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Abstract: Due to its slow progression and susceptibility to radical forms of treatment, low-grade PC is
associated with high overall survival (OS). With the clinical progression of PC, the therapy is becoming
more complex. The immunosuppressive tumor microenvironment (TME) makes PC a difficult target
for most immunotherapeutics. Its general immune resistance is established by e.g., immune evasion
through Treg cells, synthesis of immunosuppressive mediators, and the defective expression of
surface neoantigens. The success of sipuleucel-T in clinical trials initiated several other clinical
studies that specifically target the immune escape of tumors and eliminate the immunosuppressive
properties of the TME. In the settings of PC treatment, this can be commonly achieved with radiation
therapy (RT). In addition, focal therapies usually applied for localized PC, such as high-intensity
focused ultrasound (HIFU) therapy, cryotherapy, photodynamic therapy (PDT), and irreversible
electroporation (IRE) were shown to boost the anti-cancer response. Nevertheless, the present
guidelines restrict their application to the context of a clinical trial or a prospective cohort study. This
review explains how RT and focal therapies enhance the immune response. We also provide data
supporting the combination of RT and focal treatments with immune therapies.

Keywords: metastatic castration-resistant prostate cancer; cancer vaccines; immunotherapy; focal
therapy; combination immunotherapy; tumor immune microenvironment; in vivo vaccination

1. Introduction

In 2020, prostate cancer (PC) was the second most frequent cancer and the fifth cause
of cancer-related death among men. In more than half of the countries in the world, it
was the most frequently diagnosed cancer in men [1]. While mortality rates are relatively
low in comparison to other malignancies, metastatic castration-resistant prostate cancer
(mCRPC) remains an incurable condition, with few treatment strategies providing any
clinical benefit [2].

Focal therapies are minimally invasive treatment strategies used in the management of
PC to provide local control of the disease, minimalizing the risk of possible complications.
The first prospective clinical trials showed promising local disease control, especially with
a short-term perspective [3]. The immunological impact of focal therapies, as well as the
immunotherapy of PC itself, have been addressed by academic research for years. Thus,
it was a substantial breakthrough when sipuleucel-T became the first therapeutic vaccine
for patients with mCRPC approved by the United States Food and Drug Administration
(FDA) and the first autologous cellular therapeutic vaccine in oncology [4,5]. Nevertheless,
the clinical benefit of immunotherapy alone remains limited partially due to low-grade
inflammation in the tumor microenvironment (TME), as well as uncontrollable cell divisions
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and the suppressed expression of tumor antigens [6,7]. However, both radiotherapy (RT)
and various focal therapies have the potential to activate the anti-tumor immune response
and, therefore, enhance the efficacy of immunotherapy [8–10].

The major purposes of this non-systematic review were to identify the immune effect
of RT and focal therapies, including high-intensity focused ultrasound (HIFU), cryother-
apy, photodynamic therapy (PDT), and irreversible electroporation (IRE), and to compile
available knowledge on different combinational therapies including both a focal and an
immunotherapeutic component. To provide background data on the immunology of PC,
we thoroughly described the TME and various immune evasion mechanisms. Furthermore,
for better understanding of the current status of immunotherapy, we summarized the most
recent scientific data on different management options in PC, including immune checkpoint
inhibitors (ICIs) and cancer vaccines.

2. Data Acquisition

For the purposes of this non-systematic review, we conducted a comprehensive English
language literature search for original articles, meta-analyses and reviews using PubMed
and grey literature through June and July 2022. We searched for various combinations
of the following terms: prostate cancer; immunotherapy; focal therapy; cancer vaccine;
combination therapy; tumor microenvironment. We found 1669 related articles, and the
final number of papers selected for this manuscript was 392. Studies with the highest level
of evidence and relevance to the discussed topics (275) were selected, with the consensus
of the authors.

3. Immunological Background of Prostate Cancer
3.1. Prostate Cancer Microenvironment

The microenvironment of PC consists of numerous elements, including both neoplastic
cells and diverse host cells. The host component comprises stromal cells, the extracellular
matrix, endothelial and vascular cells, immune cells, and various soluble factors, such as
IL-6 and receptor activator of nuclear factor kappa-B ligand (RANKL) [11]. The TME in PC
plays an ambiguous role in carcinogenesis. Particularly, the impact of the immune system
is highly complex, as both innate and adaptive immune response mechanisms can provide
anti-neoplastic activity, as well as propagate carcinogenesis [12]. For example, cytotoxic
T lymphocytes (CTLs), one of the most important cancer cell killers, secrete transforming
growth factor-beta (TGF-β), which both supports tumor growth and induces immune
suppression [13].

There is a multitude of mechanisms affecting the TME in PC and contributing to
immunosuppression, including the inhibition of neoantigen expression, instability of rapid
cell division, DNA damage response (DDR) gene defects, decreased human leucocyte
antigen (HLA) expression, phosphatase and tensin homolog (PTEN) protein loss, and
dysfunction of interferon (IFN) type I signaling [7].

3.2. T Cell Infiltration

Many immune cell types play a role in TME functionality, although the T cell pop-
ulation, especially CTLs, are considered most vital [14]. They are the key elements of
the physiological cancer immunity cycle, which is briefly summarized in Figure 1 [15].
T cells are recruited from peripheral blood after antigen-presenting cells (APCs), specifi-
cally dendritic cells (DCs) and macrophages, capture neoantigens released by the tumor.
Presenting the abovementioned antigens to CTLs using a major histocompatibility com-
plex (MHC) is called priming and takes place in the local lymph nodes. This results in
recruiting and stimulating more T cells, including CD4+ cells. CTLs infiltrate the tumor,
recognize cancer cells, and kill them. Neoantigens are then released and the process comes
full circle [15]. The localization and density of tumor infiltrating lymphocytes (TILs) and
memory T cells within the center of the tumor and its margins were the foundation for
creating the “immunoscore”. It divides tumors into two groups: T cell inflamed (“hot”) and
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non-T cell inflamed (“cold”) [16]. This immune contexture is significant in the efficacy of
therapy in a variety of cancers. Many publications indicate that a high level of TILs shows
a positive prognostic value [17–22]. PC is primarily described as a “cold” tumor, with a
low inflammation burden and immune activation [23]. However, the impact of the TME
on PC oncological outcomes is unclear [7]. Some studies show that the high intratumoral
density of CTLs is associated with improved cancer-specific survival (CSS) in PC patients
undergoing RP [24,25]. Others show that the higher the level of CTL infiltration in PC, the
greater the risk of distant metastases and biochemical recurrence [12,26]. Although the
connection between inflammation and tumorigenesis remains unclear, one of the main
goals of various local pre-immunotherapy techniques is to propagate the inflammation of
the TME, converting it to inflamed and susceptible to immunotherapy [27].
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3.3. Regulation of the T Cell Response

