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A B S T R A C T

Background: Genetic colocalization analysis is a statistical method that evaluates whether two traits (e.g., oste-
oarthritis [OA] risk and microRNA [miRNA] expression levels) share the same or distinct genetic association
signals in a locus typically identified in genome-wide association studies (GWAS). This method is useful for
providing insights into the biological relevance of genetic association signals, particularly in intergenic regions,
which can help to elucidate disease mechanisms in OA and other complex traits.
Objectives: To review the existing literature on genetic colocalization methods, assess their suitability for studying
OA, and investigate their capacity to integrate miRNA data, while bearing in view their statistical assumptions.
Design: We followed scoping review methodology and used Covidence software for data management. Search
terms for colocalization, GWAS, and genetic or statistical models were used in the databases MEDLINE and
EMBASE, searched till March 4, 2024.
Results: Our search returned 546 peer-reviewed papers, of which 96 were included following title/abstract and
full-text screening. Based on both cumulative and annual publication counts, the most cited method for coloc-
alization analysis was coloc. Four papers examined OA-related phenotypes, and none examined miRNA. An
approach to colocalization analysis using miRNA was postulated based on further hand-searching.
Conclusions: Colocalization analysis is a largely unexplored method in OA. Many of the approaches to colocali-
zation analysis identified in this review, including the integration of GWAS and miRNA data, may help to
elucidate genetic and epigenetic factors implicated in OA and other complex traits.
1. Introduction

Osteoarthritis (OA) is a multifactorial chronic joint disease repre-
senting a leading cause of disability and pain worldwide, with no
currently approved disease-altering treatments [1,2]. A more thorough
understanding of underlying biological mechanisms contributing to the
development and progression of OA is expected to lead to novel treat-
ment strategies. Insights into biological mechanisms are provided by
genome-wide association studies (GWAS), which aim to identify single
nucleotide polymorphisms (SNPs) that are associated with diseases/traits
such as OA. Large-scale GWAS on OA have previously been conducted,
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the largest of which pinpointed previously unknown loci harbouring 52
genome-wide significant risk variants across 11 OA phenotypes in a
multicohort of nearly 900,000 individuals [1]. Furthermore, through fine
mapping of these GWAS signals and complementary computational ap-
proaches, this study identified 77 genes that have at least 3 lines of ev-
idence in support of their role as effector genes. Of these genes, 48
strongly support previously reported OA-associated SNPs as likely
effector genes, while 30 were associated with new signals.

Increasingly, GWAS are performed across multiple diseases (e.g., OA
and type 2 diabetes [1]) and across multiple traits within a disease, which
creates the need for investigating shared risk variants. This phenomenon,
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called genetic colocalization, occurs when genetic variants (e.g., SNPs) at
a given locus are associated with two (or more) diseases/traits [3]. This
association is important in the context of the disease(s) of interest
because it suggests that the traits under examination share a common
genetic underpinning, and thus, can identify the specific genes or regu-
latory regions involved in the pathology of the disease(s). Genetic
colocalization is evaluated by various methods that decipher the statis-
tical relationship between genetic variants andmultiple diseases or traits,
potentially revealing the most biologically-relevant mechanisms under-
lying complex diseases such as OA (Fig. 1).

In addition to exploring shared statistical genetic associations,
colocalization can also be performed with other genetic factors such as
Fig. 1. Schematic illustrating the concept of genetic colocalization analysis between
(-log10 P-value) on the Y axis along genomic positions for Trait1 (top panel) and Trait
highlighted corresponds to a locus on chr16 with variant positions in base pairs (bp) w
level. This locus can be investigated using colocalization analysis methods to decip
lustrates a possible scenario of genetic colocalization between both traits, where both
while Plot C illustrates a possible scenario where the two traits result from distinct va
colour in this figure legend, the reader is referred to the Web version of this article.
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quantitative trait loci (QTLs). QTLs are loci which explain variation in
phenotypes of complex traits [4], and when integrated with genotypes,
provide insight into the genetic basis of traits. Expression quantitative
trait loci (eQTLs), genetic variants that correlate with variation in the
expression levels of messenger RNAs (mRNAs), are the most common
type of QTLs considered in colocalization analysis. Integrating eQTLs into
colocalization analysis is especially useful in the context of loci with
non-coding variants, which typically hinder straightforward interpreta-
tion of their functional impact. With eQTLs, the potential function of
non-coding variants can be ascertained through expression levels [5].

