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Behavior is sloppy: a multitude of cognitive strategies can produce similar be-4

havioral read-outs. An underutilized approach is to combine multifaceted be-5

havioral analyses with neural recordings to resolve cognitive strategies. Here6

we show that rats performing a decision-making task exhibit distinct strate-7

gies over training, and these cognitive strategies are decipherable from or-8

bitofrontal cortex (OFC) neural dynamics. We trained rats to perform a tem-9

poral wagering task with hidden reward states. While naive rats passively10

adapted to reward statistics, expert rats inferred reward states. Electrophysi-11

ological recordings and novel methods for characterizing population dynamics12

identified latent neural factors that reflected inferred states in expert but not13

naive rats. In experts, these factors showed abrupt changes following single14

trials that were informative of state transitions. These dynamics were driven15

by neurons whose firing rates reflected single trial inferences, and OFC inac-16
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tivations showed they were causal to behavior. These results reveal the neural17

signatures of inference.18

Introduction19

To survive in dynamic environments, animals cannot exclusively rely on learned stimulus-20

response associations, but must generalize and form inferences about the world; this process21

is among the most important and interesting cognitive operations that nervous systems per-22

form. The orbitofrontal cortex (OFC) in rodents and primates is implicated in state inference23

when task contingencies are partially observable1–6, and when values must be inferred based on24

high-order associations7. How local circuit dynamics in OFC support state inference, however,25

remains unclear.26

For any cognitive computation, including state inference, there are many possible heuristics27

or alternative strategies that could be used to approximate it8,9. A major focus in psychology28

and neuroscience is to identify the psychological processes that animals (including humans)29

use to solve cognitive tasks. This is a hard problem, in part because behavioral read-outs in30

cognitive tasks are often low dimensional (e.g., choice probability, reaction time). Moreover, the31

space of possible process models is expansive, and many generate qualitatively similar behavior,32

especially for low dimensional read-outs. Often, behavior on only a small subset of trials is truly33

diagnostic of different strategies10,11. In the limit, e.g., for single-shot inferences or outcome34

devaluation, only a single trial is used to identify or rule out particular cognitive strategies.35

An aspirational goal would be to use rich, multifaceted behavioral read-outs in combination36

with neural recordings to help constrain the classes of strategies (i.e., process models) that37

are behaviorally expressed. This approach requires strong behavioral diagnostics of different38

strategies and neural signatures of cognitive computations that support different model classes.39

Here, we use multiple, independent lines of evidence from analysis of behavior and large-scale40
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neural recordings to adjudicate between different classes of psychological process models of41

behavior.42

Results43

Behavioral evidence for distinct strategies over training.44

We developed a temporal wagering task for rats, in which they were offered one of several wa-45

ter rewards on each trial, the volume of which (5, 10, 20, 40, 80µL) was indicated by a tone12
46

(Figure 1A). The reward was assigned randomly to one of two ports, indicated by an LED. The47

rat could wait for an unpredictable delay to obtain the reward, or at any time could terminate48

the trial by poking in the other port (“opt-out”). Reward delays were drawn from an exponen-49

tial distribution, and on 15-25 percent of trials, rewards were withheld to force rats to opt-out.50

How long rats waited before opting out provides a robust analog behavioral readout of their51

subjective value of the offered water reward12–15. Rats were trained in a high-throughput behav-52

ioral training facility using computerized, semi-automated procedures to generate statistically53

powerful datasets across hundreds of animals12 (N=349 rats).54

The task contained latent structure: rats experienced blocks of 40 completed trials (hidden55

states) in which they were presented with low (5, 10, or 20µL) or high (20, 40, or 80µL) reward56

volumes12,14. These were interleaved with mixed blocks which offered all rewards (Figure 1B).57

The hidden states differed in their average rewards and therefore in their opportunity costs, or58

what the rat might miss out on by continuing to wait. According to foraging theories, the oppor-59

tunity cost is the long-run average reward, or the value of the environment16. In accordance with60

these theories16,17, well-trained rats adjusted how long they were willing to wait for rewards in61

each block, and on average waited 10% less time for 20µL in high blocks, when the opportunity62

cost was high, compared to in low blocks (Figure 1C).63

Expert rats’ wait time behavior reflected an inferential strategy in which they inferred the64
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Figure 1: Behavioral evidence for distinct strategies over training. A. Schematic of behav-
ioral paradigm. B. Block structure of task. C. Mean wait time on catch trials by reward in
each block averaged across expert rats. p << 0.001, Wilcoxon signed-rank test comparing wait
times for 20µL in high versus low blocks across rats. D. Mean (+/-s.e.m.) change in wait time
at block transitions from mixed blocks into high or low blocks (left) and high or low blocks
into mixed blocks (right), N = 349. Data were smoothed with a causal filter spanning 10 trials.
E. left, Wait times within different quartiles of mixed blocks for expert rats. p-values for effect
of quartiles 2-4 on wait times from one-way ANOVA, post-low p = 0.83, post-high p = 0.19.
right, Wait times in the first quartile of mixed blocks after the first incongruent trial, which sig-
nals a block switch. Curves are conditioned on the previous block type. Bonferroni-corrected
p-values for Wilcoxon signed-rank test comparing wait times conditioned on previous block
type: 5µL p = 0.44, 10µL p = 0.49, 20µL p = 0.16, 40µL p = 0.06, 80µL p = 0.48. F.
Mean wait time by reward in each block in the first 15 sessions of experiencing the blocks.
p = 1.1× 10−13, Wilcoxon signed-rank test comparing wait times for 20µL in high versus low
blocks. G. Mean (+/-s.e.m.) change in wait time at block transitions from mixed blocks into
high or low blocks (left) and high or low blocks into mixed blocks (right), in the first 15 sessions
of experiencing blocks, N = 349 rats. Data are plotted as in panel D. H. left, Wait times within
different quartiles of mixed blocks in the first 15 sessions of experiencing the blocks. Data are
mean +/- s.e.m. p-values for effect of quartiles 2-4 from one-way ANOVA, post-low
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p = 4×10−5, post-high p = 0.02. right, Wait times in the first quartile of mixed blocks after the
first incongruent trial, conditioned on the previous block type. Bonferroni-corrected p-values
for sign-rank test comparing wait times conditioned on previous block: 5µL p = 0.002, 10µL
p = 6× 10−5, 20µL p = 0.006, 40µL p = 5× 10−5, 80µL p = 1.7× 10−4.

reward block and use a fixed estimate of opportunity cost based on that state inference12. This65

model outperformed alternative process models, and accounted for the dynamics with which66

rats adjusted their wait times at block transitions (Figure 1D), the insensitivity of their wait times67

to previous reward offers within a block (Figure S1), and the dependence of their wait times on68

task parameters such as the catch probability12. However, we sought additional behavioral69

read-outs that might support or falsify the inference hypothesis. We reasoned that an inferential70

strategy would produce stable wait times in mixed blocks once the animals inferred that the71

block had changed. To test this, for each rat, we first z-scored the wait times for each reward72

independently, before pooling over trials with different reward offers. We then computed the73

mean z-scored wait times in each quartile of mixed blocks that were preceded by low versus high74

blocks. Consistent with a state inference strategy, rats changed their behavior abruptly, within75

the first quartile of the mixed block, and then exhibited stable wait times (Figure 1E, left).76

Inferences at transitions into mixed blocks were likely driven by trials offering rewards that77

were not present in the previous block, which we refer to as incongruent trials (e.g., 40/80µL78

after a low block, or 5/10µL after a high block). Experts’ wait times in the first quartiles of79

mixed blocks after the first incongruent trial were identical regardless of the previous block,80

consistent with rats inferring a transition into a mixed block following these highly informative81

trials (Figure 1E, right).82

Wait times became increasingly sensitive to the hidden states over training, consistent with a83

strategy that relies on learned task structure12. Therefore, we next analyzed the first 15 sessions84

during which rats were exposed to the blocks, regardless of behavioral performance. Remark-85

ably, even in the first 15 sessions of experiencing the blocks, their wait times showed modest but86
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significant block sensitivity (Figure 1F). However, the behavioral dynamics at block transitions87

appeared qualitatively different than after extensive training, suggesting a distinct psychologi-88

cal mechanism. Specifically, early in training, while rats showed weak changes in wait times89

as they transitioned from mixed into high or low blocks, behavioral changes were less apparent90

when they transitioned from high or low blocks into mixed blocks. Instead, the most strik-91

ing behavioral feature was an offset or “DC shift” in wait times that persisted into the mixed92

block, possibly suggesting integration of reward history on longer timescales (Figure 1G). In93

contrast to expert behavior, early in training, rats’ wait times exhibited prominent within-block94

dynamics, suggestive of an incremental process of adjusting to the blocks (Figure 1H, left).95

