(No. [2022]-E-047-Y) and informed consent was obtained 
from all individual participants, or their legal guardians. 
The details of protocols and related concerns during either 
non-clinical experiments or clinical trials were listed in 
Appendix 1.

Modeling procedures

Figure 1  has outlined the method with Scenario 1 
(one-compartment model after single dose i.v. bolus 
administration) as an example. Here, we used more 
complicated Scenario 2 (two-compartment model after 
single dose i.v. bolus administration) to elaborate upon the 
modeling procedure and related considerations.

Step 1: transformation
The cumulative amount of urinary drug excretion at time t 

https://cdn.amegroups.cn/static/public/TP-22-505-Supplementary.pdf
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could be calculated by multiplying the urine concentration 
by the urine volume for each time interval before time 
t and summing up. Then, the data at each time point 
were transformed to the residual urinary drug amount by 
subtracting the cumulative excretion at each time point 
from the total amount of urine drug excretion ( )uX∞

. This 
parameter was estimated by last extrap last last

u u u u uX X X X V λ∞ = + = +  
in which λ was estimated by the linear regression of nature 
log of excretion rates at the last 2 time points. In essence, 
for this step, Eq. [2.3] was simplified to Eq. [2.4] in order to 
facilitate the fitting in the next step.

Step 2: fitting
The transformed urinary data were fitted according to 
Eq. [2.4] manually or automatically by marketed software. 
Although the same results could be obtained either way, the 
manual way was mainly introduced here to elucidate the 
mechanism of fitting. That is, a semi-log-linear regression 
was performed on the terminal phase (12, 24, and 48 h) of the 
residual urine drug amount according to Eq. [2.5] to obtain 
parameters β and keB. After substituting β and keB into Eq. 
[2.5] and extending it to the alpha phase (0 to 4 h), the α-phase 
residuals were obtained by subtracting the amount values 
from the extended data of Eq. [2.5]. Then, the semi-log-
linear regression was performed again on the α-phase residual 
data (0 to 4 h) to further obtain parameters α and keA.

Step 3: CLr calculation
The four parameters (β, α, keB, keA) and the data on 
measured plasma drug concentrations at any specific time 
point were substituted into Eq. [2.7] to obtain the CLr at 
that time point. 

Step 4: anchoring
The CLr and the obtained parameters (β, α, keB, keA) were 
substituted into Eq. [2.6] to determine the equation of 
plasma drug concentration-time curves.

Step 5: verification
In contrast to the curves fitted from urinary data, the curves 
directly fitted from all the measured plasma concentrations 
data using the corresponding compartmental models (the 
weight was set as equal in WinNonlin software) have also 
been calculated as an optimal fitting control. Multiple 
indexes were used to evaluate the fitting performance of the 
model, such as ratioAUC, average folding error (AFE) and 
absolute average folding error (AAFE), and mean absolute 
percentage error (MAPE), whose definitions are listed as 

follows:

pred
AUC

obs

AUC
ratio

AUC
= 	 [7]

The predicted value of area under the curve (AUC) was 
calculated by integrating Eq. [2.6] obtained from Step 4; the 
observed value of AUC was calculated from the measured 
plasma drug concentration-time data with the non-
compartment analysis (NCA) using WinNonlin 8.0. 

1 pred.t
n obs.t

1 pred.t
n obs.t

AFE 10

AAFE 10
1 pred.t obs.tMAPE
n obs.t

 
 
 ∑

=

∑
=

−
= ∑

	 [8]

where pred.t and obs.t represent the predicted and 
measured plasma drug concentrations at time t, respectively, 
and n represents the number of samples. If ratioAUC is in 
range of 0.5 to 2, AFE <2, AAFE <3, and MAPE <100%, 
the predicted value was considered to fit well. No further 
statistical test was performed.

Results

Single dose i.v. bolus administration

As was described in Methods, the greatest uncertainty 
in the modeling process arose from the selection of the 
compartment model in the course of fitting of urinary 
excretion data and the selection of the time point for 
the measured plasma concentration in the calculation of 
CLr. Thus, to validate the effects of these two factors and 
to optimize the modeling process, the data on urinary 
excretion and plasma concentrations after a single 
intravenous injection of desloratadine in rats were used 
to evaluate the performance of the models separately 
constructed with the equations listed in Scenarios 1, 2 and 3, 
and with ratioAUC, AFE, AAFE and MAPE as the indexes. 

