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A B S T R A C T   

The study’s purpose was to assess the seizure detection performance of ENCEVIS 1.7, identify factors that may 
influence algorithm performance, and explore its potential for implementation and application in long-term 
video EEG monitoring units. The study included video-EEG recordings containing at least one epileptic 
seizure. Forty-three recordings, encompassing 112 seizures, were included in the analysis. True positive, false 
negative, and false positive seizure detections were defined. Factors that may influence algorithm performance 
were studied. ENCEVIS demonstrated an overall sensitivity of 71.2%, significantly higher (75.1%) in focal 
compared to generalized seizures (62%). Ictal patterns rhythmicity (rhythmic 59.4 %, arrhythmic 41.7 %), 
seizure duration (<10 sec 6.3 %, >60 sec. 63.9 % (p < 0.05)) and patient age (<18 years 39.5 %, >18 years 58.1 
% (P < 0.05)) influenced ENCEVIS sensitivity. The coexistence of extracerebral signal changes did not influence 
sensitivity. ENCEVIS with 79.1% accuracy annotates at least one seizure in those recordings containing epileptic 
seizures. ENCEVIS seizure detection performance was reasonable for generalized/focal to bilateral tonic-clonic 
seizures and seizures with temporal lobe onset. Rhythmic ictal patterns, longer seizure duration, and adult 
age positively influenced algorithm performance. ENCEVIS can be a valuable tool for identifying recordings 
containing seizures and can potentially reduce the workload of neurophysiologists.   

1. Introduction 

The diagnosis of epilepsy is primarily based on the patient’s medical 
history and the clinical presentation of seizures. Long-term monitoring 
(LTM) is the most effective method for detecting seizures in patients 
with epilepsy. This involves recording video-electroencephalography 
(vEEG) for an extended duration, usually ranging from several hours 
to 1–2 weeks. Long-term EEG is commonly used to capture epileptic 
seizures, diagnose epilepsy and its syndromes, differentiate epilepsy 
from other conditions, and perform presurgical evaluation [1,2]. 

Long-term video-electroencephalogram (vEEG) recordings generate 
vast data that requires EEG experts to assess it visually. This process is 
both time-consuming and expensive. Automatic seizure detection (ASD) 
and automatic detection of interictal epileptiform patterns have been 
long-standing interests in epilepsy departments, particularly those 

centres involved in epilepsy surgery. Over the past three decades, 
several ASD algorithms have been developed to assist in generating re-
views of long-term EEG data. To implement ASD in epilepsy monitoring 
units (EMUs) during long-term EEG monitoring, a reasonably high 
sensitivity (i.e., high seizure-detection rate), high specificity (i.e., low 
false alarm rate), and short detection delays are required [3,4]. 
Although several studies have demonstrated the high sensitivity and 
specificity of various ASD algorithms, they often contain only a small 
number of patients or cannot be replicated [3,5,6]. 

There are a number of automatic seizure detection systems based on 
scalp EEG available. One such system is the ENCEVIS system, which was 
developed by the Austrian Institute of Technology (AIT) [7]. Promising 
results were obtained from studies conducted in the EMU. According to a 
study by Koren et al., commercially available seizure-detection software 
packages showed similar and reasonable sensitivities when using the 
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same data set. In this study three algorithms were compared to each 
other Besa 2.0, Persyst 13 and ENCEVIS 1.7. Besa showed a mean 
sensitivity of 67.6 %, mean false alarm rate (FAR) of 0.7/h. Encevis had 
a mean sensitivity 77.8 % FAR of 0.2/h. Persyst showed a sensitivity of 
81 %, FAR of 0.9/h. Thus, ENCEVIS 1.7 had slightly lower sensitivity but 
the highest specificity [8]. In the study by Reus et al. same algorithms 
were compared. Sensitivity for the combination of live monitoring and 
seizure detection by Persyst was 93 %, by ENCEVIS 88 %, and by BESA 
84 %. False positive rate for Persyst was 1.7 per 24 h, for ENCEVIS 5.5 
per 24 h and for BESA 2.4 per 24 h. In this study Persyst showed slightly 
better performance [9]. 

2. Aim 

This study aimed to evaluate ENCEVIS 1.7′s seizure detection per-
formance, identify factors influencing algorithm performance, and 
explore its potential for use in long-term video EEG monitoring units 
(EMU). 