After a T cell is initially activated during priming, the second step of activation takes
place: binding of the costimulatory molecules, CD80 (B7-1) or CD86 (B7-2), which serve
as ligands on APCs, and CD28, a receptor expressed on T cells [28–30]. The cytotoxic T
lymphocyte antigen 4 (CTLA-4 or CD152) is a co-inhibitory glycoprotein receptor expressed
on the surface of the T cell, competing with CD28 for B7 ligands. CTLA-4 is induced after
T cell activation (except for regulatory T cells (Tregs), which continuously express it),
and due to its higher affinity for B7 molecules, it successfully outcompetes the CD28
receptor [31–34]. The B7:CTLA4 interaction leads to inhibition of the cell cycle progression
through IL-2 accumulation [35,36]. Programmed death receptor 1 (PD-1) is another co-
inhibitory receptor on the surface of T- and B cells. PD-1 ligand 1 (PD-L1 or CD274) and
PD-1 ligand 2 (PD-L2 or CD273) are two known ligands for the PD-1 receptor, expressed
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on macrophages, DCs, and other immune cells [37]. Although the interaction of PD-L2 and
PD-1 also has an immunosuppressive outcome, it is the PD-L1:PD-1 binding that induces
the conversion of naïve T cells into Tregs [38–41]. CTLA-4, PD-1, and its ligands are parts
of the B7 superfamily of molecules and are the most vital immune checkpoints (ICPs) [42].

3.4. Immune Evasion Mechanisms

Cancer cells have developed several immune evasion mechanisms associated with
TME components. Immune evasion may be described as the entirety of biochemical
interactions leading to the suppression of the natural immune response to tumor cells. The
spectrum of possible “back doors” can be generally divided into a few mechanisms. These
include: (1) immune evasion through immune cells (most notably Tregs), (2) synthesis of
immune-suppressive mediators, and (3) defective expression of surface neoantigens [43].
Additionally, important contributors to the TME, affecting cancer progression and the
response to therapy, are hypoxia and glucose restriction, which have already been described
in a multitude of malignancies [44–46].

3.4.1. The Role of Specific Immune Cells

One of the cancer immune evasion mechanisms is CD4+ CD25+ FOXP3+ Tregs activity,
as its physiological role is to modulate effector T cells to support immunological tolerance
to self-antigens (self-Ags) [47–49]. Tregs drawn by the tumor have higher suppressive
properties compared to circulating Tregs and are able to inhibit the anti-tumor activity
of other immune cells directly using cell–cell interactions or indirectly through synthesis
and the secretion of mediators, e.g., TGF-β, interleukin 10 (IL-10) [50,51]. Many tumor-
associated Ags are expressed by host cells and can therefore act like self-Ags, which further
emphasizes the role of Tregs in immune evasion [52,53].

Myeloid-derived suppressor cells (MDSCs) are another heterogeneous group compris-
ing immature DCs, granulocytes, and macrophages. Overproduction and concentration of
these cell types in an inflammatory environment are correlated with the immunosuppres-
sive qualities of the TME [54,55]. Their functions include the inhibition of CLTs through
various mechanisms (e.g., producing reactive oxygen species (ROS) or interactions with the
T cell receptor [TCR]), suppressing natural killer (NK) cells, and Tregs induction [56–60].
The level of MDSCs correlates with the stage of PC and applied treatment, as well as with
the serum levels of crucial inflammatory mediators—IL-6 and IL-8 [61–63].

DCs are the most efficient APCs, but their functionality is mutilated due to the mod-
ulatory activity of tumors. Impaired DCs have lower levels of CD80, CD86, and CD40,
thus they cannot present antigens and activate T cells effectively enough [43,64,65]. The
role of CD40 is highly complex as it connects the T- and B cell responses. Namely, when
DCs remain active and secrete IL-12, they may interact with CD40L on both T cells and B
cells [66–69]. The first interaction induces the Th1 and IFN-γ secretion by the T cells, and
the second induces the class switching between IgG and IgA in B cells [70–72]. In addition,
the reciprocal expression of CD40 and CD40L on DCs, T cells, and B cells links the humoral
and cellular immune response, thus the reduced level of CD40 might lead to impairments
in both responses [72].

Tumor-associated macrophages (TAMs) are another important group contributing
to the PC TME. TAMs, especially the M2 type, can stimulate tumor growth through the
secretion of various mediators such as TGF-β, IL-10, and vascular endothelial growth
factor (VEGF) [43,73–75]. Overexpression of TAMs in PC is correlated with unfavorable
oncological outcomes in patients with PC, including biochemical recurrence (BCR), or
worse, distant metastasis-free survival [76–78].

Furthermore, increased concentration of TAMs is observable in metastatic lymph
nodes in comparison to the primary prostate tumor [79,80]. Shortage of available data
on other TME differences in primary and metastatic PC prevents us from presenting a
thorough comparison, but it is worth mentioning that this immunological heterogeneity
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has already been described in other malignancies, including breast, lung, colorectal cancers,
and brain tumors [81–87].

The role of B cells in immune evasion is not well understood in the case of PC. However,
B cell infiltration has prognostic significance in different cancers such as breast cancer and
melanoma [88]. B cell TILs secrete a significant member of the TNF family, lymphotoxin
(LT), which promotes survival and proliferation of androgen-deprived cells, therefore
encouraging castration-resistant PC (CRPC) development [89].