Figure 2 shows the plasma C-t curves retro-constructed 
from the urinary excretion data in an individual rat after 
intravenous injection of desloratadine at a single bolus dose 
of 0.5 mg/kg. Different compartmental models were chosen 
to fit the residual amount data in urine, so were different 
time points of the measured plasma drug concentration 
data to calculate CLr. The three-compartment model 
(Figure 2C) and the two-compartment model (Figure 2B)  
were significantly better than the one-compartment model 
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(Figure 2A) as judged by visual inspection. This conclusion 
from a single rat data was further confirmed by the 
statistic results of the model potency parameters, ratioAUC, 
AFE, AAFE and MAPE, from six animals (Figure 3).  
As for the same compartment model, the selection of 
different time points of measured plasma concentrations 
for the calculation of CLr resulted in different fitting 
errors. To be more specific, the selection of mid-term 
time points (1 to 8 h) of measured plasma concentrations 
y ie lded a  better  model  than ear ly  (0  to  30 min)  
and late (12 to 24 h) ones (Figure 3). Ultimately, a three-
compartment model with CLr calculated from 1 h measured 
plasma concentration data was adopted, and the fitted 
curves of the six animals were plotted in Figure 4A as against 
the curves derived from WinNonlin 8.0 using the three-
compartmental model fitted by all the measured plasma 
concentrations data. Table 1 lists the statistic results of the 
final model potency parameters, ratioAUC, AFE, AAFE and 
MAPE, either for the six animals or for three patients in the 
respective scenario.

Single dose p.o. administration

In this part of the experiment, urinary excretion data from 
rats administrated with a single oral dose of desloratadine 
2 mg/kg were used to construct the plasma C-t curve. 
After optimization as described above, it was determined 
that the two-compartment model was adopted and the 
measured plasma concentration at 4 h after administration 
was selected to calculate the CLr. The resulting curves 
of the six animals constructed according to the equations 

listed in Scenario 4 were plotted in Figure 4B as compared 
with the curves derived from WinNonlin 8.0 using the two-
compartmental model fitted by all the measured plasma 
concentrations data.

Single dose i.v. infusion

In this part of the experiment, urinary excretion data 
from rats administrated with a single i.v. infusion dose of 
busulfan 2 mg/kg were fitted after optimization with the 
one-compartment model according to the equations listed 
in Scenario 5 and based on the selection of the measured 
plasma concentration at 1 hour after administration (the 
ending time of infusion) to calculate the CLr. The result 
curves of six animals were plotted in Figure 5A as compared 
with the curves derived from WinNonlin 8.0 using the one-
compartment model fitted by all the measured plasma 
concentrations data. 

Multiple dose i.v. infusion

In this part of the experiment, urinary excretion data at the 
last dosing from rats administrated with 7 i.v. infusion doses 
of busulfan 1 mg/kg were fitted with the one-compartment 
model according to the equations listed in Scenario 6. Based 
on the optimization results derived from a single dose, it 
was determined that the measured plasma concentration at 
1 hour after administration within the first dosing period 
(the end of infusion) was selected to calculate the CLr. The 
result curves of the six animals were plotted in Figure 5B as 
compared with the curves derived from WinNonlin 8.0 using 

Figure 2 Retro-construction of the plasma concentration-time curves from the urinary excretion data in an individual rat after intravenous 
injection of desloratadine at a single bolus dose of 0.5 mg/kg. Different compartmental models [(A) one-compartment model; (B) two-
compartment model; (C) three-compartment model] were chosen to fit the residual amount data in urine (■). The resulting equations are 
listed and the corresponding fitting curves (···) are drawn. Then, different time points of the measured plasma drug concentration data (▼) 
were chosen to calculate CLr, yielding a set of different plasma concentration-time curves (—). CLr, urinary clearance.
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Figure 3 The modeling potency parameters of ratioAUC, MAPE, AFE and AAFE obtained by different modeling methods in rats after 
intravenous injection of desloratadine at a single bolus dose of 0.5 mg/kg (n=6), including those of compartmental models (Scenario 1, 
2, 3) to fit the residual amount data in urine and those of time points of the measured plasma drug concentration data to calculate CLr. 
Meanwhile, the parameters derived from the compartmental models fitted by all the measured plasma concentrations data using WinNonlin 
8.0, are also listed for comparison. AFE, average folding error; AAFE, absolute average folding error; MAPE, mean absolute percentage 
error; AUC, area under the curve; CLr, urinary clearance.

the one-compartment model fitted by all the measured 
plasma concentrations data.