3. Study design 

This study compared the accuracy of seizure detection between 
ENCEVIS version 1.7 and classical visual EEG analysis. The study was 
carried out at the SEIN-SKUH Epilepsy and Sleep Centre, S. Khechi-
nashvili University Hospital (SKUH), in Tbilisi, Georgia. The SKUH 
Ethics Review Board approved the study protocol, and the inclusion of 
participants required informed consent either from the patient or their 
caregiver. 

4. Methods 

In the initial assessment, all EEG recordings that were recorded be-
tween 2018 and 2021 at the SEIN-SKUH Epilepsy and Sleep Centre, and 
were longer than 4 h, were included. The study focused on patients who 
underwent vEEG for paroxysmal event classification and seizure local-
ization. Patients who required treatment in the intensive care unit were 
excluded from the study. The ages of the patients ranged from 4 to 67 
years. The study selected recordings that included at least one electro-
clinical epileptic seizure, which was identified by gold standard analysis. 
However, recordings of patients with non-epileptic paroxysmal events 
such as psychogenic non-epileptic events, syncope, and parasomnia 
were not included. Additionally, only electroclinical seizures lasting 
more than 5 s were considered for the final analysis. 

Micromed EEG system (System PLUS Evolution 1.04.215, Micromed 
S.p.A., Veneto, Italy) was used to record EEG. The sampling rate was set 
at 1024 Hz. A total of 25 electrodes were placed following the Interna-
tional 10–10 system, with additional inferior temporal electrodes (F9, 
F10, FT11, FT12, T9, T10). Polygraphic electrodes, including EOG, chin 
EMG, and ECG were also utilized. ENCEVIS, a seizure detection system, 
was running online with the Video-EEG monitoring (VEM) process. 

ENCEVIS employs a multimodal approach to seizure detection. The 
data undergoes initial automatic pre-processing and artifact reduction 
before being sent to modules where EEG features are calculated and 
specific patterns are identified. Rhythmic patterns are detected, ampli-
tude values are extracted, and features that help detect vigorous muscle 
activity and ictal tachycardia are calculated. All these extracted features 
were compared to a baseline and combined to achieve final seizure 
detection (as shown in Fig. 1). [7,10]. 

ENCEVIS 1.7 was running online with video-EEG monitoring. The 
recordings were copied into two separate databases without any pro-
cessing. Later, two independent EEG experts performed a visual analysis 
and assessment of ENCEVIS. The experts who analyzed the EEG data did 
not have access to ENCEVIS annotations. On the other hand, the experts 
who assessed the detection results of the seizure-detection software were 
blind to the video-EEG reports of visual analysis. All experts involved in 
the study had over ten years of experience in epileptology and were 

certified as clinical neurophysiologists by the Ministry of Health in 
Georgia. 

EEG experts used the first observable electrographic change of clin-
ical seizures to determine the onset of seizures for study purposes. Sei-
zures without electrical signal changes were excluded. The experts 
identified markers for seizure onset and termination, which were 
extracted for each seizure in all patients. These markers were accepted 
as the reference standard, and annotations made by ENCEVIS 1.7 were 
compared to them. 

During the evaluation of ENCEVIS performance, a seizure detection 
was considered true positive (TP) if it was detected by ENCEVIS within 
30 s before the seizure onset and 60 s after the seizure termination. False 
negatives (FN) were identified when the experts detected seizures, but 
ENCEVIS missed them. False positives (FPs) were identified when 
ENCEVIS incorrectly annotated EEG as seizures. The sensitivity was 
calculated as the TP/(TP + FN) ratio, and the specificity was measured 
as the number of false positives per hour (FP/h). 

In order to identify factors that might influence the algorithm’s 
performance, we compared seizure detection according to several 
characteristics, including seizure duration, seizure onset zone, rhyth-
micity, and extracerebral signal changes (surface EMG and ECG signals). 

We also studied ENCEVIS seizure detection sensitivity per recording, 
calculated for each recording separately, including all seizures of this 
individual patient. 

In this study, we focused on recordings that captured at least one 
electroclinical seizure, as they are crucial for diagnosing epilepsy and its 
syndrome. To determine whether ENCEVIS has potential as a screening 
tool for seizure detection, we compared the number of recordings 
marked by EEG experts as containing seizures and those annotated by 
ENCEVIS. In this case, correct ENCEVIS annotations of at least one 
epileptic seizure were considered a positive finding. 