With advances in epigenetics, opportunities to integrate GWAS and
QTL studies for molecular factors such as microRNAs (miRNAs) present
two traits of interest (referred as Trait1 and Trait2). Plot A) illustrates the results
2 (bottom panel) in a standard GWAS approach for variant discovery. The region
hich exhibits association signals for both traits at the genome-wide significance

her the possible underlying scenarios, as illustrated in plots B and C. Plot B il-
traits result from the same genetic variant (represented by a single purple star),
riants (as represented by different stars). (For interpretation of the references to
)
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new avenues for understanding genetic risk and identifying potential
therapeutic avenues. MiRNAs are small, non-coding RNA molecules that
are important post-transcriptional regulators of gene expression [6].
MiRNAs originate from precursor transcripts within a host gene, most
often in intronic regions [7], then are processed in the cytoplasm into
mature miRNA molecules (Fig. 2). A single miRNA precursor has the
potential to produce two mature miRNAs, designated as “-5p” or “-3p”
depending on if they originated from the 50 or 30 end of the precursor,
respectively [8]. Mature miRNAs can act within the producing cells or in
distal target cells following secretion into circulating biofluids (Fig. 2)
[6]. Functionally, miRNAs regulate target genes through complementary
binding to seed-sequence regions (encompassing the first 2–8 nucleotides
at the 5’ end), leading to subsequent mRNA degradation or translation
repression (Fig. 2). A single miRNA can have many target genes, giving
them powerful regulatory potential [6]. Additionally, miRNAs can be
readily modulated using small molecules, making them ideal therapeutic
candidates [7,8]. There is mounting evidence demonstrating the func-
tional roles that miRNAs have in complex polygenic diseases such as OA
[6]. For example, miRNAs have been shown to regulate a variety of
cellular processes implicated in OA including inflammation, extracellular
degradation, apoptosis, and chondrocyte differentiation, among others
[6,9]. Genetic variants, such as SNPs, can affect both miRNA biogenesis
and function. For example, loci within miRNA upstream regulators may
be associated with altered mature miRNA expression levels (Fig. 2, sce-
narios 1,2), while loci within miRNA-mRNA binding complexes can
interfere with miRNA regulation (Fig. 2, scenarios 3,4) [10]. The growing
Fig. 2. Simplified overview of miRNA biogenesis and function in four scenarios show
miRNA precursors are processed into mature miRNAs, which can lead to mRNA d
plementary sequences. Common examples of possible miRNA-SNP interactions are illu
transcription of miRNA precursors, thereby influencing their overall expression and
between miRNAs and mRNAs, effectively impairing these regulatory functions (scen
scenario, and other miRNA-SNP interactions, can help unravel the underlying miRN
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research behind miRNA in eQTL analysis has warranted databases to be
created such as the GTEx portal for miRNA. Though not
phenotype-specific, this provides early cataloguing of valuable miRNA
expression data. This integration of multiomic data highlights the po-
tential for colocalization analysis between miRNA and GWAS when
leveraging gene expression data. Therefore, genetic colocalization anal-
ysis of OA with miRNA analysis has the potential to characterize epige-
netic features and provide biological insights into OA risk, etiology, and
progression, and consequently inform potential therapeutic strategies.

Here we perform a scoping review to summarize the current state of
the OA literature on statistical colocalization methods integrating
miRNA. After identifying colocalization studies that investigated OA
and/or incorporated miRNA data, we characterize existing colocalization
analysis methods and assess their applicability in integrating miRNAs for
future studies on OA.

2. Methods

2.1. Search strategy

Two databases, MEDLINE (Ovid) and EMBASE, were chosen to
perform the search due to their advanced search capabilities, including
their ability to use controlled vocabulary. MEDLINE uses Medical Subject
Headings (MeSH), whilst EMBASE uses Emtree, therefore the search
strategy was adjusted slightly for each database. The search strategy
involved two overall searches per database, (1) all terms and spellings for
ing how SNPs can impact miRNA expression and function. Typically, transcribed
egradation or repression of translation through seed-sequence binding to com-
strated in scenarios 1–4. SNPs can affect the processing of mature miRNAs or the
function (scenarios 1–2). Alternatively, SNPs can alter the binding efficiency

arios 3–4). Colocalization analysis of OA-associated SNPs corresponding to each
A biology that impacts OA pathology.

https://www.gtexportal.org/home/gene/MIR431
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“colocalization” as text words and keyword fields (.tw,kf), in combina-
tion with MeSH/Emtree topics related to statistical methods, and (2) all
terms and spellings for “colocalization” (.tw,kf) in combination with the
MeSH/Emtree term for “GWAS”. MEDLINE allowed for the MeSH term
“GWAS” to be further filtered by its subheadings for “methods” and
“statistics and numerical data”. Since EMBASE does not use subheadings
in the same way that MEDLINE does as a separate indexing element,
“GWAS” could not be further filtered, and thus an additional item was
added instead. The second search in EMBASE with “GWAS” was per-
formed with the addition of Boolean operator “and” with Emtree topics
“statistical” and “statistical analysis”. A librarian was consulted during
search strategy construction. Search terms for miRNA and OA were not
included in the primary search strategy, as they yielded very limited
results. However, colocalization methods using miRNA-data were hand-
searched for in four databases: PubMed, Scopus, Web of Science, and
EMBASE. The full search strategy, with the MeSH terms and Emtree
topics, are available in Supplemental Tables S1–S3. All searches
(excluding the hand-searched databases) were performed for articles
published till March 4, 2024.