3.4.2. Immunosuppressive Mediators

There are many immunosuppressive cytokines which aid tumors in immune eva-
sion through the promotion of tumor proliferation, chemoresistance, angiogenesis, and
migration, and these are most notably TGF-β, VEGF, IL-6, RANKL, and the CXCL fam-
ily [90]. TGF-β is one of the most vital mediators, acting both as a direct growth-promoting
factor, as well as a stimulator of CD4+ T cells–Tregs transformation [91–93]. Its other
roles include promoting angiogenesis, downregulating HLA-1 expression, and induc-
ing epithelial–mesenchymal transition (EMT) [90,94–97]. Another important cytokine is
VEGF, which also contributes to tumor growth, as well as inhibiting DC differentiation.
A similar role is performed by cancer-associated ganglioside antigens, which conduct an
immunosuppressive activity through impairing CTLs and DCs [43,98,99].

3.4.3. Dysfunctional Expression of Surface Neoantigens

MHC Class I proteins are found on nucleated cells and platelet surfaces, and their role
is to be recognized by CD8+ T cells, which trigger the immune response against certain
antigens by activating T cells and leading to target cell destruction [5,100,101]. Decreased
MHC I presentation of tumor-associated antigens is one of the immune evasion mechanisms
of PC [102,103]. A study by Yitalo et al. revealed heterogeneity in MHC I expression in PC.
Bone metastases showed noticeably lower MHC I expression in comparison to the primary
tumor. Moreover, a subgroup of metastases showed high MHC I expression, while the
majority of metastases showed a decrease. These findings indicate that there are molecular
subtypes of PC which may be less responsive to immunotherapy [104].

3.4.4. Monitoring of the Immune Response

The immune effects provided by immunotherapy or initiated by focal therapies are
difficult to unequivocally assess. There is no gold standard of immunological activity, and
various studies focus on different aspects of induced immunomodulation. Some of the most
valid indicators of this state include: immunogenic cell death; concentration of CTLs, DCs,
and other immune cells; the expression level of certain antigens and factors (e.g., PD-L1,
MHC, IL-1, IL-6, interferons); and the abscopal effect [105–107]. Nevertheless, a well-
designed randomized clinical trial comparing the immune effects of the abovementioned
treatment strategies would be vital to adequately evaluate the immunomodulatory effects
provided by focal therapies.

4. Immunotherapeutic Options for Prostate Cancer
4.1. Immune Checkpoint Inhibitors

ICIs are novel treatment options gaining more and more interest as they already
appear to act as successful strategies in cancers such as melanoma and lung cancer [108–114].
Among CTLA-4 inhibitors used in oncology, there are ipilimumab and tremelimumab, while
the most pivotal PD-1 inhibitors comprise nivolumab and pembrolizumab; atezolizumab,
avelumab, and durvalumab belong to PD-L1 inhibitors [115–117].

There have been a few major studies on ICI efficacy in PC management in recent
years; most trials investigated various immunotherapy combinations, especially with other
immunotherapeutics or with systemic chemotherapy, or ADT. The preliminary results of
the study by Sharma et al. (CheckMate 650, NCT02985957) showed promising anti-tumor
activity of the nivolumab and ipilimumab combination in patients with mCRPC. The
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authors reported 25% objective response rate (ORR) in the pre-chemotherapy arm, and 10%
ORR in the post-chemotherapy arm, as well as 5.5 and 3.8 months median radiographic
progression-free survival (PFS), and 19.0 and 15.2 months median OS. However, research
expansion is necessary to further assess the clinical outcomes of this therapy [118]. In the
randomized phase III trial by Powles et al. (The IMbassador250 trial, NCT03016312), the
combination of atezolizumab and enzalutamide failed to meet the endpoint of improved
OS. However, the authors pointed out that proper patient selection may be vital to identify
subgroups of patients who are susceptible to this therapy [119]. The phase III randomized
study by Agarwal et al. (CONTACT-02, NCT04446117) will evaluate the combination
of atezolizumab and cabozantinib vs. second novel hormone therapy (abiraterone or
enzalumatide) in patients with mCRPC [120].

The European Association of Urology (EAU) guidelines indicate that pembrolizumab
may be a valuable additional management strategy for mCRPC patients with high mi-
crosatellite instability [121,122]. This further suggests that the increase in immunotherapy
efficacy in PC may require meticulous patient selection.

Immune checkpoint blockade in PC remains a poor monotherapeutic tool [123,124].
Among the reasons for this is the low level of T cell infiltration, the “cold” immunogenic
profile of the tumor, mutational burden, and immune evasion mechanisms [125–127].
Thus, the interest in boosting the immune response, using other therapies beforehand,
is now rapidly growing. It is believed that various therapy combinations can subdue
tumor resistance to ICI therapy [128]. Studies evaluating ICI combinations with each other
and with focal therapies show more promising results in comparison to monotherapeutic
approaches [118,123]. However, the study by Palmer et al. revealed that the combination
of ICIs with various other strategies (e.g., other immunotherapy, chemotherapy) shows no
enhancement (additivity or synergy) in comparison to ICIs alone in 13 phase III clinical
trials [129].

For the purpose of this review, we present results of various studies on the combination
of ICIs and focal therapies in the sections concerning specific local treatment strategies.

4.2. Cancer Vaccines

Cancer vaccines usually consist of specific neoantigens and adjuvants that boost the
immune response against these antigens. Their role is to support the adaptive immune
system of the patient in neutralizing cancer cells [130]. Cancer vaccinations have already
been combined with RT and focal therapies, due to their immunomodulatory effect, in
various clinical trials, evaluating their efficacy in numerous malignancies including PC,
melanoma, pancreatic, and lung cancers [131–141].