5. Statistical analysis 

The statistical analysis, which was performed using the standard 
SPSS 27 software, involved calculating the mean values and standard 
deviations (mean ± SD) of the variables for the patients in the study 
group. To compare the values of parametric variables and independent 
variable data between different patient groups, one- or two-sample t- 
tests were used. The tests were performed with a 95 % confidence 
interval. 

One-way Analysis of Variance (ANOVA) was employed to evaluate 
the differences in the distribution of parametric indicators based on 
various criteria. These criteria included the types of seizures (general-
ized vs. focal with different localisations), other EEG indicators detected 

Fig. 1. Chart Flow: EEG Recordings Included in the Study.  
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or calculated by ENCEVIS and visual analysis, and the indicators of test 
sensitivity (True Positive or False Negative). 

Furthermore, analysis of covariance was utilized to evaluate changes 
in seizure detection rates according to seizure duration (<10 s, 11–60 s, 
>60 s). The differences between calculated values were considered 
reliable if the statistical confidence coefficient p was less than 0.05 with 
a 95 % confidence interval. 

6. Results 

A total of 942 vEEGs were recorded during the study period using the 
ENCEVIS system. After applying inclusion and exclusion criteria (e.g., 
technical problems, duration shorter than four hours), 255 recordings 

were selected for the primary assessment. The mean duration was 11.06 
h (ranging from 4 to 48 h), resulting in a total 2690 h of analysed data. 
Out of the 255 analyzed recordings, 43 contained at least one electro-
clinical seizure identified through visual analysis and were included in 
the study. These 43 recordings accounted for 112 visually documented 
seizures (Fig. 1). 

The characteristics of patients included in the study are shown in 
Table 1: 19 (44.2 %) were female, 24 (55.8 %) were male, the mean age 
at VEM was 27.1 years (range 4–67), and the mean duration of the VEMs 
was 11.06 h (range 4-48 h). During the study, we detected a total of 112 
seizures with the help of visual analysis. The median seizure count was 
2.6 per recording (range 1–17). Out of these, 76 seizures had a focal 
onset (average 2.3 per recording), and 36 seizures had a generalized 

Table 1 
Recordings’ characteristics.  

N Age Sex Recording Duration (min) Diagnosis EpiS TP TP% FP FP/h FN FN_PR TP_PR Etiology      
E V         

1 27 M 720 FLE 6 3 3 100 3 0.25 0 N Y Unknown 
2 33 M 720 FLE 6 6 6 100 0 0 0 N Y Unknown 
3 8 M 1440 EECSWS 48 1 1 100 47 1.95 0 N Y Unknown 
4 23 F 720 MTLE 7 1 1 100 6 0.5 0 N Y Unknown 
5 44 M 720 MTLE 2 1 1 100 1 0.08 0 N Y HS 
6 64 M 240 MTLE 2 6 2 33.33 0 0 4 N Y Unknown 
7 38 M 720 MTLE 7 3 3 100 4 0.33 0 N Y HS 
8 34 M 720 FLE 9 5 1 20 8 0.66 4 N Y Unknown 
9 16 F 1440 LGS 23 4 4 100 19 0.79 0 N Y GA 
10 27 M 1440 LGS 2 1 1 100 1 0.04 0 N Y Unknown 
11 22 M 1440 MTLE 41 1 1 100 40 1.67 0 N Y HS 
12 12 F 1440 JME 13 1 1 100 12 0.5 0 N Y Unknown 
13 58 M 1440 MTLE 3 2 2 100 1 0.04 0 N Y HS 
14 24 M 1440 LGS 1 1 0 0 0 0 1 Y N Unknown 
15 40 M 1440 FLE 0 3 0 0 0 0 3 Y N FCD 
16 47 M 1440 FLE 7 3 2 66.66 4 0.17 1 N Y FCD 
17 39 M 240 MTLE 1 1 1 100 0 0 0 N Y HS 
18 44 F 720 PLE 2 1 1 100 1 0.08 0 N Y HI 
19 21 F 720 EWEM 1 1 1 100 0 0 0 N Y GA 
20 72 F 1440 MTLE 3 3 1 33.33 2 0.08 2 N Y GT 
21 15 F 720 FLE 8 3 3 100 5 0.42 0 N Y Unknown 
22 32 M 720 JAE 1 1 1 100 0 0 0 N Y Unknown 
23 35 M 720 FLE 10 1 1 100 9 0.75 0 N Y Unknown 
24 4 M 240 ACECTS 1 1 1 100 0 0 0 N Y Unknown 
25 24 F 720 JME 6 1 1 100 5 0.42 0 N Y GA 
26 5 F 1440 LGS 10 17 2 11.76 8 0.33 15 N Y HI 
27 35 F 720 MTLE 4 1 0 0 4 0.33 1 Y N Unknown 
28 20 M 1440 MTLE 3 3 3 100 0 0 0 N Y HS 
29 28 M 720 OLE 3 1 0 0 3 0.25 1 Y N Unknown 
30 48 F 720 MTLE 1 1 1 100 0 0 0 N Y HS 
31 22 F 240 FLE 1 6 0 0 1 0.33 6 Y N Unknown 
32 7 M 1440 PLE 9 1 1 100 8 0.33 0 N Y TBI 
33 18 F 1440 LGS 6 7 0 0 6 0.25 7 Y N not Established 
34 10 F 1440 LGS 10 4 0 0 10 0.42 4 Y N LIS 
35 30 F 720 MTLE 6 1 1 100 5 0.42 0 N Y Unknown 
36 16 M 1440 JAE 7 1 1 100 6 0.25 0 N Y GA 
37 2 M 1440 LGS 52 4 0 0 52 2.2 4 Y N Unknown 
38 5 M 720 FLE 10 1 1 100 9 0.75 0 N Y Unknown 
39 28 M 240 MTLE 3 1 0 0 2 0.67 1 Y N DNET 
40 48 M 720 FLE 5 5 5 100 0 0 0 N Y Unknown 
41 18 F 720 EGTCSA 1 1 1 100 0 0 0 N Y GA 
42 3 F 720 FLE 2 1 1 100 1 0.08 0 N Y Unknown 
43 24 M 240 OLE 1 1 1 100 0 0 0 N Y Unknown 