Additionally, wait times in mixed blocks depended on the previous block type, even after the96

first incongruent trial, further suggesting integration of reward history on long timescales (Fig-97

ure 1H, right). Thus, rats modulate their wait times across latent reward blocks both early and98

late in training, but analysis of multiple aspects of behavior suggested distinct strategies over99

training.100

Process models of behavior.101

We next sought to identify classes of psychological process models that could account for these102

behavioral observations. The inferential model captured the behavioral dynamics of expert103

rats at block transitions (Figure 2A,B). The model’s use of fixed, block-specific estimates of104

opportunity cost reproduced stable wait times in later portions of mixed blocks, and predicted105

that after the first incongruent trial unambiguously indicated a transition into a mixed block,106

wait times curves would be identical regardless of the previous block type (Figure 2C). These107

findings show that the inferential model predicts the behavior of expert rats.108

Previous studies have shown that animals can dynamically adjust their subjective value for109

rewards based on reward statistics via divisive normalization, in which the value of an option is110
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Figure 2: Psychological process models of behavior. A. Simulated offer values of block
inference agent that compares the current reward to a block-specific expectation of average
reward, i.e. opportunity cost. B. Mean change in wait times from a behavioral model that
inferred the most likely block and uses fixed, block-specific values of reward offers to decide
how long to wait. C. Block inference model predicts that wait times should be fixed within
mixed blocks after a block switch has been inferred (left), and that sensitivity to reward offers
should not depend on the previous block type (right). D. Simulated offer values of divisive
normalization agent that divides the value of the current offer by the sum of previous offers in
a moving window. E. Mean change in wait times for divisive normalization agent. F. Divisive
normalization model predicts that wait times should change throughout mixed blocks (left), and
that value of reward offers in mixed blocks depends on the previous block type. All curves are
mean +/- s.e.m.
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divided by the sum of previous rewards14,18,19. Divisive normalization is a passive process that111

allows animals to adapt to different stimulus or reward distributions without requiring explicit112

knowledge of those distributions19–21. We simulated the behavior of a divisive normalization113

agent in our temporal wagering task (Figure 2D). We found that the model captured the key114

features of behavior early in training, including the modest behavioral changes at transitions into115

high and low blocks, and the prominent and sustained DC shift in wait times at transitions into116

mixed blocks (Figure 2E). Divisive normalization predicts incremental changes in wait times117

throughout the mixed block (Figure 2F), consistent with what was observed early in training118

(Figure 1H). Finally, within the first quartile of the mixed block, divisive normalization predicts119

differences in subjective values of rewards (i.e., wait times) depending on the previous block120

type, even after the first incongruent trial (Figure 2F). For the divisive normalization agent, the121

incongruent trial is no more or less informative than any other trial, so it fails to produce an122

abrupt change in the agent’s estimate of opportunity cost. These findings show that the divisive123

normalization model predicts the behavior of rats early in training, when they are naive to the124

blocks (i.e., “block-naive”).125

Because divisive normalization is sensitive to the ordering of sequential offers, variability in126

the sequences of reward offers should influence the degree of block sensitivity in a session18. To127

test this hypothesis, we computed the model’s predicted wait time ratio, or the mean predicted128

wait time for 20µL in a high block divided by a low block, and separated sessions that were129

in the bottom and top 50th percentiles of wait time ratios. Early in training, rats’ block sensi-130

tivity was significantly different between these groups of sessions (p=0.003, Wilcoxon signed131

rank test comparing wait time ratios for sessions predicted to have small or large block effects,132

N=349). However, in expert rats, block modulation of wait times was not different across these133

sessions (p=0.34, Wilcoxon signed rank test, N=349). Collectively, these data suggest that early134

in training, rats adapt their subjective value of rewards to the blocks via a divisive normalization135
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algorithm (or a similar incremental, adaptive process) that integrates over long timescales (tens136

of trials), and that this process model can explain session-to-session variability in behavioral137

sensitivity to reward blocks. In contrast, with extended training, rats appear to infer the current138

block and use fixed, block-specific offer values when deciding how long to wait for rewards.139

While in principle, divisive normalization with shorter integration windows could produce140

faster behavioral changes at block transitions, this model would still predict incrementally141

changing wait times within a block (Figure S1A,B). Consistent with our previous findings12,142

we did not observe such sensitivity to previous rewards in expert animals (Figure S1C). How-143

ever, this caveat highlights the challenge of definitely ruling out alternative process models of144

behavior. Therefore, we next sought to test our hypotheses about behavioral strategies using145

neural recordings.146

Latent factors reflect inference in experts.147

We performed electrophysiological recordings from the lateral OFC (LO/AI) in block naive148

and expert rats using chronically-implanted Neuropixels probes (N=42 rats; Figure 3A). These149

recordings generated large datasets (10,605 single units). Given the scale of these data, we150

sought to use dimensionality reduction to summarize task-related dynamics. Theoretical mod-151

els of decision making are often described as low dimensional dynamical systems22,23, so we152

focused on low-dimensional neural dynamics, which are also a common statistical feature of153

neural activity in many contexts24–29.154

While conventional methods for extracting low-dimensional dynamics have focused on the155

fast (within trial) component of neural activity, a key feature of our task is that determining the156

value of the reward offer requires integrating over multiple timescales (e.g., evaluating the offer157

on single trials, inferring the reward block over many trials). To address this limitation, we158

developed a probabilistic hierarchical linear dynamical systems model (hLDS) that explicitly159
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Figure 3: OFC dynamics reflect inference in expert rats. A. Location of Neuropixels probe
tracks (N = 42 rats). Tracks are shown in a single hemisphere for visualization, but in practice
were counterbalanced across hemispheres. B. Graphical model of hierarchical linear dynamical
systems model (hLDS). For visualization, four fast (within-trial) latents are depicted, but the
model was fit using a 1-dimensional z-latent and 10-dimensional y-latents. C. Model parameters
fit to simultaneously recorded neurons predict the activity of a held-out test neuron. D. The four
fast latents fit to an example recording session that explain the most variance, aligned to the time
of reward for trials with different reward offers. E. Performance of a support vector machine
decoder, decoding offered reward volume in different time bins around the time of reward.
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considers multiple interacting timescales. The model assumes a one-dimensional slow latent160

neural factor (zk) that operates at the resolution of individual trials, described by a linear gaus-161

sian stochastic dynamical system. The fast dynamics within the trial (summarized by 10 dimen-162

sional fast latent factors, ykt ) are assumed to operate in a similar manner. What distinguishes our163

approach from standard Kalman filtering is that the within trial latent dynamics are themselves164

dependent on the slower (evolving trial-by-trial) latent process zk (Figure 3B).165

We fit the hLDS model to simultaneously recorded neurons using Expectation-Maximization166

based parameter estimation (Methods). To validate the model, we showed that it can predict the167

firing rates of held-out test neurons (Figure 3C), and that it better explains moment-by-moment168

neural responses than a dimensionality matched standard Kalman filter (Figure S2), suggesting169

that the hierarchical structure of the dynamics is a key feature of OFC responses during the task.170