4.2.1. Dendritic Cell Vaccines—Sipuleucel-T, DCvac/PCa, and Others

As mentioned above, DCs are one of the most important features of the immune system;
they are the most efficient APCs, which are not only able to activate T cells (both Tregs and
CTLs) but also NK cells. DC vaccines require blood-derived DCs, pulsing them ex vivo
with the tumor-associated antigen, activating them using the specific adjuvant, and then
reinjecting them into the patient [142]. The first DC vaccine approved by the U.S. Food and
Drug Administration (FDA) was sipuleucel-T (Provenge®), and so far, it remains the only DC
vaccine for mCRPC [143,144]. Sipuleucel-T promotes an immune response against tumor cells
using prostatic acid phosphatase (PAP) antigen-activated DCs [42]. A double-blind, placebo-
controlled, multicenter phase III trial compared this DC vaccine to the placebo group, with
the results of a 22% reduction in the risk of death and more than 4 months of improvement
in overall survival (OS) [4]. Another trial showed even greater improvement in OS (up to
8.1 months), if sipuleucel-T therapy is extended by APC8015F, a variant of the DC vaccine
prepared from cryopreserved cells which were frozen for future use [145].

DC vaccines are a very promising therapeutic tool, although they require further
clinical trials and more attempts to combine them using different approaches [146]. There
is only one ongoing trial assessing the combination of sipuleucel-T and other therapies:
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sipuleucel-T plus stereotactic ablative body radiation (SABR) (NCT01818986, phase II). A
different phase III trial evaluates the efficiency of sipuleucel-T in reducing the progression of
CRPC. The study includes active surveillance patients (the ProVent Study; NCT03686683).

DCvac/PCa is an autologous DC-based vaccine, in which DCs are pulsed with killed
lymph node carcinoma of prostate (LNCaP) cells. Several clinical trials have investigated its
efficacy in PC. However, only a few of them examine its combinations with focal therapies
or RT. Fucikova et al. assessed the DCvac/PCa impact on PSA in patients with rising PSA
after RP or salvage RT. PSA doubling time was significantly elongated in this variant [147].
Although the DCvac/PCa immunological impact is quite well documented, its translation
to clinical benefits is needed, and further clinical trials are required, especially concerning
different combinations of therapies. A recent clinical phase III trial (the Viable) by Vogelzang
et al. investigated the DCvac/PCa combination with docetaxel and prednisone. The therapy
failed to improve OS in patients with mCRPC [148].

Other DC-based vaccines that have been tested in the last decade in PC patients
are prostate-specific membrane antigen (PSMA) and the survivin-loaded DC vaccine,
mucin 1 (MUC1) vaccine, and the T cell receptor G alternate reading frame protein (TARP)
vaccine [149–152].

4.2.2. PROSTVAC—A PSA-Based Viral Vector Vaccine

One of the trailblazing PC vaccines is PROSTVAC (PSA-TRICOM), which comprises
two recombinant poxvirus vectors containing transgenes for PSA and three costimulatory
molecules: B7.1, ICAM-1, and LFA-3 [153,154]. A phase II trial analyzing neoadjuvant
PROSTVAC in patients awaiting RP showed an increase in CD4+ and CD8+ T cell infiltra-
tion of the tumor, as well as a peripheral immune response to neoantigens in 13 out of the
25 patients [155]. However, this promising immune response does not yet translate into
a clinical advantage. In a phase III trial, Gulley et al. concluded that despite the fact that
the therapy was well-tolerated and safe for patients, treatment disappointingly showed
no impact on median OS and alive without event (AWE) in patients with mCRPC [156].
Parsons et al. evaluated the preventive value of PROSTVAC in patients with localized PC
which is managed by an active surveillance strategy. Although some initial data on the
immunological effect of the vaccine are already available, we are looking forward to the
summary of this phase II trial in the future (NCT02326805) [157].

Several ongoing clinical trials are investigating different combinational management
strategies including PROSTVAC. These are evaluating, among others, the combination
with nivolumab (NCT02933255, phase I/II) or nivolumab and ipilimumab (NCT03532217,
phase I), with CV301 (a poxviral vaccine) and M7824 (a protein targeting PD-L1 and
TGF-β) (NCT03315871, phase II), docetaxel (NCT02649855, phase II), or enzalutamide
(NCT01867333, phase II).

TroVax is another viral vector, 5T4 (oncofetal glycoprotein) targeting vaccination. It
is characterized by a good immune response in mCRPC and the potential to efficiently
combine with docetaxel [158,159].

4.2.3. Peptide-Based Vaccines

Among peptide-based vaccines, one of the most interesting is GX301, consisting of
four telomerase peptides and two adjuvants—Montanide ISA-51 and Imiquimod. Fenoglio
et al. assessed its potential in a phase I/II clinical trial, revealing its immunological response
in PC and renal cell cancer (RCC). An increase in PFS and OS were also observed [160].
Filaci et al. evaluated GX301 efficiency and immunological impact in mCRPC. The therapy
did not increase OS, although they observed that a higher number of drug administrations
was correlated with an increased immunological response [161].

Cell division-associated 1 (CDCA1) peptide vaccination was a topic of research in a
phase I clinical trial by Obara et al. CDCA1 is a peptide overexpressed in a few malignancies,
including PC. The authors indicated that the vaccine is well-tolerated, and it boosts the
immunological response in patients with CRPC [162,163].



Cells 2022, 11, 2793 8 of 26

Other peptide-based vaccinations include the personalized peptide vaccination (PPV),
which includes the administration of different HLA-matched peptides, multi-peptide vaccines,
and a vaccine targeting the Ras homolog gene family member C (RhoC vaccine, RV 001, or
onilcamotide) [164–166]. However, a recent phase IIb study of RhoVac (RV 001) failed to show
its superiority over the placebo in PC (BRaVac, NCT04114825). Further phase II and III trials
investigating various peptide-based vaccinations are required in the future.

4.2.4. Whole Tumor Cell Vaccines

GVAX is a vaccine consisting of genetically modified PC cells, which have undergone
radiation. Studies suggest that this vaccination induces immune response through the
activation of DCs and MDSCs [167]. A combinational therapy with ipilimumab has been
investigated in a phase I trial by van den Eertwegh et al., which showed that GVAX is
well-tolerated and safe for patients with mCRPC [168]. Once again, further clinical trials
are required [169].