This modeling scenario was also applied to clinical trials 
in which 3 patients were enrolled. Modeling on subjects 
1 and 2 worked well except the third one with relative 
big errors, who suffered infection from day 2 to 4 during 
busulfan therapy and produced a less than normal urine 
sampling (Figure 6). It was surmised that the CLr had 
changed during the urinary sampling period (last dosing) 
leading to a significant bias when CLr was calculated using 
both urine data and the plasma concentration at 2-hour 
of the first dosing. The mean values of total clearance 
(CL) and volume of distribution of busulfan in this study 
were 0.21 L/h/kg and 0.69 L/kg, respectively, which are 
consistent with the reported pediatric median typical 
values (16), lower than the mean values we obtained in rats  
(0.27 L/h/kg and 0.95 L/kg), but higher than the reported 
values from adults (17).

Discussion

The data on central compartment exposure, typically 
presented by the plasma drug concentration-time profiles, 
are recognized as “critical data” of PK studies, which can 
shed light on the information underlying PK of drugs, 
such as developmental or (patho)physiological changes. 
The reliability and integrity of the “critical data” is critical 
to data quality. However, during clinical PK studies and 
therapeutic drug monitoring in pediatric populations, 
inaccessibility to the “critical data” due to ethical restrictions 
on blood sample collection has posed a huge obstacle to the 
development of pediatric medicines. Effort to explore ways 
to substitute urine for blood has been underway along with 
the development of pharmacokinetics. Basically, there are 
two ways to bridge between urine and plasma: one is to find 
the statistical relationship, and the other is to construct the 
mathematic equations. 

The former way has been explored by Motoyasu Miura 
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Figure 4 The plasma concentration-time curves (—) retro-constructed from the urinary excretion data by specific modeling methods in 6 
individual rats after intravenous injection of desloratadine at a single bolus dose of 0.5 mg/kg (A), oral administration of desloratadine at a 
single dose of 2 mg/kg (B). Three- (A) or two- (B) compartment model was used to fit the residual amount data in urine (■) and the resulting 
equations are listed and the corresponding fitting curves (···) are drawn. The measured plasma drug concentration data (▼) at t=1 h (A), 
t=4 h (B), was selected to calculate CLr. Meanwhile, the curves (---) derived from the corresponding compartment model fitted by all the 
measured plasma concentrations data using WinNonlin 8.0, are also plotted for comparison. CLr, urinary clearance.

et al. (18), who reported the relationship between PK 
parameters of AUC or CL and urinary excretion or single-
point plasma concentrations at various time points after 
patients were i.v. or p.o. administrated with midazolam 
(MDZ). The results showed that single-point plasma was 
generally superior to urinary excretion and the parent drug 
concentration (or excretion) was superior to metabolite/
parent concentration ratio in terms of relationships and 
predictive accuracy. Specifically, single-point plasma 
concentrations at 1.5 h post-IV and 4 h post-orally 

predicted AUC with the best accuracy. Nevertheless, most 
of the single-point plasma concentrations and urinary 
excretion were poorly correlated with AUC, and the 
metabolite/parent concentration ratio in urine was not 
correlated with CL. The authors of the report did not 
make an in-depth analysis of the reasons for these results. 
Our opinion was that, (I) besides the elimination process, 
the drug exposure in plasma was also influenced by the 
kinetic process of distribution. Only in one-compartment 
model where drug distribution rapidly reaches equilibrium 
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in the whole body can the effect of the distribution on 
the plasma drug profile be neglected. However, MDZ is 
a typical two-compartment model (19), resulting in poor 
correlations between single point plasma concentrations 
and AUC. (II) If urinary excretion is the main contributor 
to drug elimination, urinary excretion of the parent drug 
may be positively correlated with CL. However, urinary 
excretion clearance of MDZ accounts for no more than 1% 
of the total elimination (20), and is thus subject to large 
individual variability in renal clearance, which is insufficient 
to reflect the total CL. (III) Since metabolic transformation 
is the main contribution of drug elimination, can the 
urinary metabolite/parent concentration ratio reflect the 
total CL? The answer is no, because metabolite exposure, 
besides its rate of production, is also mainly influenced 
by the elimination of the metabolite itself. Based on the 
above analysis, the predictive model based on post-hoc 
proportional relationships between PK parameters (AUC 
or CL) and single point plasma concentrations or urinary 
excretion is only applicable to the one-compartment model 
and that urinary excretion is the main elimination pathway, 
which is why such a model is of limited value.