Notably, model-fitting was unsupervised: the model was exclusively fit to the spikes of simul-171

taneously recorded neurons, with no knowledge of the behavioral task. Nonetheless, the fast172

latents ykt captured interpretable features of task-related responses, including the timing of task173

events and the magnitude of single trial reward offers (Figure 3D). It was possible to decode the174

reward offer from the fast latent factors, and performance was comparable in both block-naive175

and expert rats, indicating that knowledge of the blocks was not required for fast-timescale176

neural dynamics in OFC to reflect rewards (Figure 3E).177

The slow latent, zk, appeared to directly reflect the hidden reward block on individual ses-178

sions (Figure 3F) and contained significant mutual information (MI) about the block in the179

majority of recording sessions in both expert and block naive rats (Figure 3G; expert MI be-180

tween slow latent and blocks = 0.025, p << 0.001; naive MI = 0.01; p = 0.020. p-values from181

non-parametric permutation test, Methods). This suggests that divisive normalization and state182

inference strategies both result in neural representations of reward blocks in OFC. We reasoned183

that incongruent trials would be the most diagnostic of whether the zk latent reflected an incre-184
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mental, divisive normalization-like process, versus state inference (Figure 3H). We aligned the185

zk latent to the first incongruent trial in each mixed block. As described previously, these trials186

(which do not exist at transitions into high and low blocks) unambiguously reveal that the block187

has changed. In expert rats, the mean zk latent showed clear separation before the incongruent188

trial, and then a sharp convergence to a common value after the first incongruent trial. This189

was only apparent in recordings from expert rats; block-naive recordings did not reveal a simi-190

lar abrupt transition (Figure 3I). Therefore, rapid adjustments in latent, population-level neural191

factors appear to reflect changes in inferred states in expert but not naive animals.192

To test the hypothesis that the block sensitivity in naive recordings reflected a different com-193

putation, we regressed the zk latent against previous reward offers in mixed blocks only. While194

none of the coefficients were significantly different from zero in the expert rats, recordings195

from block-naive animals had significant regression coefficients for the previous reward offer196

(p = 4× 10−4, t-statistic). These data are consistent with incremental, trial-by-trial tracking of197

reward history in service of an adaptive process like divisive normalization.198

Single neuron correlates of state inference.199

We next sought to characterize responses to inferred state transitions at the level of individual200

neurons. We first selected block-sensitive neurons whose firing rates were significantly differ-201

ent in high versus low blocks in the [0 0.5s] window after reward delivery (two-sample t-test,202

p < 0.05). We deemed the block for which they had higher (lower) firing rates the preferred203

(non-preferred) block for that cell (Figure 4A). Sessions without both transition types (pre-204

ferred to mixed and non-preferred to mixed) were excluded. We then compared the average205

firing rates over these neurons for the first congruent or incongruent trial following transitions206

into mixed blocks. Given that neurons exhibited variable preferences for the different block207

types, we grouped trials based on whether they indicated a transition away from the neuron’s208
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preferred block (non-preferred transition), or away from the neuron’s non-preferred block (pre-209

ferred transition; Figure 4B). In expert rats, neurons exhibited significantly higher firing rates210

following incongruent trials that indicated preferred transitions, compared to those same trial211

types in block naive rats (p = 0.036, non-parametric permutation test; Figure 4C). The higher212

firing rates on these individual incongruent trials suggest recognition of a transition away from213

the non-preferred block. Moreover, there were no differences in firing rates between block-214

naive and expert rats for congruent mixed block trials (Figure 4C). We interpret the elevated215

firing rates for congruent trials at non-preferred transitions (compared to preferred transitions)216

as consistent with rats not yet inferring a transition into a mixed block: because the reward offer217

is congruent with the previous block, they still believe they are in their preferred (high or low)218

block. This shows that single trials that are informative of state transitions elicit pronounced219

increases in the firing rates of individual neurons in the OFC in expert but not block-naive ani-220

mals. This activity was restricted to the timing of reward delivery, and was not observed at other221

task events (Figure 4D).222

Previous studies in mice have argued that prior beliefs about blocks are represented in all223

areas of the brain, including early sensory regions30. To determine if recognition of incongru-224

ent trials was a ubiquitous feature of cortex, we analyzed units that were outside of LO (the225

Neuropixels probe also traversed through M1 and piriform cortex). We also recorded neurons226

from the secondary visual area V2. Neurons across all sampled areas seemed to exhibit similar227

sensitivity to the reward blocks, as classifiers were able to decode the block identity to a compa-228

rable degree across brain regions (Figure S3A). However, neither off-target neurons in piriform229

cortex nor V2 neurons exhibited differential firing rates for incongruent trials (Figure S3B,C).230

Notably, M1 neurons did exhibit significantly different firing rates for incongruent trials (Figure231

S3D). We previously found that rats adjust their movement vigor as their beliefs about the re-232

ward blocks change, so this could explain neural signatures of inferred state transitions in motor233
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cortex12,31. Alternatively, rats could make movements following these highly informative trials,234

consistent with theories of embodied cognition. Nonetheless, the absence of neural sensitiv-235

ity to incongruent trials in piriform and visual cortex indicates that this was not a cortex-wide236

phenomenon (Figure S3).237
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Figure 4: Single neurons reflect state inference in expert but not naive rats. A. Example
neuron whose firing rate was significantly different in high versus low blocks in the window
[0 500ms] after reward. B. Explanation of preferred and non-preferred transitions into mixed
blocks, for neurons like the example neuron in panel a that prefer low blocks. C. Mean (+/-
s.e.m) firing rates for neurons with significant block sensitivity (1287/5416) on incongruent and
congruent trials after preferred and non-preferred transitions. The expert rat mean is shown
in black and the naive rat mean is shown in pink. Asterisks indicate a significant difference
in firing rates (p = 0.036, Bonferroni-correction, non-parametric permutation test). D. Mean
firing rates for neurons with significant block sensitivity at trial start (1988/5416), LED on
(1323/5416), LED off/reward cue (792/5416), and reward (1287/5416) on incongruent trials
after preferred transitions. Expert average is shown in black, naive average is shown in pink.
Asterisks indicate a significant difference in firing rates (p = 0.044 (LED off), Bonferroni
correction, non-parametric permutation test).

We next sought to determine whether this single-cell signature of state inference was broadly238

distributed across the OFC population, or restricted to specific subpopulations of neurons. To239

summarize task-related responses at the single neuron level, we used a dimensionality reduction240

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2024. ; https://doi.org/10.1101/2024.10.29.620879doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.29.620879
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cluster

 1

 2

 3

 4

 5

 6

 7

 8

 0

 (# neurons)  Expert
25 Hz

0 Hz

Z-scored firing rate

Non-
preferred
transition

Preferred 
transition

-0.5

0

1.5

(481)

(385)

(600)

(657)

(764)

(879)

(1013)

(697)

0
Trial start

(862)

0
LED on

-1 0 1
LED off

0
Reward

0
Opt out Reward

-1 0 3

**

**

**

(189)

(404)

(533)

(471)

(477)

(450)

(532)

(547)

0
Trial start

(664)

0
LED on

-1 0 1
LED off

0
Reward

0
Opt out Reward

-1 0 3

 Naive
A B C D

Figure 5: State inference responses are restricted to subpopulations of neurons A. Mean
event-aligned z-scored firing rates of individual neurons from expert rats, sorted by the TCA
component for which they have the maximum loading (see Methods). Parentheticals show
number of total neurons in each cluster. B. Mean cluster averaged firing rates (raw, not z-
scored) at the time of reward delivery for incongruent trials at preferred versus non-preferred
block transitions. Yellow boxes and asterisks indicate clusters for which there was a significant
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Same as panel E but for block naive rats. No clusters exhibited significantly different firing
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method called tensor components analysis (TCA32). We constructed a third order data tensor241

where each row corresponded to the z-scored firing rate of an individual neuron, aligned to dif-242

ferent task events; in the z-dimension, we included the neuron’s event-aligned activity in each243

block. Therefore, the data tensor was organized as neurons × time × block, and the model244

extracted three types of factors: (1) neuron factors, which reflect how much each neuron’s245

activity is described by each component (i.e., loadings); (2) temporal factors, which capture246

time-varying event-aligned responses, and (3) block factors, which capture modulation of firing247

rates across blocks. TCA decomposes a third order data tensor into a sum of rank-one compo-248

nents. We selected the number of components based on the number at which adding additional249

components failed to improve the model fit32 (Figure S4; see Methods).250

We used TCA to perform unsupervised clustering of the neural responses33. We clustered251

neurons by the tensor component for which they had the maximum neuron factor or loading.252