It is important to note that while identifying unique methods, not all
the colocalization methods reported were directly retrieved from the
search results. Some of these methods were referenced by the authors of
included papers encountered during the literature search. These refer-
enced papers were included if they appearedmore than twice throughout
multiple papers from the search.

2.2. Inclusion and exclusion criteria

Peer-reviewed publications in English were included if they: (1)
described a new method for testing colocalization, (2) implemented a
published method for genetic colocalization, (3) applied colocalization
analysis to GWAS or QTL or miRNA data, or (4) involved statistical an-
alyses or formal statistical tests of colocalization.

Publications were excluded if at least one of the following criteria was
met: (1) no full-text was available, (2) colocalization referred to analyses
unrelated to genetic signals (e.g., physical proximity of molecules), (3)
colocalization did not use GWAS or QTL or miRNA data, (4) focused on
genome mapping, or (5) GWAS or QTL studies were not performed on
human traits.

2.3. Data administration and extraction

Search results were uploaded into Covidence systematic review
software (Veritas Health Innovation, Melbourne, Australia) [11] to
manage the screening process. The studies retained following title/ab-
stract screening and full-text screening were subjected to data extraction
using a pre-determined template. The template included the following
characteristics: Author name, year of publication, phenotype (e.g., OA),
type of genetic data, colocalization method, software/package used,
rationale of method (when more than one method was used within one
paper), and cited authors. The column for cited authors was used to ac-
count for the instances in which the author of the paper did not present a
novel method, but applied an existing colocalization method. The
PRISMA checklist adapted to scoping reviews was completed (PRIS-
MA-ScR [12]) and is available in Supplemental Table S4.

3. Results

3.1. Overview of the findings

The searches yielded a total of 546 unique publications, of which 400
were found to be irrelevant after initial title and abstract screening. This
exclusion led to 146 studies available for full-text screening, which
subsequently led to 96 eligible studies (Fig. 3). These studies included
both proposals for novel methods of colocalization and the imple-
mentation of existing methods, in addition to reviews of published
4

methods. We chose to include these reviews since they illustrated (or
compared) colocalization methods using simulation studies or real data
and allowed for another gauge of method popularity within the litera-
ture. The characteristics of the 96 studies are summarized in Supple-
mental Table S5. [5,13–107] Colocalization studies were found utilizing
a spectrum of QTL data. The use of different types of QTLs — including
those associated with proteins (pQTL), metabolites (mQTL), splicing
variations (sQTL), DNA methylation (meQTL), gene expression (xQTL),
and molecular phenotypes (molQTL) — in each study are recorded in
Supplemental Table S5 under the 'Type of genetic data' column.

3.2. Limited exploration of OA in colocalization analysis

Out of the 96 studies, four (Baird et al., 2018 [16]; Mullin et al., 2023
[59]; Qu et al., 2023 [71]; Tachmazidou et al., 2019 [81]) investigated
OA-related phenotypes (Table 1). Baird et al. examined previously
known hip OA susceptibility loci associated with hip shape in a cohort of
peri-menopausal women and discovered colocalizing signals between OA
risk and hip morphology profiles in KLHDC5/PTHLH and COL11A1 loci.
They concluded that hip shape is a risk marker for future OA develop-
ment that could provide a means for early detection and prevention.
Mullin et al. investigated the role of osteoclasts in the progression of OA.
They performed colocalization analysis on existing OA-GWAS [1] and
eQTL data extracted from osteoclast-like cells derived from peripheral
blood mononuclear cells of 158 female patients. Ultimately, they found
38 genes potentially implicated in OA, including genes associated with
single OA traits (e.g., BCAM, PRKD2, BICRAwith hip OA) or multiple OA
traits (e.g., FAM53A, GCAT, HMGN1). Qu et al. considered colocalization
between osteoporosis and OA to investigate shared genes and potential
mechanisms of their development. They found that four hip OA suscep-
tibility genes (LTBP3, MLXIP, SMAD3, and MAPT) had variants colo-
calized on musculoskeletal tissues and concluded that osteoporosis may
have a causal link to an increased risk in developing OA. Lastly, Tach-
mazidou et al. performed a meta-analysis for OA loci in nearly 500,000
individuals across four phenotypes (knee OA, hip OA, knee and/or hip
OA, and other site OA) in 64 loci, the majority of which were novel.
GWAS-eQTL colocalization was performed to identify putative effector
genes of which ten (e.g., TGFB1, FGF18, CTSK and IL11) are currently
being assessed for mechanisms consistent with potential use in OA
treatments. Though limited in number, these studies cumulatively
highlight how colocalization analyses can be leveraged to identify ge-
netic risk variants associated with OA pathogenesis.