Alternatively, the later way may theoretically lead to a 
range of widely applicable models for predicting plasma 
exposure curves from single-point plasma concentrations 
and urinary excretion, which can break down the limitations 
of distribution processes and urinary excretion clearance 
contributions. However, there is little related report so far, 
because there are three enormous challenges to researchers 
when dealing with urinary data, which are the complicated 
excretion mechanism, insufficient frequency sampling, 
and the absent volume information. Using simplified 

and idealized tactics to fix these challenges, we sacrificed 
the precision from PBPK model with complex excretion 
mechanism to expediency of compartmental model in which 
a constant ke is used to cover all the internal parameters. 
The uX∞  was also introduced to streamline the workflow 
of urine data fitting with low frequent samples. CLr was 
calculated by single point plasma data, assumed that CLr 
remains constant throughout the in vivo procedure. Despite 
its workability, this simplified and idealized model still has 
some limitations inherent to the strategies that have been 
identified in our validation experiments.

(I)	 The multi-compartment model, three at most, 
limited the complexity of the fitted equations. As a 
consequence, take Scenario 4 Rat-01 in Figure 4B,  
this model can do nothing about the plasma 
exposure profile with an atypical absorption phase 
and mutation abnormalities, although they have 
already reflected in the urinary excretion curve. 
These problems can be partially fixed with the 
help of computer programming tools or PBPK 
software, which can facilitate the construction of 
plasma concentration curves in complex situations. 
In the meantime, increasing the frequency of 
urine sampling, especially in the absorption phase 
and the elimination phase of multi-compartment 
models (with multiple inflection points), may help 
to a more accurate curve fit.

(II)	 uX∞ , when used to simplify the fitting equation, 
was dependent on the precision of the excretion 
rates of the last two sampling points because of its 
estimation method. Erratic effect of uX∞  uncertainty 
on the resulting curves can be seen in Figure 7, 

Table 1 Statistic results of the final model potency parameters in various scenarios

Parameters

Rats (n=6) Human (n=3)

Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 6

WinNonlin Model WinNonlin Model WinNonlin Model WinNonlin Model WinNonlin Model

MAPE 10.01±1.87 40.22±8.32 32.98±15.51 51.31±15.98 16.59±8.77 14.73±6.52 12.15±7.40 17.25±5.20 21.95±7.79 73.90±66.81

RatioAUC 1.02±0.04 0.93±0.14 0.90±0.17 0.82±0.22 1.01±0.04 0.95±0.10 1.00±0.05 0.95±0.15 0.85±0.17 1.08±0.06

AFE 0.97±0.02 0.76±0.22 0.87±0.16 0.69±0.12 1.02±0.11 0.91±0.13 0.99±0.04 0.93±0.14 0.89±0.02 1.28±0.24

AAFE 1.11±0.03 1.71±0.24 1.38±0.35 1.92±0.32 1.14±0.05 1.19±0.13 1.13±0.08 1.21±0.08 1.09±0.12 1.51±0.28

Data are shown as mean ± standard deviation. WinNonlin: the parameters were obtained from the curves directly fitted from all the 
measured plasma concentrations data using the corresponding compartmental models in WinNonlin software. Model: the parameters 
were obtained from the plasma drug C-t curves retro-constructed from urine and single plasma data by the final model after optimization. 
AAFE, absolute average folding error; AUC, area under the curve; AFE, average folding error; MAPE, mean absolute percentage error; C-t, 
concentration-time.
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Figure 5 The plasma concentration-time curves (—) retro-constructed from the urinary excretion data by specific modeling methods in 6 
individual rats after a single dose of 1-hour intravenous infusion of busulfan at 2 mg/kg (A), 7 doses of (once every 4 hours) 1-hour intravenous 
infusion of busulfan at 1 mg/kg (B). One-compartment model was used to fit the residual amount data in urine (■) and the resulting equations 
are listed and the corresponding fitting curves (···) are drawn. The measured plasma drug concentration data (▼) at t=1 h was selected 
to calculate CLr. Meanwhile, the curves (---) derived from the corresponding compartment model fitted by all the measured plasma 
concentrations data using WinNonlin 8.0, are also plotted for comparison. CLr, urinary clearance.
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Figure 7 The influence of uX∞  estimation on the model fitting in an individual rat after intravenous injection of desloratadine at a single 
bolus dose of 0.5 mg/kg. The residual amount data in urine (■) was obtained by a standard modeling protocol in which uX∞  was estimated by 
equation 7. extrap

uX  was calculated to 7.26 ng (A) and 9.49 ng (B) when urine sampling up to 24 h and 48 h, respectively. The data (♦) and (•) 
were obtained from 0.1 × extrap

uX  and 10 × extrap
uX  respectively. The resulting equations of the three-compartmental model are listed and the 

corresponding fitting curves are drawn. In addition, the subsequent corresponding plasma concentration-time curves are plotted using t=1 h 
of the measured plasma drug concentration data (▼) to calculate CLr. CLr, urinary clearance.
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which showed that inappropriate uX∞  could come to 
a bias plasma curve, especially in the terminal phase. 
Meanwhile, as compared between Figure 7A,7B, a 
longer urine sampling time did not come to a better 
fitting, so clinically, urine sampling period could be 
sufficient in parallel with the plasma C-t curve.