Neurons that had zero loadings for all components were treated as an additional cluster (cluster253

0). In block naive as well as expert rats, the temporal factors for each component captured the254

mean event-aligned PSTHs for neurons in each cluster (Figure 4D,F). These data are consistent255

with previous findings that OFC neurons exhibit one of a relatively small subset of temporal256

response profiles34,35. We speculate that these response profiles might act as a temporal basis257

set for composing dynamics in the OFC. The block factors were generally flat in both groups,258

indicating that neurons with similar temporal response profiles likely show variable tuning for259

the reward blocks (Figure S4).260

We plotted the cluster-averaged firing rates for incongruent trials following preferred and261

non-preferred transitions into mixed blocks. Notably, neural encoding of incongruent trials was262

only apparent in cluster-averaged responses in expert rats, and was restricted to three clusters263

(1, 2, and 8; Figure 4E). This suggests that sensitivity to incongruent trials at the level of the264

population firing rate, and also low-dimensional latent neural factors, derives from a subset of265
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neurons that exhibit stereotypical temporal response profiles in the task. Notably, encoding of266

incongruent trials for these clusters was only apparent at the time of reward and reward cue but267

not other task events.268

OFC inactivations impair state inference.269

To determine whether OFC dynamics were causal to state inference, we performed bilateral270

infusions of the GABA agonist muscimol, targeted to the lateral OFC (LO) in expert rats (Fig-271

ure 6A). Simultaneous electrophysiological recordings with Neuropixels probes confirmed that272

muscimol completely silenced neural activity within 1.25mm of the infusion site, indicating that273

our perturbations silenced LO, agranular insula and ventral OFC, but spared the medial bank of274

the prefrontal cortex (e.g., PL, IL, CG1; Figure S5A,B).275

Inactivating OFC impaired rats’ sensitivity to hidden reward states: while in control ses-276

sions, animals strongly modulated how long they waited for 20µL in high and low blocks, mus-277

cimol reduced this modulation (p = 0.008, N = 9 rats; Figure 6B). Moreover, OFC inactivations278

made rats slower to adjust their wait times following a block transition (Figure 6C). To quantify279

this effect, we split the high and low blocks into early and late groups of trials (see Methods). In280

control sessions, sensitivity to hidden reward states was significant early and late in the block,281

consistent with rapid behavioral adjustments based on state inference. However, in muscimol282

sessions, the rats were insensitive to hidden states early in the block, although by the end of the283

block, contextual effects were apparent (Figure 6D). These data show that inactivating OFC did284

not completely eliminate sensitivity to hidden states, but slowed the dynamics by which rats285

adjusted their behavior at state transitions.286

OFC has been implicated in supporting goal-directed behaviors, as opposed to behaviors287

that are “model-free” or do not require the use of a world model3. Therefore, one possibility288

is that inactivating OFC caused expert rats to revert to an incremental, trial-by-trial strategy for289
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Figure 6: OFC in expert rats supports belief updating for state inference. A. Location of
muscimol guide cannulae in LO (N=9 rats). B. Mean wait times in high and low blocks for
rats in control or muscimol sessions. Muscimol produces a significant reduction in the wait
time ratio (p = 0.008, Wilcoxon sign-rank test). C. Mean changes in z-scored wait times as
animals transition from mixed into low or high blocks. Dark lines are control sessions and
light lines are muscimol sessions. D. Mean changes in z-scored wait times early (trials 15-
20) and late (trials 35-40) in a block after transitions from a mixed block. Asterisks indicate
significant differences between mean z-scored wait times for low and high blocks (p = 0.039,
control early; p = 0.004, control late; p = 0.027, muscimol late; Wilcoxon sign-rank test).
E. The inferential model updates its prior beliefs recursively: the posterior belief on one trial
becomes a prior belief on the next trial. We introduced a lapse rate in the model which dictated
a probability with which the prior was not updated, and instead remained the same for the next
trial. F. Increasing the lapse rate (probability of the prior remaining the same) reproduced the
reduction in block sensitivity observed with muscimol inactivations. G,H. Increasing the lapse
rate made the model change its wait time behavior more slowly at block transitions.
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estimating the opportunity cost, for instance, via divisive normalization or canonical model-290

free reinforcement learning12. An incremental strategy predicts that wait times in a given block291

should be sensitive to the magnitude of previous reward offers, potentially for several trials in292

the past. However, by several measures, rats’ wait times in mixed blocks remained insensitive293

to previous rewards, suggesting that they did not revert to using an incremental adaptive strategy294

(Figure S5).295

We next turned to the inferential model to characterize how OFC inactivations affected296

behavior (Figure S6A-D). The model uses Bayes’ Rule to compute the posterior probability of297

each block given a reward offer by combining the likelihood, or the probability of encountering298

the reward in a given block, with the prior belief about the block. The prior over blocks is299

recursively computed: the posterior on one trial becomes the prior on the next trial12.300

We introduced a lapse rate into the model that dictated the probability with which the pos-301

terior became the prior on the next trial (Figure 6E). Increasing this lapse rate increases the302

probability that the prior on trial t is the prior from t-1 rather than the posterior from trial t-1, in303

other words, it makes the prior beliefs “sticky.” Increasing this lapse rate reproduced the qual-304

itative effects of OFC inactivations, including reduced sensitivity to hidden states and slower305

behavioral changes at block transitions, while also producing wait times that were largely in-306

sensitive to previous rewards within a block (Figure 6F-H). In contrast, reducing the quality of307

the prior (Figure S6E-G), or making the block-specific opportunity costs more similar (Figure308

S6H-J), were unable to capture all of the effects of OFC inactivations. These results suggest309

that OFC supports hidden state inference by updating subjective beliefs based on experience.310

We did not perturb OFC in block-naive rats because daily perturbations impair behavioral311

performance, but intermittent perturbations would allow the rats to learn about the blocks before312

sufficient inactivation data could be collected. We speculate that such a passive strategy may313

be distributed and may not causally rely on OFC. Nonetheless, our findings in experts suggest314
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that the dynamical signatures of state inference in these rats were causal to their inferential315

behavioral strategies.316

Discussion317

Multiple, independent lines of evidence from behavior and neural recordings indicate that over318

training, rats transition from passively adapting to reward states via divisive normalization319

to performing hidden state inference. Multifaceted behavioral analysis was critical for dis-320

ambiguating between different underlying strategies. Block-naive and expert rats’ wait times321

showed similar sensitivity to the reward blocks. However, examining the dynamics by which322

wait times changed at block transitions, the dynamics of wait times within mixed blocks, and323

the sensitivity of mixed block wait times to the previous block type following the first incon-324

gruent trial revealed qualitative differences in behavior over training, and led to a more precise325

characterization of the behavioral deficit following inactivation of OFC. Neural signatures of326

state inference -abrupt transitions following incongruent trials- were present at the level of sin-327

gle neurons and population-level latent neural factors in expert but not naive rats. Incongruent328

trials were rare, typically occurring only once or twice in each recording session. We overcame329

statistical challenges of trial-limited analyses using a brute force approach that included high-330

throughput training of hundreds of rats, neural recordings of thousands of neurons in dozens of331

animals (N=42), and dimensionality reduction of neural data.332

Divisive normalization is thought to be a canonical computation that supports efficient cod-333

ing by allowing neurons to adjust the dynamic range of their firing rates to best represent stim-334

ulus or reward distributions21. While this algorithm is thought to reflect core features of neural335

circuits like inhibitory motifs and alleviate fundamental constraints of neural coding such as336

bounded firing rates, expert rats appear to “turn off” divisive normalization in favor of state in-337

ference. We speculate that if multiple strategies or neural systems can support behavior through338
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different computations, then each system’s relative contribution to the expressed behavior may339

be determined by a winner-take-all mechanism22, weighted averaging10,36, or other arbitration340