Note. Diagnosis: EWEM = Epilepsy with Eyelid Myoclonia, LGS = Lennox-Gastaut Syndrome, ACECTS = Atypical Childhood Epilepsy with Centrotemporal Spikes, 
EECSWS = Epileptic Encephalopathy with Continuous Spike-Wave during Slow-Wave Sleep, JAE = Juvenile Absence Epilepsy, JME = Juvenile Myoclonic Epilepsy, 
EGTCSA = Epilepsy with Generalised Tonic-Clonic Seizures Alone, FLE = Frontal Lobe Epilepsy, PLE = Parietal Lobe Epilepsy, OLE = Occipital Lobe Epilepsy, MTLE =
Medial Temporal Lobe Epilepsy, EpiS = Number of Identified Epileptic Seizures Detected by ENCEVIS calculated as the product of the number of visually identified 
seizures (E) and the number of recordings (V), Diagnosis epilepsy overall per recording: TP-PR = True Positive Per Recordings (marked by ENCEVIS as recording 
containing Seizures), FN-PR False negative Per Recordings (marked by ENCEVIS as recording containing Seizures), TP%= Percentage of all visually seen seizures, 
detected by ENCEVIS. 
Aetiology: GA = Gene Abnormality, FCD = Focal Cortical Dysplasia, LIS = Lissencephaly, HS = Hippocampal Sclerosis, HI = Hypoxic-Ischemic, TBI = Traumatic Brain 
Injury, DNET = Dysembryoplastic Neuroepithelial Tumour, GT = Glial Tumours, Unknown. 
Example: Patient 8 in Table 1 had 5 visually detected seizures and 9 seizures detected by ENCEVIS. Only one of those seizures was detected both visually and by 
ENCEVIS at the same time. This is the true positive (TP). The interpretation is as follows: TP = 1, False positive (FP) = 8 and False Negative (FN) = 4 and sensitivity (TP 
/ (TP + FN) = 1/ (1 + 4) = 20 %). 
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onset (average 3.4 per recording), as shown in Table 1. 
In the study population, the distribution of epilepsy based on seizure 

onset was as follows: 30 patients (69.7 %) had focal epilepsy, out of 
which 12 (27.9 %) had frontal lobe epilepsy (FLE), 14 (32.55 %) had 
temporal lobe epilepsy (TLE), and 4 (9.3 %) had parietal/occipital lobe 
epilepsy (P/OLE). Additionally, 13 patients (30.25 %) had generalized 
epilepsy syndromes. MRI scans were performed on 37 patients (86 %), 
out of which 15 (34.8 %) had MRI-documented structural changes in the 
brain. Among these 15 patients, 13 had focal epilepsy, and two had 
generalized epilepsy (as shown in Table 1). 