3.3. Insights into miRNA from hand-searched literature

We did not identify any studies that used miRNA expression data as
input for colocalization analyses from the literature search. However, we
hand-searched the literature with more specific search terms related to
miRNA and identified six pertinent papers that leveraged miRNA data
(Lafferty et al., 2023 [108]; Mustafa et al., 2023 [109]; Toste et al., 2023
[110]; Sonehara et al., 2022 [111]; Odhams et al., 2017 [112]; Huan
et al., 2015 [113]). Though none explicitly examined OA phenotypes,
their methodologies have been extrapolated for potential application in
future OA research (see Discussion).

Briefly, these studies implemented eQTL-analysis on miRNA to
identify miRNA-eQTLs before performing colocalization analysis. Most
studies used blood samples and performed their own RNA-sequencing for
miRNA-eQTL analysis. However, Mustafa et al. bypassed this step by
using available information on miRNA-eQTLs conducted in past eQTL
mapping studies, and directly analyzed this information against causal
variants identified from GWAS in colocalization analysis. Notably,
Mustafa et al. and Sonehara et al. explored various complex traits using
GWAS information in their analysis. Toste et al. and Mustafa et al. con-
ducted Mendelian Randomization (MR) analysis (further discussed in
section 3.5.3 Additional Approaches). Specific results and methodologies
are highlighted in Table 2.



Fig. 3. PRISMA flow chart detailing the article search and screening process.
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Although none of the studies identified through the hand search
analyzed OA phenotypes, a similar approach could be adapted for
investigating miRNA regulatory roles and potential causal pathways in
OA. For example, upregulation of certain miRNAs, such as miR-146a-5p,
can alleviate inflammation, cartilage degradation, and autophagy [114].
Accordingly, leveraging colocalization studies between miRNAs and OA
traits, in conjunction with existing literature, could pinpoint similar
promising epigenetic targets for OA intervention.

3.4. Overview of existing colocalization analysis methods

Among the 96 included studies, coloc [115] was the single most cited
method for colocalization, with a total of 56 citations in reference to the
original method from Giambartolomei et al., 2014 [115], followed by
Wallace 2020 [88] (Table 3). This popularity was further demonstrated by
all four OA studies returned from this search [15,59,71,81] opting to use
coloc or a closely related extension. The remaining methods are listed in
Table 3 with their respective authors and frequency of appearance in the
5

literature. Decisions to opt for an alternative method to coloc often arose
from concerns regarding the implicit assumption within its framework that
only one causal variant exists. Furthermore, many papers used multiple
colocalization methods, highlighted by the disagreement between the
frequency of methods and the total count of papers in Table 3.

In addition to presenting the total citation counts in Table 3, Fig. 4
illustrates the annual citation counts to provide insight into the evolving
popularity of each method. Methods that were cited once in Table 3 were
removed from consideration in the bar chart. This analysis demonstrates
that the most frequently cited methods were not solely attributed to their
longstanding presence in the literature. No large discrepancies between
annual (Fig. 4) and total citation counts (Table 3) were found, therefore
initial assumptions of the popularity of particular colocalization methods
remain consistent. Overall, Supplemental Table S6 illustrates the char-
acteristics of each individual method, as well as their respective limita-
tions and repositories. In Supplemental Table S6, an emphasis on the
methods’ ability to accommodate datasets with potentially overlapping
samples and their capability to detect colocalization at loci with one or



Table 1
Summary of colocalization analysis in OA studies.

Study Phenotype Objective Study sample/sample size for
OA data

Types of data for
colocalization
analysis

Overall findings from the colocalization
analysis

Baird et al.,
2018 [16]

Hip shape and hip
OA traits

To examine relationships between
known
OA susceptibility loci and hip shape to
investigate whether hip shape
contributes to OA development.

Perimenopausal women;
avon longitudinal study of
parents and children
(ALSPAC), (n ¼ 10,015)

GWAS Colocalizing genetic signals for hip
shape and hip OA for KLHDC5/PTHLH
and COL11A1 loci.

Mullin et al.,
2023 [59]

Osteoclasts and OA To consider the potential role of
osteoclasts and subchondral bone
remodeling in the pathogenesis of OA
by integrating data from an osteoclast
eQTL resource with published OA
GWAS summary results.

Boer et al. GWAS dataset: (n
¼ 826,690); 177,517 cases of
OA

GWAS and eQTL 38 osteoclast-genes with a potential role
in OA (e.g., BICRA, EIF6, CHST3, and
FBN2). Several OA GWAS signals
colocalized with eQTL signals (e.g., hip
OA with BCAM, PRKD2, and BICRA
eQTL).

Qu et al., 2023
[71]

Osteoporosis and
OA

To investigate the causal relationship
between low BMD and OA (hip, knee,
at any site).

UK biobank; osteoarthritis
genetics (arcOGEN); (total n
¼ 384,838)

GWAS and eQTL Four hip OA susceptibility genes (LTBP3,
MLXIP, SMAD3, andMAPT) had variants
colocalized on musculoskeletal
tissues. No genes had variants
colocalized with knee OA or OA at any
sites.