process.341

Previous studies in mice have found that task- or behavior-related dynamics are highly dis-342

tributed and observable in most or all areas of the brain37–40. However, just because neural343

dynamics reflect task-related variables does not mean that those dynamics are causal to behav-344

ior41. A recent study argued that prior beliefs about blocks (which dictated reward probabilities345

in a two-alternative forced choice task) were represented brain-wide30. That study employed346

a more permissive definition of prior beliefs that included action repetition, and they found347

that neural signals reflecting this term were ubiquitous, and observable even in early sensory348

areas. Similarly, we found that neural activity in all sampled areas including V2, M1, and pir-349

iform cortex reflected the hidden reward blocks. However, we refrain from interpreting neural350

representations of reward blocks per se as reflecting computations for state inference, as these351

representations could reflect many processes including reward history, divisive normalization of352

value, or even motivation and arousal. By contrast, neural sensitivity to incongruent trials was353

uniquely observed in the OFC and, to a lesser extent, M1 (among the brain areas we sampled)354

of expert rats performing our task. This suggests that inferring hidden state transitions likely355

engages cognitive and neural computations that are preferentially supported by OFC (and that356

might be reflected in M1). More generally, specific trials or task features that are diagnostic of357

particular computations may resolve more modular neural representations (i.e., dynamics that358

are specific to brain areas performing those computations).359

A general observation about cortical responses, particularly in the frontal cortex, is that in-360

dividual neurons respond to diverse combinations of task variables. Studies in the motor system361

have argued that single neuron heterogeneity derives from variable contributions of individual362

neurons to population-level latent factors that support the actual computation being performed42.363

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2024. ; https://doi.org/10.1101/2024.10.29.620879doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.29.620879
http://creativecommons.org/licenses/by-nc-nd/4.0/


While in motor cortex, the computations supported by neural dynamics can be reasonably as-364

sumed (e.g., motor preparation and execution), in complex cognitive tasks, there are many365

quantities and abstract relationships that often must be computed. Theories of mixed selectivity366

argue that diverse responses at the single neuron level endow downstream circuits with flexi-367

bility for decoding different variables depending on changing task demands43,44. However, it368

can be difficult to know which computations are specifically supported by the piece of tissue369

under study, as well as different downstream recipient circuits. Here, we demonstrated a causal370

relationship between recorded OFC dynamics and a precise behavioral computation, updating371

beliefs about hidden reward states, consistent with previous studies1,3,13,45. Our unsupervised372

analysis method revealed population-level neural factors that reflected task computations over373

multiple timescales, analogous to the motor system but in the context of a cognitive behavioral374

task. We found that these population-level factors reflected identifiable changes in tuning at375

the single neuron level, deriving from three functional subpopulations of neurons that reflected376

single-trial inferences. Neural encoding of incongruent trials was prominent following reward377

delivery, which may be the task epoch during which belief updating occurs. Collectively, our378

data identify neural correlates of single trial inferences and show that these dynamics causally379

update belief distributions over abstract, latent states of the environment.380
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Methods381

Subjects382

A total of 349 male and female Long-evans rats between the ages of 6 and 24 months were used383

for this study (Rattus norvegicus). Animal use procedures were approved by the New York384

University Animal Welfare Committee (UAWC #2021-1120) and carried out in accordance385

with National Institutes of Health standards.386

Rats were pair housed when possible, but were occasionally single housed. Animals were387

water restricted to motivate them to perform behavioral trials. From Monday to Friday, they388

obtained water during behavioral training sessions, which were typically 90 minutes per day,389

and a subsequent ad libitum period of 20 minutes. Following training on Friday until mid-day390

Sunday, they received ad libitum water. Rats were weighed daily.391

Behavioral training392

A detailed description of behavioral training has been provided elsewhere12. Briefly, rats were393

trained in a high-throughput behavioral facility in the Constantinople lab using a computerized394

training protocol. They were trained in custom operant training boxes with three nose ports.395

Each port contained a visible LED, an infrared LED and infrared photodetector for detecting396

nose pokes, and the side ports contained lick tubes that delivered water via solenoid vales.397

There was a speaker mounted above each side port that enabled delivery of stereo sounds. The398

behavioral task was instantiated as a finite state machine on an Arduino-based behavioral system399

with a Matlab interface (Bpod State Machine r2, Sanworks), and sounds were delivered using a400

low-latency analog output module (Analog Output Module 4ch, Sanworks) and stereo amplifier.401

Each trial began with the center port being illuminated. Rats initiated the trial by poking402

their nose in the center point, at which time the light was turn off and an auditory cue would play.403
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The reward offer on each trial was cued by a tone delivered from both speakers (1, 2, 4, 8, or404

16kHz). On each trial, the tone duration was randomly drawn from a uniform distribution from405

800ms to 1.2s. Sound pressure was calibrated for each tone (via a gain parameter in software) so406

that they all matched 70dB in the rig, measured when a microphone (Bruel & Kjaer, Type 2250)407

was proximal to the center poke. The rat was required to maintain its nose in the center poke408

for the duration of sound presentation. If it terminated fixation prematurely, that was deemed a409

violation trial, the rat experienced a white noise sound and time out period, and the same reward410

offer would be presented on the subsequent trial, to disincentivize premature terminations for411

small volume offers. Following the fixation period, one of the side LEDs lit up indicating that412

port would be the reward port. The reward delay on each trial was randomly drawn from an413

exponential distribution with a mean of 2.5s. When reward was available, the reward port LED414

turned off, and rats could collect the offered reward by nose poking in that port. On 15-25% of415

trials, the reward was omitted. The rat could opt out of the trial at any time by poking its nose416

in the unlit port, after which it could immediately initiate a new trial. In rare instances, on an417

unrewarded trial, if the rat did not opt-out within 100s, the trial ended (“time-out trial”), and the418

center LED turned on to indicate a new trial.419

We introduced semi-observable, hidden-states in the task by including uncued blocks of tri-420

als with different reward offers. High and low blocks, which offered the highest three or lowest421

three rewards, respectively, were interspersed with mixed blocks, which offered all volumes.422

There was a hierarchical structure to the blocks, such that high and low blocks alternated be-423

tween mixed blocks (e.g., mixed-high-mixed-low, or mixed-low-mixed-high). The first block424

of each session was a mixed block. Blocks transitioned after 40 successfully completed trials.425

Because rats prematurely broke fixation on a subset of trials, in practice, block durations were426

variable.427

To determine when rats were sufficiently trained to understand the mapping between the428
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auditory cues and water rewards, we evaluated their wait time on catch trials as a function of429

offered rewards. For each training session, we first removed wait times that were greater than430

two standard deviations above the mean wait time on catch trials in order to remove potential431

lapses in attention during the delay period (this threshold was only applied to single sessions432

to determine whether to include them). Next, we regressed wait time against offered reward433

and included sessions with significantly positive slopes that immediately preceded at least one434

other session with a positive slope as well. Once performance surpassed this threshold, it was435

typically stable across months. Our analysis of expert rat behavior used this criteria to select436

sessions for analysis. By comparison, to examine behavior early in training, for each expert rat,437

we analyzed the first 15 training sessions in the final training stage when they first experience438

the blocks, regardless of behavioral performance.439

Training for male and female rats440

We collected data from both male and female rats. Male and female rats were trained in identical441

behavioral rigs with the same shaping procedure (see [12] for detailed description of shaping).442

To obtain sufficient behavioral trials from female rats who are physically smaller than males,443

reward offers were slightly reduced while maintaining the logarithmic spacing: [4, 8, 16, 32, 64444

µL]. For behavioral analysis, reward volumes were treated as equivalent to the corresponding445

volume for the male rats (e.g., 16 µL trials for female rats were treated the same as 20 µL trials446

for male rats). We did not observe any significant differences between male and female rats12.447

Behavioral models448

We developed separate behavioral models to describe rats’ behavior early and late in training.449

We adapted a model from [13] which described the wait time, WT, in terms of the value of450

the environment (i.e., the opportunity cost), the delay distribution, and the catch probability451

(i.e., the probability of the trial being unrewarded). Given an exponential delay distribution, we452
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defined the predicted wait time as453