5. Focal Ablation and Immune Therapy Combination
5.1. High-Intensity Focused Ultrasound

Recently, HIFU appeared as a potential neoadjuvant-like therapy, serving as the first
step of immunotherapeutic treatment. HIFU itself has already made an appearance in
guidelines concerning PC treatment options, although only as an investigational therapeu-
tic tool or as salvage therapy [170]. Essentially, this focal management strategy uses highly
focused ultrasound waves to ablate cancer cells and has been investigated extensively in PC
patients in a multitude of clinical trials since the late 1990s [171–181]. The most important
benefit of HIFU is that it is minimally invasive when compared to surgical treatment, and it
is devoid of systemic toxicity in comparison with androgen deprivation therapy (ADT) or
chemotherapy. Nevertheless, possible adverse effects may quite frequently occur, and they
include erectile dysfunction, urinary tract infections, rectal injuries, and more [182,183].
The properties of HIFU can be divided into a few groups—ablative and non-ablative (me-
chanical), immune, and biological effects. Induced activity depends on a multitude of
factors including frequency, pressure, duty cycle, treatment time, achieved temperature,
tissue susceptibility, and more. This allows us to distinguish several possible technique
variants, such as thermal ablation, thermal stress and hyperthermia, mechanical pertur-
bation, and histotripsy [184]. However, the first and foremost effect of HIFU is thermal
ablation (by heating tumor tissue above approximately 55 ◦C), resulting in coagulative
necrosis, combined with additional cavitation formation. The most interesting secondary
effect is anti-tumor immunity induction [185,186].

The immunotherapeutic effect of HIFU has recently been investigated in many kinds
of malignancies. Hu et al. confirmed HIFU promotes DC infiltration and activation in mice
bearing colon adenocarcinoma and indicated that the mechanical components of this proce-
dure may be successfully combined with other types of therapy [187]. Ran et al. showed
that HIFU increases peripheral blood CD3+, CD4+ levels and the CD4+/CD8+ ratio, en-
hances CTL cytotoxicity against murine hepatocarcinoma, and inhibits tumor growth and
progression in mice [188]. The impact on the CD4+/CD8+ ratio has been observed in the
past by Rosberger et al. [189]. The activation of anti-tumor immunity promoted by HIFU
can be partially explained by tumor debris “left-over” antigen immunogenicity, which was
demonstrated by Zhang et al. in the murine hepatocellular carcinoma model [190]. Similar
investigations have been conducted with other malignancies, such as melanoma, neurob-
lastoma, and pancreatic cancer [191–196]. Wu et al. researched tumor debris immunogenic
properties in 23 patients with breast cancer. Using HIFU, they ablated primary tumors and
evaluated the expression of tumor antigens and heat-shock protein 70 (HSP-70), while also
pointing out the immunogenic potential of neoplastic debris [197].

Sonodynamic therapy (SDT) is another promising strategy concerning the usage of ultra-
sound. It is based on the application of sonosensitizers, which is followed by their activation
with ultrasound. Activated particles then transfer the energy to oxygen accumulated in the
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TME, creating ROS which kill or damage tumor cells [198,199]. HIFU and the spectrum of
ultrasound-based therapies in general are still very modern approaches used for enhancing
immune response. Further investigation is required, especially concerning PC.

5.2. Cryotherapy

Cryoablation or cryotherapy performed either as a focal therapy, or as the whole-
gland procedure, is an ablation technique using extremely low temperatures to induce
both necrosis and apoptosis of tumor cells [200–202]. With the use of special cryoprobes,
liquid nitrogen or argon, passing from high pressure to an atmospheric pressure revealing
its cooling effect, is implemented inside a prostate gland. Although it may be used as a
monotherapy, for this review, we will only focus on its immunomodulatory activity and its
combination with immunotherapy.

Cryotherapy has great potential to enhance the immune response, due to its significant
preservation of tumor antigens and cytokines, compared to other ablation techniques
based on high temperatures and rather than hypothermia [203]. It is believed to leave the
intracellular molecules of tumors intact and, through attracting the immune system using
these factors, stimulate tumor-specific immunity. However, cryotherapy can prompt both
immunostimulatory and immunosuppressive responses, which are strongly dependent
on the type of induced cell death; studies suggest that necrosis, occurring mainly in the
inner zone of the tissue, causes tumor cells to release danger-associated molecular patterns,
which boost the immune response through the maturation of DCs, and consequently,
T cell activation. However, apoptosis primarily occurring in the peripheral margin of
the ablated organ leads to a lack of secretion of danger signals, therefore contributing to
immunosuppression [204–206]. The cryoimmunological effect is further described by the
term “abscopal effect”. This rare phenomenon refers to the systemic immunological impact
a focal therapy has and primarily refers to the reduction in a metastasis preceded by a
localized treatment in a different location [207]. This process was proved to be mediated by
CD8+ T cells and correlated with a low level of CD4+CD5+ Tregs, as well as an increased
level of IFN-G [208,209].

Various investigations have been conducted on the theme of cryoimmunological
therapy, both in murine models and in clinical trials. For instance, Gaitanis and Bassukas
researched the impact of immunocryosurgery on basal cell carcinomas (BCC). Their study
indicated that cryoablation combined with the TLR7 agonist, imiquimod, can be a very
effective substitute for surgical treatment for BCC under 20 mm in diameter [210]. In
another study, Lin et al. prospectively evaluated allogeneic NK cell immunotherapy
combined with cryosurgery in renal cell carcinoma (RCC). They once again proved an
additive effect of the two therapies [211]. The same group of researchers conducted similar
investigations in patients with lung and hepatocellular cancers, with similarly favorable
results [212,213].