Tachmazidou
et al., 2019
[81]

Four OA
phenotypes (knee,
hip, knee/hip, any
joint)

To perform a GWAS for OA and
analyze four of its phenotypes to
identify new therapeutic targets.

UK biobank, (n ¼ 500,000);
arthritis research UK
arcOGEN, (n ¼ 455,221);
77,052 cases: 378,169
controls

GWAS and eQTL Putative effector genes identified by
integrating eQTL colocalization (among
other methods), and evidence of
colocalization in at least one tissue for 49
out of 64 loci detected by GWAS.
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more causal variants was undertaken given their potential utility in
widespread applications. Notably, joint analysis of miRNA and OA
measured in the same individuals can improve power to detect colocal-
ization by borrowing information between these two traits [125], whilst
assumptions of a single causal variant can be unrealistic and restricting
for analysis.

3.5. Background of the methodology of coloc

The colocalization method, coloc, employed in the four OA studies
[16,59,71,81] aligns with the prevailing approach found in the existing
literature. Its general framework and its various extensions are described
below. Further detail on the remaining methods from Table 3 and their
general classifications according to (1) their statistical framework
(Bayesian or frequentist), and (2) their resolution of colocalization (SNP
vs. region-level) can be found in Supplemental Material S7.

3.5.1. Coloc's general framework
Coloc's framework is defined by 5 hypotheses: H0 (no genetic asso-

ciation with either trait), H1 (genetic association with trait 1, but not
trait 2), H2 (genetic association with trait 2, but not trait 1), H3 (two
independent genetic associations) and H4 (colocalization). In each locus
of interest, each configuration of SNP association between the two traits
can be assigned to one of these five hypotheses. The colocalization test
assesses the support for each configuration against H4 under a Bayesian
framework. Using Bayes factor and prior probabilities, a posterior
probability supporting H4 can be estimated. Among coloc usage, certain
papers used coloc as part of their analysis approach; for example, as the
colocalization step in their proposed pipeline or framework, or as a web
interface that integrates multiple GWAS datasets and coloc. Accordingly,
we included these methods, such as colocQuiaL [23], FUSION [118],
cscQTL [64], COLOCdb [66], and Open Targets Genetic Portal [57], in
the coloc citation count in Table 3. A variety of methods occasionally
appeared in the literature search that did not formally test for colocal-
ization but were used in conjunction with colocalization methods. These
methods included GCTA-COJO [126], PWCoCo (as cited in Howell et al.,
2023 [39]), DAP [127], and SuSiE-coloc [116]. They perform various
pre-processing steps to alleviate the single causal variant assumption of
coloc, such as conditional analysis or finemapping, before applying the
coloc framework. These methods were close extensions of coloc and
were also added to coloc's overall study count.
6

In application, conditional analysis can help pinpoint secondary as-
sociation signals within a locus and evaluate whether the primary signal
remains statistically independent of these nearby correlated variants.
This is a common procedure when interpreting GWAS, as linkage
disequilibrium (LD) - the non-random inheritance of alleles - can
potentially introduce confounding influences. For instance, three of the
six studies we identified that implemented miRNA data used approaches
of conditional analysis within their colocalization analyses [108,112,
113] and adapted existing colocalization methods to accommodate
miRNA data. One study (Lafferty et al., 2023) [108] first identified
candidate causal variants by finding overlapping variants with LD r2 �
0.8, then performed conditional analysis incorporating the genotypes of
the miRNA-eQTLs to assess colocalization. Another study (Odhams et al.,
2017) [112] was not focused on miRNAs specifically, but rather mapping
RNA-sequencing and microarray data to eQTLs. However, from this
analysis, the authors were able to map one miRNA, miR-146a, to an
eQTL/eGene, and used conditional analysis (COJO-GCTA) and coloc to
examine colocalization for all their candidate causal eQTLs and
SLE-associated SNPs from a GWAS.

3.5.2. Other coloc extensions
While the original coloc does not account for more than two traits,

HyPrColoc [29] and moloc [34] were developed to address this limita-
tion. Both approaches apply coloc to any pair of traits, though moloc
becomes computationally impractical beyond 4 traits, while HyPrColoc
was developed to increase efficiency and improve on moloc. Among
other coloc extensions, CAFEH [123] incorporates LD structure and in-
tegrates genetic association data across multiple traits to identify causal
variants, with the additional capability of performing fine mapping,
while gwas-pw [122] extends coloc with a hierarchical model; coloc2
[121] incorporates changes from gwas-pw – specifically the imple-
mentation of likelihood estimation of mixture proportions for the five
hypotheses – and includes a pre-processing step to align eQTL and GWAS
summary statistics for each eQTL cis-region. Moreover, Fortune et al.
proposed an extension to coloc and the proportional approach (further
discussed in Supplemental Material S7) to account for overlapping in-
dividuals between two GWAS under investigation. Other coloc exten-
sions were further distinguished if they appeared over twice in the
literature, or if they were more divergent from the original methodology
(such as CAFEH). Divergence from coloc entailed additions to the capa-
bilities of the original framework, excluding pre-processing steps.