6.1. ENCEVIS performance analysis per recording 

ENCEVIS true positive seizure detections per recording varied from 
0 % to 100 %, with a mean of 71.2 %. For focal epileptic seizures, the 
average sensitivity was 75.1 % (frontal lobe onset – 73.8 %, temporal 
lobe onset − 76.2 %, and occipital/parietal lobe onset − 75 %). The 
mean sensitivity in the generalized seizure onset subgroup was 62 % (as 
shown in Table 2). The patients in the study who had generalized epi-
lepsy were quite diverse, covering nearly all seizure types with gener-
alized onset, including absences, tonic, and GTCS. The sensitivity in 
detecting these seizures varied based on the seizure type. The sensitivity 
was highest (100 %) for generalised tonic-clonic seizures (GTCS), while 
it was lowest (18.4 %) for brief, subtle tonic seizures in patients with 
Lennox-Gastaut Syndrome (LGS). In our opinion, the overall lower 
sensitivity in the detection of generalized epileptic seizures could be 
attributed to this variability in sensitivity. 

ENCEVIS had a mean false positive (FP) detection rate of 6.3 per 
recording. The mean false negative (FN) detection rate was 1.4 per 
recording. The rate of false positive detections per hour varied from 0/ 
hour to 2.2/hour, with a mean of 0.35/hour (0.35 ± 0.50). 

ENCEVIS was tested as a screening tool to identify those recordings 
that contained at least one electroclinical seizure. Results showed that 
ENCEVIS accurately identified at least one seizure in 34 out of 43 re-
cordings, or 79.1 % of the time. Moreover, ENCEVIS did not make any FP 
or FN annotations in one of the recordings. 

6.2. ENCEVIS performance analysis per seizure 

6.2.1. Descriptive analysis 
The total number of seizures detected by ENCEVIS was 344, while 

the gold standard visual analysis identified 112 electroclinical seizures. 
Out of the 112 visually detected seizures, ENCEVIS correctly marked 58 
of them, resulting in a true positive (TP) detection rate of 51.8 %. 

The comparison of the seizure detection rates between ENCEVIS and 
visual analysis overall (as shown in Table 2) demonstrated that the mean 
rate of events annotated as a seizure by ENCEVIS was 8.0 seizures per 
recording. Specifically, the mean rate for generalized seizures was 10.2 
per recording, while for focal seizures, it was 7.1 per recording. On the 
other hand, the mean rate of visually marked seizures was 2.6 per 
recording, with 3.4 for generalized seizures and 2.3 for focal seizures. 

In the analysis of children and adolescents (age < 18 years), the TP 
detection rate for individual seizures was 39.5 %. For adults (age > 18 
years), the TP detection rate was higher at 58.1 %, with significantly 
higher detection in adults P < 0.05. 

6.2.2. Influence of seizure duration on the ENCEVIS 
Our study revealed a positive correlation between ENCEVIS sensi-

tivity and seizure duration. The total number of seizures analyzed was 
112, with a TP detection rate of 51.8 % and a FN rate of 48.2 %. For short 
seizures lasting below 10 s, the sensitivity was 6.3 %; for seizures 
ranging from 10 to 60 s, the sensitivity was 55.7 %; seizures longer than 
60 s had the highest sensitivity at 63.9 % (p < 0.005). Thus, detection 
performance by ENCEVIS improved as the seizure duration increased. 
(as shown in Table 3). 

6.2.3. Influence of seizure onset zone on the ENCEVIS 
Localization of the epileptogenic zone is indeed a crucial aspect of 

epilepsy diagnosis. In our analysis, we compared ENCEVIS detection 
sensitivity based on the localization of seizure onset (as presented in 
Table 4). The sensitivity for seizures with frontal lobe onset was 53.5 %. 
The sensitivity for seizures with parietal/occipital lobe onset was 75 %, 
although this result is based on a small sample size of only four seizures, 
making it less reliable and insignificant. For seizures with temporal lobe 
onset, the sensitivity was 69 %, and for seizures with generalized onset, 
the sensitivity was lower at 33.3 %. 