So far clinical trials including the combination of cryosurgery and immunotherapy
in patients with PC are rarely conducted. One of them is a therapy using granulocyte–
macrophage colony-stimulating factor (GM-CSF), a cytokine regulating the function of
granulocytes and macrophages, as well as promoting the survival of DCs [214,215]. These
investigations revealed that GM-CSF administration enhances INF-G secretion by T cells on
the base of prior cryoablation procedures, as well as the fact that GM-CSF increases levels
of prostate-specific and nonspecific antigens. Ross et al. examined cryosurgery combined
with short term ADT and pembrolizumab, a PD-1 inhibitor, proving local disease control
but questioning its potential for the management of systemic disease [216].

5.3. Photodynamic Therapy

PDT is an example of another targeted treatment option, that has already been used as
an alternative to radical therapies, with the intention of reducing levels of side effects, while
maintaining favorable oncological outcomes [217]. This focal therapy is based on the usage
of a laser of a specific wavelength, which activates the photosensitizer (PS), administered
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systemically or locally, and therefore generates ROS resulting in necrosis of the tumor
cells [218]. Depending on the qualities of photoagents, different effects can be achieved.
Photothermal therapy (PTT) is a subtype of phototherapy that is different from PDT as
it engages PS properties not to produce ROS but to execute a thermal effect through the
conversion of absorbed laser light into heat [219].

As for PDT in PC, researchers point out the high efficacy and low level of adverse
effects of vascular-targeted photodynamic therapy (VTP) in comparison to other therapies,
while addressing the great need for long-term benefit evaluation in randomized clinical
trials (RCT) [220]. Rastinehad et al. introduced the results of a clinical trial in which
they used gold-silica nanoshells (AuroShells) to conduct PTT in 15 patients with PC.
The study revealed high-profile feasibility of the procedure, and once again pointed out
its low-rate adverse effects burden [221]. Another study by Azzouzi et al. compared
padeliporfin VTP with an active surveillance strategy in a phase III RCT. They evaluated
VTP as a safe and effective treatment for low-risk, localized PC, with a longer time to
progression and a higher proportion of negative biopsy results in comparison to active
surveillance [222]. On the other hand, a review of this investigation, initiated by the
Oncologic Drugs Advisory Committee within the FDA, resulted in voting against approval
of this therapeutic strategy in the United States [223]. There were many reasons for this,
including, above all, an unfavorable benefit–risk profile of this therapy, postulated by the
panelists [224]. Nevertheless, more clinical trials are required, evaluating different doses of
various PS, varying laser wavelengths, and manipulating other parameters [223].

However, more and more papers recently have been turning their attention to the
immunological aspects of PDT as it propagates inflammatory response, induces necrosis,
and promotes recruitment of neutrophils and other immune cells [225–229]. Furthermore,
PDT can promote immune cells and engage them to eradicate distant metastases [230].
Therefore, the term photoimmunotherapy (PIT) has been forged, and it may be described
as a combination of immunogenic properties of PDT and immunotherapy treatment [231].
The immunological effect obtained by PDT is complex and multi-level. First of all, it
directly affects immune cells through the recruitment of neutrophils, DC maturation, and
macrophage activation, as well as the accumulation of CTLs and affecting them through
regulation of NK cell migration [225,232]. Secretion of IL-1 α/β, IL-6, IL-8, IL-10, and
IL-12 is boosted as is the release of a few secondary inflammatory mediators, including
thromboxane and prostaglandins [233]. Furthermore, a few strategies concerning the
combination of PDT with different immunotherapeutic strategies have been conducted, and
their results are promising. Li et al. evaluated the synergistic effect of CTLA-4 antibodies
and single-walled carbon nanotube-glycated chitosan complex (SWNT-GC), which acts
primarily as a light absorber, in metastatic mammary tumors in mice. Local administration
was then followed by PTT. The results showed that this strategy prolonged survival time,
suppressed primary tumors, and inhibited metastases [234]. Huang et al. introduced a
drug conjugate consisting of protoporphyrin IX and NLG919, a potent indoleamine-2,3-
dioxygenase (IDO) inhibitor, which is applied to the cells through liposomal delivery (PpIX-
NLG@Lipo). They showed its strong ability to generate ROS after the phototherapeutic
procedure, as well as its potential to increase CD8+ T cell infiltration [235]. Kim et al.
investigated the impact of PDT with a Ce6-embedded nanophotosensitizer (FIC-PDT) with
ripasudil, a rho-kinase (ROCK) inhibitor, on the immune response in mice with uveal
melanoma. Their research indicated that this combination demonstrates a vaccine-like
function, realized by evoking immunogenic cell death and stimulating APCs, which leads
to CD8+ T cell priming and their accumulation in the primary tumor, and, in further
synergy with the anti-PD-L1 antibody, to metastasis inhibition [133].

Nagaya et al. presented the effects of near-infrared photoimmunotherapy (NIR-PIT)
with a prostate-specific membrane antigen (PSMA) antibody in the PC cell line. The anti-
PSMA antibody was conjugated to the light-absorbing agent, IR700DX. This antibody–PS
conglomerate was observed to bind cell-specifically and to effectively kill PC cells after
activation using NIR-PIT, with over two-thirds of the investigated tumors cured [236].
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Research on the same topic was conducted by Watanabe et al., and it pointed to the
possibility of using only fragments of anti-PSMA antibodies instead of the full antibodies,
which may clinically translate to a more thorough penetration of the tumor milieu. Using
smaller parts of antibodies should also shorten the time gap between the injection of the PS
and NIR-PIT [237].

5.4. Irreversible Electroporation

IRE is the permeabilization of cell membranes with electrical pulses, which affect
membranous electrochemical potentials, creating pores in a lipid bilayer [238]. IRE has
been already used in PC management, both as a focal therapy, and as the whole gland
ablation [239–246]. The procedure is based on needle electrodes, which are placed inside or
nearby the targeted tissue. Then, short electrical pulses are delivered, which induces cell
death through a non-thermal mechanism [247]. Despite its role in the immune response
is still unexplored, IRE seems to have immunomodulatory activity. The most pivotal
immunological effect of IRE is a decrease in Tregs in the TME; additionally, a decrease in
MDSCs occurs as well [248].