Table 2
Available sources and main features of miRNA-eQTL data from colocalization analyses.

Source Tissue type Coverage Population and sample size Experimental method Main findings Summary statistics repositories

Lafferty
et al.,
2023
[108]

Human prenatal
cortical tissues

Local miRNA-eQTL mapping (total of 866
miRNAs with an expression of at least 10
counts across at least 10 samples); 907
genomic loci.

212 genetically distinct donors
(96 females:127 males, 14–21
gestation weeks) following
voluntary termination of
pregnancy.

miRNeasy-mini kits (QIAGEN
217004); TruSeq small RNA
library prep kits (illumina RS-
200); illumina HiSeq2500
sequencer

Measured 907 expressed miRNAs,
discovering 111 of which were novel,
and identified 85 local-miRNA-eQTLs;
colocalization of miRNA-eQTLs with
GWAS summary statistics yielded
colocalization of miR-4707–3p
expression with educational attainment
and brain size phenotypes, where the
miRNA expression increasing allele was
associated with decreased brain size.

Colocalization of local-miRNA-eQTLs
with brain-relevant trait GWAS
summary statistics available in
supplementary file 4.

Mustafa
et al.,
2023
[109]

Blood samples
from donors
with a wide
range of clinical
diagnoses

Genotyping was performed on all
participants, covering ~805,000 markers;
colocalization for each miRNA-disease pair
used genomic region extending 200 kb on
either side of mature miRNA position
according to miRBase.

Individual-level data from the UK
Biobank aged 40–69 years old
living in the UK between 2006 and
2010.

Genotyping was conducted at
Affymetrix research services
laboratory; quality control of
data was carried out at the
Wellcome Trust Centre for
Human Genetics

Identified 122 associations for 6
variants in the seed region of miRNAs,
9 variants in the mature region of
miRNAs, and 27 variants in the
precursor miRNAs; strongest
association being reported between
rs4285314 in the precursor of miR-
3135b and celiac disease risk;
colocalization and MR analysis
highlighted potential causal role of
miR-6891-3p in dyslipidemia.

GWAS summary statistics available from
DIAGRAM, Forgetta et al., 2020, Global
Lipid Genetics Consortium; miRNA-
eQTL summary statistics available at
Mustafa et al., 2022 and Nikpay et al.,
2019; supplemental information for
more statistics related to analyses.

Toste et al.,
2023
[110]

Human fetal
brain tissue

SNPs from 11 neurodevelopmental,
neurological or psychiatric conditions; most
significant eQTL for the 30 variably cis-
regulated miRNA were identified.

Elective terminations of
pregnancy (12–20 post-
conception weeks); 112
independent samples (51
female:61 male) were available
for both genotype and small RNA
sequencing measures.

TruSeq small RNA library
preparation kits (illumina);
illumina HiSeq 4000 system

Increased prenatal expression of miR-
1908-5p suggested as a risk mechanism
for bipolar disorder; common genetic
variation associated with increased
miR-1908-5p expression additionally
associated with depressive symptoms,
irritability, increased right cerebellum
exterior volume and increased sleep
duration in the general population.

Summary statistics for miRNA
expression, covariates and all eQTL are
provided through a publicly accessible
figshare repository: https://doi.org/10
.6084/m9.figshare.22674109.v1.

Sonehara
et al.,
2022
[111]

Peripheral blood
samples

Mapped miRNA-eQTL for 343 miRNAs,
integrating this information with GWAS for
colocalization analysis.

141 participants of Japanese
ancestry.

HiSeqX (Illumina, San Diego,
CA, USA); miRNeasy Micro
Kit (Qiagen, Duesseldorf,
Germany); SMARTer smRNA-
Seq Kit (Takara, Tokyo,
Japan)

Identified 1275 cis-miRNA-eQTL
variants for 40 miRNAs; identified miR-
1908-5p as a potential mediator for
adult height, colorectal cancer and type
2 diabetes using resulting miRNA-eQTL
data and existing Japanese GWAS of 25
complex traits.

Summary statistics/eQTL analysis
deposited in the National Bioscience
Database Center (NBDC) human
database (https://humandbs.b
iosciencedbc.jp/en/) with the accession
number of hum0197. The data is also
available at website pheweb.jp (http
s://pheweb.jp/).

Odhams
et al.,
2017
[112]

Whole blood
samples

Gene-level: 520 genes were tested against in
cis; exon-level: 4786 exons corresponding to
716 genes were taken forward for analysis.

GWAS on 7219 cases of systemic
lupus erythematosus, 15,991
controls; expression profiling on
TwinsUK registry & MuTHER
cohort.