WT = Dτ log

(
C

1− C
· R− κτ

κτ

)
.

where τ is the time constant of the exponential delay distribution, C is the probability of reward454

(1-catch probability), R is the reward on that trial, κ is the opportunity cost, and D is a scaling455

parameter. In the context of optimal foraging theory and the marginal value theorem, which456

provided the theoretical foundation for this model, each trial is a depleting “patch” whose value457

decreases as the rat waits16. Within a patch, the decision to leave depends on the overall value458

of the environment, κ, which is stable within trials but can vary across trials and hidden reward459

states, i.e., blocks.460

The inferential model has three discrete value parameters (κlow, κmixed, κhigh), each associ-461

ated with a block. For each trial, the model chooses the κ associated with the most probable462

block given the rat’s reward history. Specifically, for each trial, Bayes’ Theorem specifies the463

following:464

P (Bt |Rt) ∝ P (Rt |Bt)P (Bt).

where Bt is the block on trial t and Rt is the reward on trial t. The likelihood, P (Rt |Bt), is the465

probability of the reward for each block, for example,466

P (Rt |Bt = Low) =

{
1
3
, if Rt = 5, 10, 20µL

0, if Rt = 40, 80µL.

To calculate the prior over blocks, P (Bt), we marginalize over the previous block and use the467

previous estimate of the posterior:468

P (Bt) =
∑
Bt−1

P (Bt |Bt−1)P (Bt−1 |Rt−1). (Eq. 1)

P (Bt | Bt−1), referred to as the “hazard rate,” incorporates knowledge of the task structure,469
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including the block length and block transition probabilities. For example,470

P (Bt = Low|Bt−1) =


1−H0, for Bt−1 = Low
H0, for Bt−1 = Mixed
0, for Bt−1 = High

where H0 = 1/40, to reflect the block length. Including H0 as an additional free parameter did471

not improve the performance of the wait time model evaluated on held-out test data in a subset472

of rats (data not shown), so H0 was treated as a constant term.473

Divisive normalization model474

The divisive normalization model divides the value of each offer by the sum of past rewards in475

some window of trials, following [14]. We modeled the wait times as being directly proportional476

to this term, by the following equation:477

WTt = K
Rt

1 + α
∑N

k=1Rt−k

478

where Rt is the reward offer on trial t, and N dictates the number of previous rewards, and K479

and α are model parameters. Previous behavioral studies14 suggested that dynamic valuation480

in humans was well-captured with an N of 60 previous trials, and this parameter reproduced481

multiple features of rat behavior early in training. For model simulations, we set K = 5 and482

α = 0.15.483

When simulating the inferential and divisive normalization models, we treated Rt as log2(Rt),484

to be consistent with our previous studies12, which assumed that rats exhibited compressive485

utility functions46. However, all of our results qualitatively held if we did not log transform the486

reward offers (data not shown).487
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Statistical analyses488

Exact p-values were reported if greater than 10−20. For p-values smaller than 10−20, we reported489

p << 0.001.490

Wait time sensitivity to reward blocks491

For all analyses, we removed wait times that were one standard deviation above the pooled-492

session mean. Without thresholding, the contextual effects are qualitatively similar, but the493

wait time curves are shifted upwards because of outliers that likely reflect inattention or task494

disengagement12. When assessing whether a rat’s wait time differed by blocks, we compared495

each rat’s wait time on catch trials offering 20 µL in high and low blocks using a non-parametric496

Wilcoxon rank-sum test, given that the wait times are roughly log-normally distributed. We497

defined each rat’s wait time ratio as the average wait time on 20µL catch trials in high blocks/low498

blocks.499

Block transition dynamics500

To examine behavioral dynamics around block transitions, for each rat, we first z-scored wait-501

times for opt-out trials of each volume separately in order to control for reward volume effects.502

We then computed the difference in z-scored wait times for each volume, relative to the average503

z-scored wait time for that volume, in each time bin (trial relative to block transition), before504

averaging the differences over all volumes (∆ z-scored wait time).505

For each transition type, we averaged the ∆ z-scored wait times and trial initiation times506

based on their distance from a block transition, including violation trials (e.g., averaged all wait507

times four trials before a block transition). Finally, for each block transition type, we smoothed508

the average curve for each rat using a 10-point causal filter, before averaging over rats.509

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 29, 2024. ; https://doi.org/10.1101/2024.10.29.620879doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.29.620879
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mixed block quartile analysis510

To compute the mean wait times in each quartile of mixed blocks, we first detrended the mean511

wait time over the course of the session. These effects were modest but in some rats, produced a512

slight increase in wait times over the session. We regressed mean wait time against trial number513

pooling over sessions, and subtracted the model-predicted effect of trial number from the wait514

times of each session. We then z-scored wait-times for opt-out trials of each volume separately515

in order to control for reward volume effects. We then separated mixed blocks depending on516

whether they were preceded by a low or high block. We divided each block (including violation517

trials) into four equally spaced bins of trials. Blocks that were fewer than 40 trials (e.g., if the rat518

did not complete the block at the end of the training session) were excluded from analysis. We519

then averaged the z-scored wait times in each quartile/bin for mixed blocks that were preceded520

by low and high blocks. To determine if there was an effect of mixed quartile on the wait times521

(i.e., if there were within-block dynamics of wait times), we performed a one-way ANOVA.522

Because we expected the wait times to change following an inferred state transition in the first523

quartile, we restricted this analysis to the second through fourth quartiles.524

To characterize the mixed block wait times in the first quartile after the first incongruent525

trial, we first detrended the wait times over the session as described above. We separated mixed526

blocks depending on whether they were preceded by a low or high block, and divided each527

block (including violation trials) into four equally spaced bins of trials. We analyzed trials in528

the first bin/quartile only, and exluded trials preceding and including the first incongruent trial.529

We then plotted the mean wait times as a function of reward offers for trials in the first mixed530

block quartile after the first incongruent trial, separately for blocks preceded by low or high531

blocks. We compared wait times for each reward following a low versus high block using a532

Wilcoxon signed rank test. To correct for multiple comparisons, we multiplied each p-value533

by the number of comparisons (five, one for each reward). The p-values reported in the figure534
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legend reflect this Bonferroni correction.535

Trial history effects536

To assess wait time sensitivity to previous offers (Extended Data Fig. 1b,c), we focused on 20537

µL catch trials in mixed blocks only. We z-scored the wait times of these trials separately. Next,538

we averaged wait times depending on whether the previous offer was greater than or less than539

20 µL. For trial initiation times, we used all 20 µL trials in mixed blocks. We averaged z-scored540

trial initiation times depending on whether the previous offer was greater or less than 20 µL.541

For both wait time and trial initiation time, we defined the sensitivity to previous offers as the542

difference between average wait time (trial initiation time) for trials with a previous offer less543

than 20 µL and trials with a previous offer greater than 20 µL. We compared wait time and trial544

initiation time sensitivity to previous offers across rats using a paired Wilcoxon signed-rank545

test.546

Neural recordings and analysis547

We implanted Neuropixels 1.0 probes in LO (AP +3.7, ML ±2.5), counterbalanced be-548

tween left and right hemispheres over rats. Probes were mounted on custom 3-D printed probe549

mounts47. On the day of implantation, probes were lowered so the base of the probe mount550

sat on the skull (5.5 - 7 mm DV). Animals were allowed to recover for at least five days be-551

fore recording. Data were acquired using OpenEphys. Spikes were sorted by Kilosort2.0, and552

manually curated in Phy. Units were further curated using a custom Matlab script. Units with553

greater than 1% inter-spike intervals less than 1 ms, firing rates less than 1 Hz, or were com-554

pletely silent for more than 5% of the total recording were excluded. To convert spikes to firing555

rates, spike counts were binned in 50 ms bins and smoothed using Matlab’s smooth.m function.556