The comparison of the true positive (TP) and false negative (FN) 
rates demonstrated that seizures of temporal lobe onset was statistically 
reliable with a p-value of less than 0.005 (p < 0.005). That suggests that 
ENCEVIS demonstrated more consistent and accurate performance in 
detecting temporal lobe seizures than seizures from other localization. 

6.2.4. Influence of ictal EEG patterns and extracerebral activity on the 
ENCEVIS sensitivity 

In our analysis, we categorized the ictal EEG patterns into two groups 
based on visual observation: a) rhythmic patterns and b) arrhythmic 
patterns. Rhythmic patterns included seizures with rhythmic theta, 
delta, alpha activity, sharp wave, and spike-wave rhythmic patterns. On 
the other hand, arrhythmic patterns included seizures where 

Table 2 
ENCEVIS Performance vs. Gold Standard.   

All 
recordings 

Generalised 
seizure onset 

Focal 
seizure 
onset 

Number of the patients 
with detected 
seizures 

N 43 13 30 
% 100 30.2 69.8 

Seizure detected by 
ENCEVIS 

Mean 8.0 10.2 7.1   

8.05 ±
11.9 

10.2 ± 13.5 7.1 ± 10.7 

Seizure detected by 
GOLD STANDARD 

Mean 2.6 3.4 2.3   

2.6 ± 2.86 3.4 ± 4.3 2.3 ± 1.7 
ENCEVIS False Positive 

seizure detection 
Mean 6.63 9.1 6.5   

6.63 ±
11.99 

9.1 ± 13 5.5 ± 10.8 

ENCEVIS False 
Negative seizure 
detection 

Mean 1.25 2.4 0.8   

1.25 ±
2.78 

2.4 ± 4.2 0.8 ± 1.5 

ENCEVIS True positives 
seizure detection 

Mean 1.34 1 1.5   

1.34 ± 1.3 1 ± 1.03 1.5 ± 1.38  

Table 3 
Influence of Seizure Duration on the ENCEVIS per Seizure Sensitivity.  

Seizure Duration True 
Positive 

False 
Negative 

Number of Ictal Events analyzed n 58 54 
% 51.8 ± 50.2 48.2 ± 50.2 

Seizure duration in seconds (sec) mean 58.2 ± 33.9 44.1 ± 56.6 
median 52.5 16 
min 10 8 
max 168 270 

Onset of ≤ 10sec duration 
Seizures 

n 1 12 
% 6.3 ± 25.0 93.7 ± 25.0 

Onset of 11-60sec duration 
Seizures 

n 34 27 
% 55.7 ± 50.1 44.3 ± 50.1 

Onset of > 60sec duration 
Seizures 

n 23 12 
% 63.9 ± 48.7 36.1 ± 48.7 

Correlation with Seizure 
duration 

Pearson’s 
coeff. 

0.152 − 0.152  
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rhythmicity was not observed (focal or generalized fast activity, EEG 
attenuation, or high amplitude muscle artifacts with only marginal 
rhythmic activity) (as presented in Table 5). 

According to the study, the ENCEVIS exhibited a detection sensitivity 
of 59.4 % (P = 0.034) for seizures with rhythmic patterns, whereas for 
seizures with arrhythmic patterns, the sensitivity was 41.7 % (P = 0.10). 
These findings indicate that the ENCEVIS was more effective in detect-
ing seizures with well-defined rhythmic patterns than seizures with less 
distinct or absent rhythmicity. 

Our study investigated how extracerebral signal changes affect 
ENCEVIS seizure detection sensitivity, specifically regarding ECG and 
EMG (see Table 5). 

The study found that with EEG signal changes alone, the sensitivity 
of ENCEVIS was 52.68 %. In cases where EMG changes were presented 
alongside EEG changes, the sensitivity increased slightly to 54.7 % (P =
0.56). When ECG changes were presented with EEG changes, the 
sensitivity improved to 57.7 % (P = 0.31). Interestingly, combining all 
three signals (EEG, EMG, and ECG) did not significantly improve 
sensitivity, which remained at 55.3 % (P = 0.52). Therefore, the study 
suggests that extracerebral signal changes do not significantly affect 
ENCEVIS sensitivity. 