(III)	 A variant value of CLr,t was calculated from plasma 
drug concentrations at different time points, leading 
to variant bias between the predicted and observed 
plasma drug concentration at the non-anchored time 
points. Apparently, the idealization of the constant 
CLr was violated. If we take r,T u 0CL X AUC∞

−∞=  
(Eq. [8]) as the average value of the whole period, 

Figure 8 shows the bias between CLr,T and CLr,t 
in every scenario except Scenario 6 because only 
partial urine was collected during multiple doses. 
The results showed that the most proximity of CLr,t 
to CLr,T was displayed in Scenario 5, while large 
bias and variability were exhibited in the absorption 
phase in Scenario 4 and elimination phase in 
Scenario 3. In addition, the initial phase after 
i.v. bolus administration, as shown in Figure 8A,  
exhibited a lower ratio of CLr,t/CLr,T because of a 
non-linear excretion kinetic, which was not taken 
into account in our model. The optimal time point 
we selected to anchor the curve, in essence, was the 

Figure 6 The plasma concentration-time curves (—) retro-constructed from the urinary excretion data by specific modeling methods 
in 3 individual patients after 16 doses of (once every 6 h) 1-h intravenous infusion of busulfan at 0.8 mg/kg. One-compartment model 
was used to fit the residual amount data in urine (■) and the resulting equations are listed and the corresponding fitting curves (···) are 
drawn. The measured plasma drug concentration data (▼) at t=2 h was selected to calculate CLr. Meanwhile, the curves (---) derived from 
the corresponding compartment model fitted by all the measured plasma concentrations data using WinNonlin 8.0, are also plotted for 
comparison. CLr, urinary clearance.
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time point when the CLr,t exhibited the minimal 
bias to the average CLr,T. That might account 
for single-point plasma concentrations at 1.5 h  
post-IV MDZ with best prediction of AUC, 
specified by Motoyasu Miura et al. (18). The whole 
bias of the model, reflected by AFE, AAFE, and 
MAPE, depended on the value of CLr,t/CLr,T 
at each time point. To paraphrase, the shape of 
plasma drug concentration-time curves could be 
copied to urine by a curved mirror, and the scale 
of its curvature determined the acceptability of our 
model which was simplified and idealized to a flat 
mirror. This drawback may be compensated for by 
measuring creatinine excretion or other biomarkers 
to evaluate renal function or by establishing a set of 
mechanism equations to predict temporal changes 
of renal clearance so that the present model could be 
modified to more accurate prediction. Nonetheless, 
regarding the modeling method presented in 
this paper, preliminary studies are suggested to 
determine the best blood sampling time point for 
CLr calculation when a different drug or a different 
scenario is confronted clinically.

Besides the variant CLr, another drawback of the 
present model was the strong dependence on a measurable 
parent drug in urine after administration, i.e., the in vivo 
elimination pathway of the test drug has to include renal 
excretion. The larger the CLr, the more renal excretion 
contributes to the total elimination pathway, the larger 
the amount of the parent drug in urine, the smaller the 
variability of renal excretion clearance at each time point, 
and the more accurate the model will be. Although drugs 
with high renal excretion clearance are considered more 

suitable for better performance of the model, two low 
urinary excretion drugs, representing the majority of 
market drugs, were selected in this study with aim to fulfill 
the clinical demands, and broader the application of this 
model. For drugs in the elimination pathway dominated by 
metabolic transformation, where the parent drug is absent 
or below a quantitative level in urine while metabolites are 
present, the plasma exposure curve of the metabolite can be 
constructed before being bridged to the parent drug.

Conclusions

Despite the complicated excretion mechanism, lower 
frequency of sampling, and poor informativeness of urine 
data, we employed simplification and idealization strategies 
in this study to develop a new method of retro-constructing 
plasma drug concentration-time profiles using urinary 
excretion and single point plasma data. Meanwhile, multiple 
limitations inherent to the modeling strategies were 
identified and 3 cases clinical data were insufficient to verify 
the practicability. So, more confirmative, extensive, and 
in-depth mechanism studies are urgently needed to make 
this method more robust, accurate, and generalizable for 
broader use. Nonetheless, the proposed method was able to 
deliver acceptable plasma exposure curves, shed light on the 
future refinements, and might promote the good practice 
of clinical trials in pediatric populations by updating the 
research paradigm, so that this vulnerable population will 
no longer be called “therapeutic orphans”.
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