Before surgery, probes were dipped in the lipophylic dye DiI. Probe tracks were recon-557

structed from post-mortem histology, and the location of individual recording channels relative558
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to areal boundaries was estimated. Channels that were estimated to be outside of LO or agran-559

ular insula (AI) were excluded from further analysis. Cells recorded from channels estimated560

to be ventral to LO or AI were considered piriform cortex cells. Cells recorded from channels561

estimated to be dorsal to LO or AI were considered motor cortex cells.562

Probes in secondary visual cortex (V2) were implanted at AP -4.7, ML ±4.0. Channels563

estimated to be outside of the areal boundaries were excluded from further analysis.564

hLDS model565

The hierarchical linear dynamical systems (hLDS) model assumes a one-dimensional latent fac-566

tor zk that operates at the resolution of individual trials, described by a linear gaussian stochastic567

dynamical system:568

zk+1 = Dzk + uk, (1)

where D is a parameter determining the time scale of the slow dynamics and uk is independent569

gaussian white noise, uk ∼ N (0, σ2
u).570

The fast dynamics within the trial, yk
t (of dimensionality d) also have linear gaussian dy-571

namics, but driven by the slow component zk:572

yk
t+1 = Aykt +Bzk + wt, (2)

where k and t index the trial, and the time bin within the trial, respectively; the noise wt is again573

drawn i.i.d. from a zero mean multivariate normal distribution with isotropic variance, wk
i ∼574

N (0, σ2
wId). The fast dynamics are parametrized by matrix A that determines the recurrent575

dynamics, vector B that parametrizes the direct influence of the slow latent onto each dimension576

of the fast dynamics, and noise variance σ2
w.577

Given the fast dynamics, the square-root transformed25,48 measured spike rates in each time578

bin are assumed to be generated as a conditionally independent linear gaussian579

xk
t ∼ N

(
Cykt , R

)
. (3)
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Parameter matrix C, of size n× d (where n is the number of simultaneously recorded neurons)580

determines the degree to which individual neural responses are affected by the low-dimensional581

population dynamics, with observation noise parametrized by R.582

Inference in this model is similar to Kalman filtering/smoothing at each of the layers of583

the hierarchy. Parameter learning was done by maximum likelihood, via expectation maxi-584

mization49. Smoothing is only used for parameter learning, with filtering used for final latent585

extraction, to ensure that causal temporal structure is maintained.586

The hLDS was fit to sessions for which there were at least 20 simultaneously recorded587

LO/AI neurons, and the animal completed a full sequence of at least 4 blocks of trials, including588

at least one low and one high block. The model was fit independently to each session, with a589

fixed fast latent dimensionality of 10, based on evaluating the dimensionality of eligible sessions590

by principal components analysis, which consistently suggested diminishing returns in variance591

explained beyond 10 components (Elbow method).592

In order to sort the latent factors by the amount of variance explained, we reparameterized593

the latent space to produce identical observations by applying a series of linear operations.594

We leveraged a well-established orthonormalization procedure25 that uses a singular value-595

decomposition of the learned observation matrix C, to produce an equivalent parameter set.596

Under this parameter set, the fast latents are linearly independent, meaning they do not overlap597

or depend on each other. Then, we sorted these latent variables based on how much variance598

they explained in the model.599

To evaluate model predictions for held-out test neurons, we used the following procedure.600

The model assumes that the fast latents drive neural activity via the n x d parameter C (where601

n is the number of neurons and d is the number of fast latents).The held-out neuron’s data was602

included during the fitting procedure, such that an n x d matrix C was learned. For the hold-out603

test, the row of C corresponding to the held-out neuron was omitted, yielding an estimate of the604
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d-dimensional latent space y using only the n-1 neurons. That is to say, the inference procedure605

was identical, except using an (n-1) x d = C’ and data for all neurons except the held-out neuron.606

The activity for the left out neuron was then estimated by projecting this inferred latent space607

y back into the observation space x using the weights from the row that was left out during608

inference. This procedure was executed on held-out test data that was not used for fitting.609

SVM decoder610

We constructed a support-vector machine (SVM, using the scikit-learn library in Python) to611

decode reward volumes from the fast latents extracted from the hLDS. The decoder was trained612

and tested using trials from all blocks. Fast-latents were discretized into 250 ms time bins. We613

trained and cross-validated the SVM using 10-fold cross validation. The decoder was trained to614

decode 5/10, 20, or 40/80, and trials were balanced across groups, so chance performance was615

33%.616

Mutual information617

To determine the relationship between the slow latent process with latent reward blocks across618

groups of animals, the slow-latent values were grouped across 58 sessions from expert ani-619

mals and 42 sessions from naive animals. As the sign and magnitude of the slow latent on620

any given session was arbitrary, these were z-scored across sessions and signed so the mean621

low-block slow-latent was positive. Mutual information values were computed using a non-622

binning MI estimator for the case of one discrete data set (reward block) and one continuous623

data set (z-latent)50. We computed significance by shuffling the data labels across n=1000 rep-624

etitions, generating a null distribution for our test statistic. Mutual information between the625

slow latent process and blocks in expert animals (MI = 0.025 ; p << 0.001) was greater than626

the mutual information between the slow latent process and blocks in Naive animals (MI =627

0.01; p = 0.020). 76% of recording sessions from experts (44/58) contained significant mutual628
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information (p < 0.01) about the block when evaluated individually.629

Regressing slow latent against reward history630

To determine if the slow latent reflected reward history, we first z-scored this variable so that631

magnitudes were comparable across sessions. We then regressed it against the current reward632

offer and the previous 10 reward offers (including an offset term), using the built in OLS regres-633

sion method in the Python statsmodels package. We evaluated the significance of each regres-634

sion coefficient by the t-statistic. While none of the previous trial coefficients were significant635

in recordings from expert animals, in naive recordings, the coefficient for the previous reward636

offer was significantly different from zero (p = 7 × 10−4), suggesting stronger representations637

of reward history in naive rats.638

Single neuron analysis of incongruent trials639

To identify neural correlates of inferred state transitions, we first selected neurons that exhibited640

significantly different firing rates between high and low blocks, in the [0 0.5s] window aligned641

to the time of reward delivery (two-sample t-test, p<0.05). For these neurons, the block that pro-642

duced the higher firing rate in that window was deemed the preferred block, and the block that643

produced the lower firing rate was non-preferred. We then identified transitions from high or644

low blocks into mixed blocks. For each neuron, we grouped transitions away from the preferred645

block (non-preferred transitions), and transitions away from the non-preferred block (preferred646

transitions). Only sessions with both preferred and non-preferred transitions were included,647

however each transition does not necessarily include both a congruent and incongruent trial.648

We note that because this was a trial-limited analysis, some neurons only had one transition649

type, the averages over neurons comprise similar numbers of neurons, but not identical.650

To determine if neurons from expert versus naive rats exhibited different firing rates on these651

trials types we performed a non-parametric permutation test. We generated null distributions on652
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differences in firing rates over groups of rats by shuffling the labels of neurons as belonging to653

expert or naive animals, recomputing differences in firing rates from randomly drawn groups,654

and repeating that procedure 1000 times. We computed firing rates in the [0 0.5s] window655

after reward delivery. We then used this null distribution to calculate a p-value for the observed656

differences in firing rates between groups of rats: the area under this distribution evaluated at657

the actual difference of firing rates (between expert and naive rats) was treated as the p-value.658

Tensor components analysis659

To fit the TCA model, we used software from32 https://github.com/ahwillia/tensortools and51
660

https://github.com/kimjingu/nonnegfac-matlab. We first z-scored each neuron’s firing rate, and661

then fit separate TCA models to all neurons from expert or naive rats. Only neurons from ses-662

sions with all three block types were included. Models were fit using non-negative tensor fac-663

torization (Canonical Decomposition/PARAFAC). To initially determine the dimensionality, or664

rank, that should be applied to each model, we iteratively tried different numbers of dimensions,665

or ‘tensor components’, and computed the reconstruction error between the model prediction666

and data. We identified the inflection point, or the point at which adding additional components667

failed to reduce reconstruction error. Using all of the recorded neurons in each group of animals668

(expert and naive rats), these error plots suggested that the data were well-captured by a rank 8669

model. Adding more than 8 components tended to yield components with flat temporal factors670

and negligible or zero neuron factors, suggesting that the model was overparameterized.671