The field of IRE–immunotherapy combinations in treating malignancies is still unin-
vestigated, although there are a few articles, especially on pancreatic cancer. Yang et al.,
for example, revealed a connection between IRE and tumor-associated immune evasion
in a mice model of pancreatic ductal adenocarcinoma (PDAC). They indicated that IRE
combined with the DC cancer vaccination increases the level of tumor-infiltrating cells
including CD8+ T cells and granzyme B+ cells in PDAC [249]. Similar investigations have
been conducted by Zhao et al. and by He et al. Both studies showed promising results from
the combination of IRE and PD-1 inhibitors in mice with PDAC [250,251].

A study by Burbach et al. examined the combination of IRE and ICI in mice with
PC. Focal treatment using IRE combined with ICI led to the expansion of tumor-specific
CD8+ T cells in blood and the TME [252].

6. Radiation and Immune Therapy Combination

RT has been used as a management strategy both in PC and in many other malignancies
for years. Its primary property, exploited for tumor treatment purposes, is the effect on
double-strand DNA, leading to its breakdown, and thus resulting in cell death, majorly
through senescence and slightly less frequently through mitotic catastrophe, apoptosis,
and necrosis [253]. Traditionally, RT was considered to be a therapy of immunosuppressive
qualities, therefore its combination with immunotherapy appeared to be irrational at
first [254]. However, rapidly growing interest in the TME affected the way RT is perceived,
as its relationship with the immune system is far more complex and ambiguous [255,256].

6.1. Immunomodulatory Effect of RT

An immune-stimulating effect of RT is generally achieved through induced cell death
and modulating the composition of the TME [257]. One of the initial steps following tumor
cell damage is the enhanced release of damage-associated molecules, such as calreticulin,
adenosine triphosphate (ATP), GM-CSF, high-mobility group box 1 (HMGB1), and heat
shock proteins (HSPs) [258,259]. Afterwards, these damage signals activate DCs and APCs,
which takes place in lymph nodes and lead to priming naïve T cells as a consequence [259].
Additionally, one of the radiation effects is the release of other inflammatory molecules, such
as chemokines (e.g., CXCL10 and CXCL16) and other cytokines, including IL-1β, TNF-α,
and type 1 and 2 interferons, which further contribute to the increase in inflammation in the
TME [260]. Finally, RT triggers upregulation of MHC I, the NKG2D ligand, Fas/CD95, and
other co-stimulatory molecules, resulting in cell death and further antigen exposure [259,260].

Eckert et al. investigated the impact of RT on the immune system in 18 patients with
localized PC. The study revealed the ambiguous effect of ionizing radiation in RT resulted
in a decrease in absolute leukocyte and lymphocyte counts and an increase in Tregs and
NK cells counts over eight weeks after radiation. However, during RT, an increase was
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observed in all immune cells counts excluding Tregs. Importantly, the percentage of CD8+
T cells showed its peak early during RT [261]. Nevertheless, Harris et al. researched a
combination of RT and immunotherapy in a transgenic murine model and observed that
the anti-tumor immune response occurred when immune therapy was administered 3 to
5 weeks after RT [20]. This further suggests the existence of a certain type of therapeutic
time window, in which the immunostimulatory properties of RT are emphasized, and the
immunosuppressive component is partially inhibited. Nickols et al. researched the impact
of stereotactic body radiotherapy (SBRT) on immunological homeostasis in a clinical trial
evaluating the resected prostate specimens of 16 patients. While prostates without SBRT
were mainly lymphoid diverse, specimens after SBRT were immunologically dominated
by myeloid cells [262]. Keam et al. proved in their 24 patient clinical trial that high dose-
rate brachytherapy (HDRBT) has substantial potential in enhancing inflammation in the
prostate. In response to HDRBT, an increase in CD4+ T cells, macrophages, and DCs counts
was observed. Moreover, they evaluated the tumor inflammation signature (TIS) and
concluded that 80% of immunologically “cold” tumors were converted to “intermediate”
or “hot” types [27].

Interestingly, RT is another management strategy with proven abscopal effect, hence
resulting in the regression of metastases, probably due to the outburst of tumor-associated
antigens. This extremely rare effect is observed more often when RT is combined with
immune therapy, particularly with checkpoint inhibitors [258]. Dudzinski et al. studied the
combination of anti-PD-1 or anti-PD-L1 and radiation in mice, and they not only observed
an increase in median survival in comparison to the drug alone (70% longer for anti-PD-1
and 130% for anti-PD-L1) but also detected the abscopal effect—a regression of unirradiated
distant metastases [263].

6.2. Radioimmunotherapy in Murine Models

In the research concerning the effects of RT and immunotherapy combination in
mice, there have been a few distinguishing articles, including the paper from Wada et al.
They assessed the efficacy of this therapy (the immunotherapeutic component was GM-
CSF) using an autochthonous model of PC. Improved OS and increase in the effector-to-
regulatory TILs ratio, as well as treatment effect in both the primary tumor and metastases,
were observed [264]. Another investigation by Philippou et al. assayed the combination of
anti-PD-L1 and RT and its impact on the TME in PC. They observed macrophage and DC
counts increase, as well as an upregulation of PD-1/PD-L1 in both arms of the study 7 days
after RT. Radiation was observed to delay tumor growth and affect the TME immunological
composition. However, PD-L1 inhibition administered in one of the arms did not affect
tumor growth delay when compared to monotherapy [265]. Table 1 presents ongoing trials
evaluating different combinations of RT and immunotherapy in PC management.

Table 1. Ongoing trials assessing combinations of radiotherapy and immunotherapy.