Illumina human HT-12 V3
BeadChips; illumina
HiSeq2000

Identified novel SLE susceptibility
genes, specifically for our interest,
eQTL rs2431697/eGene MIR146A,
coding for microRNA 146a, expressed
in lateral collateral ligament (LCL)
tissues.

Supplementary material.

Huan et al.,
2015
[113]

Whole blood
samples

Based on the coordinates of 280 mature
miRNAs and 9.8 � 106 SNPs, estimation of
13,935,272 potential SNP-miRNA pairs,
where the SNP was located within 1 Mb on
either side of the corresponding mature
miRNA (1.4 � 107 potential cis SNP–miRNA
pairs, and 2.7 � 109 potential trans
SNP–miRNA pairs).

Framingham heart study; 2272
offspring cohort attendees at
examination cycle 8 (2005–2008)
and 3057 third generation cohort
attendees at examination cycle 2
(2008–2010).

qRT–PCR (BioMark real-time
PCR system)

Mapping study; identified 5269 cis-
miR-eQTLs for 76 mature microRNAs;
identified 270 trans-miR-eQTLs for 15
miRNAs.

Supplementary data.
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Table 3
Methods of colocalization analysis and their popularity in the literature ordered
by citation count.

Method Citations
count

Authors (i.e., original proposals)

coloc (þclose
extensions)

56 Giambartolomei et al., 2014 [115]; Wallace
2020 [88], 2021 [115]; Fortune et al., 2015
[30]; Zheng et al., 2020 [117]; Gusev 2022
[118]; Robinson et al., 2021 [72]; Nguyen
2023 [64]; Pan et al., 2024 [66]

eCAVIAR 17 Hormozdiari et al., 2016 [5]; Zeng et al.,
2019 [101]

SMR þ HEIDI 10 Zhu et al., 2016 [119]
HyPrColoc 7 Foley et al., 2021 [29]
ENLOC/fastENLOC 6 Wen et al., 2017 [91]; Hukku et al., 2022

[42]; Okamoto et al., 2023 [65]
moloc 5 Giambartolomei et al., 2018 [34]
Proportional approach 4 Plagnol et al., 2009 [68]; Wallace et al.

2012 [86]; Wallace 2013 [87]; Fortune
et al., 2015 [30]

Simple Sum (SS) &
Simple Sum 2 (SS2)

4 Gong et al., 2019 [35]; Panjwani et al.,
2020 [67]; Wang et al., 2022 [89]

JLIM 3 Chun et al., 2017 [120]
coloc2 3 Dobbyn et al., 2018 [121]; Panjwani et al.

2020 [67]
gwas-pw 2 Pickrell et al., 2016 [122]
jointsum 1 Deng & Pan 2020 [27]
UNITY 1 Johnson et al., 2018 [43]
CAFEH 1 Arvanitis et al., 2022 [123]
MRLocus 1 Zhu et al., 2021 [105]
RTC 1 Nica et al., 2010 [124]
causal-TWAS 1 Zhao et al., 2024 [103]
Other (coloc-stats,
ezQTL, Perturbnet)

3 Simovski et al., 2018 [79]; Zhang et al.,
2022 [102]; McCarter et al., 2020 [55]
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3.5.3. Additional approachess
Outside of coloc, some colocalization studies used MR analyses. MR

is the investigation into the causal nature of exposures (or risk factors)
on observed outcomes or traits. In MR analysis, SNPs associated with
risk factors represent instrumental variables to capture the exposure
while controlling for potential confounding factors, and thus observa-
tional studies are leveraged with GWAS to elucidate causal pathways
[128]. Although summary-data-based Mendelian randomization (SMR)
[119] and heterogeneity in dependent instruments (HEIDI) [119] are
not technically colocalization methods, they achieve very similar goals
8

in the context of identifying whether a transcript and phenotype are
associated by a shared causal variant, with the use of GWAS and eQTL
studies. SMR and HEIDI adapted the principles of MR analysis to use
summary-level statistics, since MR analysis typically demands excep-
tionally large sample sizes that are seldom available in a setting
requiring phenotype, genotype and gene expression datasets [119].
There are two steps in this process, first the SMR step which tests for
pleiotropy, followed by the HEIDI step which distinguishes the previous
step from linkage. SMR is analogous to testing H3 from coloc's frame-
work, while HEIDI is analogous to testing H4, suggesting that it can be a
useful tool for examining colocalization, nonetheless. For instance,
after the pre-processing steps taken by Lafferty et al., 2023 [108] in
their investigation which mapped miRNA and eQTLs as previously
discussed, further analysis using SMR and HEIDI was subsequently
performed on the miRNA-eQTLs and GWAS summary statistics to
confirm colocalization.

4. Discussion

This scoping review maps existing literature on the applicability of
colocalization methodology in OA research, and the suitability of miRNA
integration into these methodologies. Crucially, this review identifies a
lack of colocalization studies in OA research, in addition to an overall
lack of miRNA expression integrated in colocalization analyses. Despite
this, we believe that integration of miRNA data is highly useful and
feasible within the scope of current methods for colocalization analysis,
and therefore can be leveraged for future GWAS to provide novel
mechanistic insights in OA.