We grouped neurons based on the component for which they had the highest neuron factor672

or loading. A subset of neurons in each group had zero loadings for all components. This was673

because their z-scored firing rates were suppressed throughout the trial, and non-negative TCA674

failed to capture their task-modulation. We included these neurons as “Cluster 0” in both groups675

of rats (Fig. 4d-g).676
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Block decoding677

We used multinomial logistic regression to decode the reward block from neuron firing rates678

[0 0.5s] after reward. We performed 5-fold cross-validation to evaluate decoder performance.679

Sets of trials used in each training set were balanced across both blocks and volumes. Sessions680

without all 3 reward blocks or fewer than 5 cells were excluded.681

Muscimol infusions682

LO was bilaterally inactivated using infusions of muscimol via cannula implanted at AP: +4.0,683

ML ±2.5 DV -5.0. On muscimol infusion sessions, rats were anesthetized with 2-3% isofluorane684

in oxygen at a flow rate of 2.5 L/minute and 300-320 nL of muscimol was infused bilaterally685

through the cannula over a 90s period. Fluid was injected using a Hamilton syringe, and visual686

confirmation of a drop in the meniscus. Animals were run after a 30-45 minute recovery period.687

On control sessions, animals were similarly anesthetized but did not receive an infusion of688

muscimol. Animals were given a two day “wash-out” period to prevent lingering effects of689

either isofluorane or muscimol. Data for those sessions was not included.690

To verify inactivation of neural activity, in an acute experiment, an animal was anesthestized691

with isoflurane, and a Neuropixels 1.0 probe was lowered at an angle in the same craniotomy as692

the infusion cannula. Recordings were performed before, during, and up to 30-40 minutes after693

infusion of 300 nL of muscimol. Based on reconstruction of the probe track from post-mortem694

histology, we estimated the locations of different recording channels relative to the infusion695

cannula. We found robust inactivation of neural activity, relative to pre-infusion baselines, up696

to 1.25mm from the infusion site.697
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Figure S1 : Divisive normalization agent with shorter integration windows, related to
Figure 2 A. We simulated the behavior of a divisive normalization agent that integrated over
10 trials (as opposed to 60, which was used throughout the rest of the manuscript). The model
was simulated for the trial sequences of each rat, and then predicted wait times were averaged
over simulations (i.e., n=349 simulated agents). Data are mean +/- s.e.m. B. The divisive
normalization model predicts that wait times for the same reward (20µL) in a mixed block
should vary depending on whether the previous reward was greater than or less than 20µL.
p << 0.001, Wilcoxon sign-rank test comparing normalized wait times for 20µL in mixed
blocks conditioned on previous reward volume. C. Expert rats’ wait times for 20µL in mixed
blocks conditioned on previous reward volume. p = 0.06, Wilcoxon sign-rank test.
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Figure S2 : Hierarchical LDS outperforms dimensionality-matched Kalman filter, related
to Figure 3 A. Given that the hLDS was fit with an 11 dimensional latent space (10 fast latents,
1 slow latent), an 11-dimensional standard Kalman Filter was also fit to each session. The
reconstruction error for left-out neurons on held-out test data was compared across models in
recordings from block-naive rats, and favored the hLDS. p << 0.001, Wilcoxon sign-rank test.
B. Same as panel a, but for recordings from expert rats. p << 0.001, Wilcoxon sign-rank test.
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Figure S3 : Responses to incongruent trials are not ubiquitous, related to Figure 4 A. Block
decoding performance averaged over simultaneously recording neurons in a session. The cur-
rent reward block was decoded above chance (0.33) in all regions. Each dot represents a record-
ing session. Error bars are mean +/- standard deviation. B. Mean firing rates for V2 neurons
with significant block sensitivity (n = 38/266) at incongruent and congruent trials signaling pre-
ferred transitions (black) and non-preferred transitions (gray). p = 0.74 (incongruent), p = 0.08
(congruent), Bonferroni-correction, non-parametric permutation test. C. Same as panel A but
for neurons in piriform cortex with significant block sensitivity (304/1625). p = 0.54 (in-
congruent), p = 0.65 (congruent), Bonferroni-correction, non-parametric permutation test. D.
Same as panel B but for neurons in motor cortex with significant block sensitivity (852/3031).
p << 0.001 (incongruent), p = 0.01 (congruent), Bonferroni-correction, non-parametric per-
mutation test.
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Figure S4 : TCA reveals 8 clusters of neurons with distinct event-aligned responses, re-
lated to Figure 5 A. To determine the dimensionality, or rank, that should be applied to the
neurophysiology data, we iteratively tried different numbers of dimensions, or ‘tensor compo-
nents’, and computed the model reconstruction error. In expert rats, more than 8 components
failed to improve model performance (elbow method). B. Same as panel A but for naive rats.
C. Neuron factors, temporal factors, and block factors for the TCA model of rank 8 for expert
rats. Neuron factors correspond to the weight for each cell. Temporal factors correspond to the
average event-aligned responses. Block factors correspond to the magnitude of the response in
each block. Components are ordered by the center of mass for the temporal factors. D. Same as
panel C but for naive rats.
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Figure S5 : Muscimol inactivation of lateral OFC, related to Figure 6 A. Example neuron
recorded within the infusion radius. The neuron is completely silenced within minutes after
the infusion. B. Average firing rate for neurons in 0.1 mm bins after muscimol infusion. Post-
infusion firing rates were normalized to pre-infusion firing rates. Error bars are standard devia-
tion. C. Change in wait time ratio between control and muscimol sessions. Bars to the right of
0 indicate a higher wait time ratio (closer to 1) in muscimol sessions compared to control ses-
sions. D. Mean wait times across rats for control (black) and muscimol (gray) sessions in mixed
blocks. Slopes were not significantly different between groups (p = 0.164, Wilcoxon sign-rank
test.) E,F. Regression coefficients for wait time in control and muscimol sessions. Wait times
were regressed against reward offers on the previous trial. G,H. Wait time on 20 µL catch trials
in mixed blocks conditioned on previous reward offer for control sessions (p = 0.742, Wilcoxon
sign-rank test) and muscimol sessions (p = 0.742, Wilcoxon sign-rank test).
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Figure S6 : Other models are unable to capture OFC inactivation effects, related to Figure
6 A. Inferential model schematic. B. Example model-predicted wait times for low (blue) and
high (red) blocks. C. Example model-computed posterior beliefs for each block. The model
computes a probability for each reward block on each trial. The model predicted block is
the one with the highest posterior probability. D. Example model-inferred opportunity cost
selected based on the maximum posterior belief in C. The model selects from three distinct
opportunity costs, one for each reward block. Offer values on each trial are compared to the
inferred opportunity cost. E. We tested whether inactivation of lateral OFC impairs the quality
of the prior by simulating wait times with the inferential model using an optimal prior and a
sub-optimal prior. A sub-optimal prior does not reduce the wait time ratio. F,G. Simulated
mean changes in z-scored wait times early (trials 15-20) and late (trials 35-40) in a block after
transitions from a mixed block. Dark colors indicate an optimal prior, light colors indicate a sub-
optimal prior. A sub-optimal prior does not change the transition dynamics. Asterisks indicate
significant differences between mean z-scored wait times for low and high blocks (p << 0.001
for all comparisons, Wilcoxon sign-rank test). H. We tested whether inactivation of lateral OFC
impairs the ability to distinguish between 3 unique reward blocks with distinct opportunity
costs. We simulated wait times using the inferential model with a distinct opportunity cost
associated with each block or a similar opportunity cost associated with each block. An agent
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with similar opportunity costs associated with each block reduces the wait time ratio. I,J.
Simulated mean changes in z-scored wait times early (trials 15-20) and late (trials 35-40) in a
block after transitions from a mixed block. Dark colors indicate distinct opportunity costs, light
colors indicate similar opportunity costs. Using similar opportunity costs for each block does
not change the transition dynamics. Asterisks indicate significant differences between mean z-
scored wait times for low and high blocks (p << 0.001 for all comparisons, Wilcoxon sign-rank
test).
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