7. Discussion 

In our study, we covered a wide range of epilepsy syndromes, 
providing excellent insight into the sensitivity of ENCEVIS across 
various forms of epilepsy commonly seen in clinical practice. That is 
particularly significant because previous studies have mainly focused on 
adult patients with focal epilepsy. Our findings have shown that 
ENCEVIS has the potential to be used in epilepsy monitoring units due to 
its ability to cover a broad spectrum of epileptic seizures. 

The seizures were classified into two groups based on the location of 
the ictal activity. These groups are the generalized seizure onset group 
and the focal seizure group, which includes patients with temporal lobe 
epilepsy (TLE), frontal lobe epilepsy (FLE), and parietal/occipital lobe 

epilepsy (P/OLE). The ENCEVIS had an average sensitivity of 71.2 % per 
recording, with the highest sensitivity observed for temporal lobe onset 
seizures (76.2 %). However, the recordings from patients with gener-
alized epilepsy had significantly lower sensitivity (62 %). These findings 
are consistent with previously published data [8,10]. 

We have observed a significant variation in ENCEVIS’s ability to 
detect seizures among different recordings. The sensitivity of the algo-
rithm ranges from 0 % to 100 %. To identify the factors affecting the 
algorithm’s performance, we analyzed the sensitivity based on the 
location of the ictal activity, rhythmicity, duration, and extracerebral 
signal changes. 

Our study found that the sensitivity of ENCEVIS was significantly 
higher in seizures with rhythmic ictal patterns compared to those with 
arrhythmic patterns (59.4 % vs. 41.7 %). Additionally, the seizure 
duration was found to affect the performance of ENCEVIS, with sensi-
tivity increasing with a longer seizure duration. However, the coexis-
tence of extracerebral signal changes had only a minor impact on 
sensitivity, which is consistent with other studies. Fürbass et al. have 
also reported similar findings [7,10]. 

ENCEVIS had the highest sensitivity (100 %) in detecting seizures 
with generalized tonic-clonic seizures (GTCS) and focal to bilateral 
tonic-clonic seizures (FB-TCS). The lowest sensitivity (18.4 %) was 
observed in detecting brief tonic seizures with arrhythmic EEG patterns. 
Although the sample size was limited, it is noteworthy that brief seizures 
with arrhythmic patterns, accompanied by significant muscle tone 
changes and ECG tachycardia, were detected better than those without 
extracerebral signal changes. The study showed that seizure type could 
affect the sensitivity of ENCEVIS. Brief tonic seizures and those with 
extratemporal onset had the lowest seizure detection sensitivity, 
whereas seizures with temporal lobe onset and GTCS/FB-TCS had 
significantly higher detection rates. Our study covered only 112 seizures 
from 43 patients, and the number of specific seizure types was insuffi-
cient to allow for statistically significant comparisons. More seizure re-
cordings are required for this comparison. The prevalence of rhythmic 
seizure patterns and longer seizure durations in temporal lobe seizures 
could explain the difference in detection rates compared to extra-
temporal seizures. 

The results show that false positives occur at a rate of 0.35 per hour, 
consistent with previous studies [7,8,9,10]. The background EEG ac-
tivity may influence the detection of false positives by ENCEVIS. 
Therefore, additional studies are needed to identify factors affecting the 
FP detection rate. 

Our study found that the ENCEVIS sensitivity was significantly 
higher in adults (above 18 years) than in children (below 18 years), with 
a detection rate of 58.1 % and 39.5 %, respectively (P < 0.05). Similar 
observations were reported by Fürbass et al. An explanation for the 
difference in seizure detection sensitivity between pediatric and adult 
populations is that seizures with the lowest detection rates, such as brief 
generalized tonic seizures and seizures with extratemporal onset, were 
observed more commonly in the pediatric than in the adult population. 

Our study evaluated the effectiveness of ENCEVIS as a screening tool 
for identifying electroclinical seizures in recordings. Our findings indi-
cate that ENCEVIS made a true positive (TP) annotation of at least one 
seizure in 79.1 % of recordings that contained seizures. That is a sig-
nificant result as it suggests that ENCEVIS 1.7 can help neurophysiolo-
gists select recordings with epileptic seizures from a large dataset and 
reduce their workload. However, the current false seizure detection rate 
of 0.35/h is relatively high, which raises questions about the feasibility 
of implementing ENCEVIS in long-term EEG monitoring units to reduce 
the workload of clinical neurophysiologists. 