NCT Number Phase n Setting Immunotherapeutics Radiotherapy

NCT03835533 I 45 mCRPC NKTR-214, Nivolumab, CDX-301,
Poly-ICLC, INO-5151

SBRT

NCT03795207 II 96 mPC Durvalumab SBRT

NCT03543189 I/II 44 PC Nivolumab Brachytherapy, EBRT

NCT03217747 I/II 173 mCRPC Anti-OX40, Avelumab, Utomilumab RT *

NCT03007732 II 42 PC Pembrolizumab, SD-101 SBRT

NCT01818986 II 20 mCRPC Sipuleucel-T SBRT

NCT01436968 III 711 PC Aglatimagene Besadenovec EBRT
NCT: The National Clinical Trial; n: number of patients enrolled; PC: prostate cancer; mPC: metastatic prostate
cancer; mCRPC: metastatic castration-resistant prostate cancer; RT: radiotherapy; SBRT: stereotactic body radiation
therapy; EBRT: external beam radiation therapy. * The specific variant of radiation therapy was not specified.
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6.3. Radioimmunotherapy in Prostate Cancer

The efficiency of radioimmunotherapy in patients with PC has been willingly explored
in clinical trials for the last 10 years. Slovin et al. assessed the combination of anti-CTLA-
4 antibody, ipilimumab, with external beam radiotherapy (EBRT) in comparison to the
drug alone. This phase I/II study on 50 patients evaluated adverse effects, defining
them as manageable and indicating anti-tumor activity [266]. In another investigation, a
phase III trial concerning ipilimumab versus placebo after radiotherapy in patients with
mCRPC that progressed after docetaxel chemotherapy was conducted by Kwon et al.
No notable difference in OS was found, although ipilimumab use was associated with a
decrease in PSA levels and an increase in PFS. Additionally, an OS increase was observed
in the ipilimumab subgroup without visceral metastases, with non-raised or mildly raised
alkaline phosphatase and without anemia. Accordingly, the authors suggested that a
specific constellation of prognostic features could potentially enhance the clinical outcomes
of radioimmunotherapy [267]. The final analysis of this phase III trial revealed that OS was
two to three times higher at 3 years and beyond in favor of the radiotherapy and ipilimumab
combination [267]. Different clinical trials assessing nivolumab and brachytherapy or EBRT,
as well as sipuleucel-T and EBRT combinations indicated that these therapies are safe and
well-tolerated. The immunogenic effect and anti-tumor activity of radiation with nivolumab
were observed, while radiation with sipuleucel-T showed no particular increase in the
immune response [268,269]. Another phase II trial assessed the combination of sipuleucel-T
and a radioisotope, radium-223, in patients with mCRPC. Despite paradoxically decreasing
the immune response in the combination arm, PSA levels were decreased, and PFS and OS
were longer [270]. A case report by Han et al. presents a significant clinical response to the
pembrolizumab and radiation combination in a patient heavily treated for mCRPC with
rectal involvement. After radiation and six cycles of the drug, the PSA was undetectable,
the prostate mass was decreased, and the rectal invasion was imperceptible in imaging
studies [271].

7. Overview of the Immunomodulatory Effects of Focal Therapies and RT

Focal therapies and RT boost the immune response in multiple ways. As previously
mentioned, it is difficult to make an accurate comparison of the immunomodulatory
effects due to miscellaneous reasons, including the complexity of the immune system,
a variety of possible immunological outcomes, and lack of clinical trials assessing the
differences between therapies. Moreover, it is worth mentioning that most studies do not
distinguish an additive effect of a therapy from a synergistic effect, which concerns studies
on cytokines expression, in particular, but there are articles that correctly incorporate both
terms [272–276]. In the case of studying the immunomodulatory effects of focal therapies,
an additive effect may be defined if the level or value of a certain immune property is either
equal or lower in the combinational approach than the sum of the values of the effect in
the monotherapeutic approach (1 + 1 ≤ 2). A synergistic effect occurs when the level of
analyzed immune effect is higher in the combinational approach than the sum of the values
in monotherapies alone (1 + 1 ≥ 2) [277,278]. This nuance may have clinical implications in
future studies and should be carefully analyzed in multi-arm clinical trials assessing the
immune effect of RT and focal therapies.

Table 2 presents a thorough overview of the immunomodulatory impact of different
local treatment strategies on the TME.
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Table 2. Immunomodulatory impact of local treatment strategies on the TME.

Local Therapy Immunomodulatory Effects References

HIFU
� Promotion of DCs infiltration and activation.
� Increase in CD3+ and CD4+ levels cells, and CD4+/CD8+ ratio.
� Enhancement of CTLs cytotoxicity.

[187–199]

Cryotherapy
� Activation of T cells.
� DC maturation.
� The abscopal effect.

[204,207–216]

PDT

� Promotion of neutrophils recruitment.
� DC maturation.
� Activation of macrophages.
� Regulation of CTL and NK cell migration, increase in

CD8+ T cell infiltration.
� Secretion of IL-1, IL-6, IL-8, IL-10, IL-12, thromboxane,

and prostaglandins.

[133,225,230–237]

IRE � Decrease in Tregs and MDSC levels. [248–252]

RT

� Enhancement of damage-associated molecule release.
� Activation of DCs and other APCs.
� Release of various cytokines (e.g., CXC10, CXCL16, IL-1, TNF-α,

and interferons).
� Upregulation of MHC I, NKG2D ligand and Fas/CD95.
� The abscopal effect.

[253,258–271]

HIFU: high-intensity focused ultrasound; PDT: photodynamic therapy; IRE: irreversible electroporation;
RT: radiotherapy; DC: dendritic cell; CTL: cytotoxic T lymphocyte; NK: natural killer; IL: interleukin;
Treg: regulatory T cell; MDSC: myeloid-derived suppressor cell; APC: antigen-presenting cell; TNF: tumor
necrosis factor; MHC: major histocompatibility complex.

8. Conclusions

Immunotherapy for PC has been thoroughly explored in recent years. Despite the
initial success of sipuleucel-T, it seems that immunotherapy shows lower efficacy in PC
in comparison to other malignancies. Further phase I/II clinical trials investigating ra-
dioimmunotherapy and combinations of focal and immune therapies are highly desirable.
The first studies concerning the immunomodulatory properties of RT and focal therapies
cautiously showed promising results, although a well-planned randomized clinical trial,
addressing both immunological and clinical outcomes, would be necessary to accurately
assess the usefulness of immunotherapy and its combinations in PC management. A metic-
ulously designed study such as this could plausibly prove the synergistic effect provided
by the combination of therapies, which would hopefully create new clinical perspectives
for focal treatment options.
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