The limited information currently available points to the potential for
colocalization to enhance our understanding of OA. This can include
identification of OA risk genetic variants linked with confounding factors
(e.g., bone morphology [16]) or comorbidities (e.g., osteoporosis [71])
that could drive or accelerate OA pathogenesis. Furthermore, assessment
of the associations between OA traits and gene eQTLs can determine
whether the changes in expression seen in a target gene are linked to a
specific OA phenotype(s) [59,81]. Given the varying mechanisms by
which OA can destroy the joint (e.g., breakdown of articular cartilage,
synovial inflammation, thickening of the subchondral bone, osteophyte
formation) [129], future colocalization studies could also be expanded to
assess shared tissue-specific eGenes for more precise characterization of
OA disease mechanisms.
Fig. 4. Annual count for each colocalization
method by year of publication. Methods that
appeared once in the literature search were
excluded. Simple Sum (SS) and SS 2 (SS2)
were combined. Empirical COnfiguration of
Associations with VAriants in R (eCAVIAR);
Enrichment Estimation Aided Colocalization
Analysis (ENLOC); Pairwise analysis of
GWAS (gwas-pw); Hypothesis Prioritisation
in multi-trait Colocalization (HyPrColoc);
Joint Likelihood Mapping (JLIM); multiple-
trait-coloc (moloc); Summary data-based
MR/Heterogeneity in Dependent In-
struments (SMR/HEIDI).
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The identification of gene expression variations correlated to OA traits
invites investigation into the epigenetic factors that may be driving these
transcriptional changes, such as miRNAs. With the established roles that
miRNAs are already known to have in OA pathophysiology [6], it is logical
to expect that correlations between OA GWAS loci and miRNA genetic
associations are present. As the majority of reported GWAS SNPs are
intronic [130], there is the strong potential for overlap with miRNA se-
quences, which can also be located in intronic regions [7]. Furthermore,
variants located within seed-sequence binding sites of miRNA target genes
can impact overall effectiveness of their regulatory ability [131]. Once
discovered, OA-specific colocalized miRNAs and/or their target gene
binding sites will allow for greater insight into how genetic variation
within disease phenotypes impact both miRNA biogenesis during OA and
subsequently, their downstream regulation that drives OA pathological
processes [6]. This discovery may lead to the development of improved
targeted therapies against OA and its most burdensome complications.

Potential challenges in assessing miRNA expression in colocalization
analyses can arise in library preparation methods, as they commonly and
effectively remove small RNAs in eQTL studies [108]. However, library
preparation methods have been recently developed that have the ability to
quantify the expression of small RNAs to measure miRNA expression in
large sample sizes [132]. From the hand-search, the six studies followed
one similar approach to conducting colocalization analysis between GWAS
and miRNA [108–113]. This intuitive approach utilizes miRNA-eQTL
mapping association analysis before colocalization analysis. This is
preferred since most colocalization methods can already accommodate
both GWAS and eQTL datasets. This approach also demonstrates the pro-
cess of transcriptome-wide association studies, which compare factors of
gene expression and genetic variants to determine their relationship. One
method identified in the scoping review called causal-TWAS [103] at-
tempts to incorporate this methodologywith eQTLs and GWAS data within
a formal software. Transcriptome-wide association studies examining
GWAS and miRNA-eQTL to functionally characterize genetic variants and
improve biological annotation are gaining prominence, which can be a
natural extension to the traditional approach of colocalization analysis
between two GWAS or eQTL studies [133].

There are a few limitations of this review to note. First, we only
queried two databases and excluded grey literature, limiting full
coverage of the literature. The two databases were chosen for their
unique indexing capabilities, which allowed for the retrieval of studies
pertaining to methodologies and statistical models, but came with the
drawback of restricting the breadth of literature coverage. Second, the
specificity of focus on OA and miRNA with particular statistical as-
sumptions (i.e., correlated datasets and more than one causal variant)
may limit the scope of generalizability of the findings. In this vein, most
of the published colocalization methods are developed for summary
statistics from GWAS in the context of a two-sample study design.
However, as multiomic data integration becomes increasingly prevalent,
methods that perform combined analysis of both traits in a single sta-
tistical model are warranted. Therefore, we foresee a need for developing
colocalization methods for individual-level data.

5. Conclusion

In sum, this scoping review summarizes the most common genetic
colocalization methods in use and concludes that a limited number of
studies have integrated miRNA, and none have focused on OA with the
use of miRNA. Thus, OA remains a largely unexplored area in this niche,
representing a window of opportunity to leverage GWAS, eQTL and
miRNA analyses to better understand OA-related outcomes and disen-
tangle the genetic and epigenetic factors of OA etiology and progression.
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