Our research indicates that extracerebral signal changes may not 
significantly impact the sensitivity of ENCEVIS. However, it is essential 
to conduct further analysis and research to confirm these results and 
investigate any potential factors that could affect the algorithm’s per-
formance in specific situations. 

Future multicentre studies and data sharing initiatives are crucial to 

Table 4 
Influence of Seizure Onset Zone on the ENCEVIS per Seizure Sensitivity.  

Seizure Onset Total ENCEVIS True 
Positive 

ENCEVIS False 
Negative 

Total n 112 58 54 
% 100 51.8 ± 50.2 48.2 ± 50.2 

Frontal Lobe n 43 23 20 
% 38.39 53.5 ± 50.4 46.5 ± 50.2 

Parietal/Occipital 
Lobe 

n 4 3 1 
% 3.57 75 ± 46.3 25 ± 46.3 

Temporal Lobe n 29 20 9 
% 25.89 69 ± 47.1 31 + 47.1 

Generalised n 36 12 24 
% 32.15 33.3 ± 47.81 66.7 + 47.81  

Table 5 
Influence of Cerebral Plus Extracerebral Signal Changes on the ENCEVIS 
Sensitivity.    

Total True Positive False Negative 

Rhythmic Ictal Pattern N 64 38 26 
% 57.1 59.4 41.6 

Arrhythmic Ictal EEG Pattern N 48 20 28 
% 42.9 41.7 58.3 

EEG + EMG N 64 35 26 
% 100 54.7 45.3 

EEG + ECG N 80 46 34 
% 100 57.5 42.5 

EEG + EMG + ECG N 56 31 25 
% 100 55.3 44.7 

EEG – electroencephalography, EMG – electromyography, ECG – 
electrocardiography. 
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establish statistically robust comparisons and identify factors that may 
impact ENCEVIS performance. Additionally, continued algorithm im-
provements will facilitate successful clinical implementation. 

6. Conclusion 

ENCEVIS has the potential to be a valuable tool for neurophysiolo-
gists. Our research indicates that the performance of the algorithm is 
influenced by the rhythmicity of the ictal pattern, seizure duration, 
seizure onset localization, and patient age. In particular, it has been 
observed to be highly effective in identifying seizures in adult patients 
with rhythmic ictal EEG patterns and in cases where the seizures last for 
more than 60 s. 

ENCEVIS can annotate at least one seizure in the ictal EEG recordings 
with 79.1 % sensitivity making it a valuable tool for automated 
screening to identify such recordings. This can potentially save time and 
reduce the workload of neurophysiologists. 
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Automatic multimodal detection for long-term seizure documentation in epilepsy. 
Clin Neurophysiol 2017;128:1466–72. https://doi.org/10.1016/j. 
clinph.2017.05.013. 

A. Tsereteli et al.                                                                                                                                                                                                                                

https://doi.org/10.1016/B978-0-444-64032-1.00011-4
https://doi.org/10.1093/brain/124.9.1683
https://doi.org/10.3389/fneur.2018.00639
https://doi.org/10.3389/fneur.2018.00639
https://doi.org/10.1111/epi.16555
https://doi.org/10.1111/epi.16555
https://doi.org/10.1016/j.clinph.2021.02.403
https://doi.org/10.1016/j.yebeh.2015.02.004
https://doi.org/10.1016/j.clinph.2014.09.023
https://doi.org/10.1016/j.clinph.2014.09.023
https://doi.org/10.1111/epi.16812
https://doi.org/10.1111/epi.16812
https://doi.org/10.1016/j.seizure.2022.01.009
https://doi.org/10.1016/j.clinph.2017.05.013
https://doi.org/10.1016/j.clinph.2017.05.013

	The ENCEVIS algorithm in the EMU and the factors affecting its performance: Our experience
	1 Introduction
	2 Aim
	3 Study design
	4 Methods
	5 Statistical analysis
	6 Results
	6.1 ENCEVIS performance analysis per recording
	6.2 ENCEVIS performance analysis per seizure
	6.2.1 Descriptive analysis
	6.2.2 Influence of seizure duration on the ENCEVIS
	6.2.3 Influence of seizure onset zone on the ENCEVIS
	6.2.4 Influence of ictal EEG patterns and extracerebral activity on the ENCEVIS sensitivity


	7 Discussion
	6 Conclusion
	Ethical statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Author contribution
	References


