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Myocardial infarction (MI) is caused by the formation of plaques in the

arterial walls, leading to a decrease of blood flow to the heart and myocar-

dium injury as a result of hypoxia. Ferroptosis is a crucial event in myocar-

dial injury, and icariin (ICA) exerts protective effects against myocardial

injury. Here, we investigated the protective mechanism of ICA in hypoxia/

reoxygenation (H/R)-induced ferroptosis of cardiomyocytes. H9C2 cells

were subjected to H/R induction. The content of lactate dehydrogenase

and the levels of oxidative stress and intracellular ferrous ion Fe2+ were

measured. The levels of ferroptosis markers (ACSL4 and GPX4) were

detected. H/R-induced H9C2 cells were cultured with ICA in the presence

or absence of ferroptosis inducer (erastin). Znpp (an HO-1 inhibitor) was

added to ICA-treated H/R cells to verify the role of the Nrf2/HO-1 path-

way. H/R-induced H9C2 cells showed reduced viability, enhanced oxidative

stress and lactate dehydrogenase content, increased levels of Fe2+ and

ACSL4, and decreased levels of GPX4. ICA inhibited H/R-induced ferrop-

tosis and oxidative stress in cardiomyocytes. Erastin treatment reversed the

inhibitory effect of ICA on ferroptosis in H/R cells. The expression of

Nrf2 and HO-1 in H/R-induced H9C2 cells was reduced, whereas ICA

treatment reversed this trend. Inhibition of the Nrf2/HO-1 pathway

reversed the protective effect of ICA on H/R-induced ferroptosis. Collec-

tively, our results suggest that ICA attenuates H/R-induced ferroptosis of

cardiomyocytes by activating the Nrf2/HO-1 signaling pathway.

Myocardial infarction (MI) is a cardiac event caused

by the formation of plaques in the arterial walls lead-

ing to the decrease of blood flow to the heart and

injury of the myocardium as a result of hypoxia [1].

Currently, the most potent intervention strategy of MI

is timely myocardial reperfusion, including throm-

bolytic therapy and primary percutaneous coronary

intervention [2]. These intervention measures can

swiftly restore the blood circulation of ischemic myo-

cardium, limit the size of MI and, importantly, avert

the occurrence of myocardial failure [3,4]. Neverthe-

less, the restoration of blood flow may result in addi-

tional cardiac injury and complication, especially the

death of cardiomyocytes, termed myocardial ischemia–
reperfusion (MI/R) injury [5]. MI/R injury has been

increasingly demonstrated to be concerned with
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nonapoptotic pathways, such as necroptosis [6], pyrop-

tosis [7] and ferroptosis [8]. Accordingly, targeting the

cardiomyocyte death concerning MI/R injury is

accepted as a prospective therapeutic strategy.

Ferroptosis constitutes a type of regulated cell death

and is identified as iron-dependent cell death [9]. Fer-

roptosis varies from the other classical nonapoptotic

cell death processes in that it is characterized by mito-

chondrial contraction and enhanced mitochondrial

membrane density (morphological), lipid peroxidation

(biochemical) and implication of a unique group of

genes (genetic) [10,11]. The pathological involvement

of ferroptosis in I/R injury has been well documented

in recent literature, and suppression of ferroptosis con-

tributes to protecting cells from I/R injury [12]. For

example, repression of ferroptosis in a diabetes melli-

tus MI/R model can attenuate endoplasmic reticulum

stress and alleviate myocardial injury [8]. Ferrostatin-1

and iron chelation are conducive to ameliorating heart

failure resulting from acute and chronic I/R [13],

which is consistent with the view that targeting ferrop-

tosis acts as a potential strategy for the prevention of

cardiomyopathy. Therefore, exploring the specific

mechanism of cardiomyocyte death induced by ferrop-

tosis is pivotal for the effective attenuation of MI/R

injury.

Icariin (ICA), a flavonoid extracted from epimedii,

has been demonstrated to exert potential protective

effects on the cardiovascular system [14]. For example,

ICA pretreatment can significantly suppress cardiomy-

ocyte apoptosis by inhibiting endoplasmic reticulum

stress [15]. ICA represses cardiomyocyte apoptosis, and

such an effect is partially achieved by inhibiting the

reactive oxygen species (ROS)-dependent JNK/NF-jB
signaling [16]. Importantly, emerging evidence has

unveiled that ICA attenuates infarct size induced by I/

R in rats and consequently may become a potent agent

for angiogenic therapy [14,17]. ICA bears cardioprotec-

tive effects against MI/R injury, and its mechanism is

related to the antioxidant and antiapoptotic function

of ICA [18]. However, whether ICA can protect hypox-

ia/reoxygenation (H/R)-induced cardiomyocytes by

inhibiting ferroptosis remains unknown. This study

investigated the protective mechanism of ICA in H/R-

induced ferroptosis of cardiomyocytes, which shall con-

fer novel insights into the management of MI/R injury.

Materials and methods

Cell culture

The rat cardiomyocyte H9C2 (American Type Culture Col-

lection) was cultured in Dulbecco’s modified Eagle’s

medium (DMEM) containing 10% fetal bovine serum,

100 U�mL�1 penicillin and 100 lg�mL�1 streptomycin. The

cells were cultured in a humidified incubator with 95% air

and 5% CO2 at 37 °C.

Establishment of H/R model and cell treatment

The H/R model was established by the previous literature

[19]. Cells were incubated in glucose-free DMEM and

placed in an anaerobic incubator (95% N2 and 5% CO2) at

37 °C for 4 h. Subsequently, the cells were cultured in

DMEM containing 4.5 mM glucose and placed in an incu-

bator (95% air and 5% CO2) at 37 °C for 24 h. H9C2 cells

were treated with different concentrations of ICA or PBS

or 3 mM Znpp (Sigma-Aldrich, Merck KGaA, Darmstadt,

Germany) [20] or 5 lM erastin (Tocris, Minneapolis, MN,

USA) [21] for 24 h and then subjected to H/R treatment.

Cell Counting Kit-8 assay

The toxic effect of ICA on cardiomyocytes was measured

using Cell Counting Kit-8 (CCK-8; Dojindo, Mashiki-

machi, Japan). H9C2 cells were treated with 2.5, 5, 10 and

20 lM ICA (Sigma-Aldrich) for 24 h, respectively. Then the

cells under different treatment were seeded into the 96-well

plates (1 9 104 cells per well). Each well was supplemented

with 10 lL CCK-8 solution and incubated for 2 h. The

absorbance at 450 nm was detected by the microplate

reader (Synergy HT; BioTek Instruments Inc., Winooski,

VT, USA) and expressed as control percentage.

Detection of lactate dehydrogenase

The release of lactate dehydrogenase (LDH) was detected

using LDH cytotoxicity assay kit (Roche, Mannheim, Ger-

many) to evaluate the degree of H9C2 cell injury. The

absorbance value at 492 nm was measured by a spectrome-

ter (Lab Tech, Boston, MA, USA).

Determination of ROS, SOD, malondialdehyde,

catalase and intracellular ferrous ion (Fe2+)

The ROS production, malondialdehyde (MDA) level, SOD

and catalase (CAT) activity, and Fe2+ in the cells under

different treatments were measured using the corres-

ponding kits. The cells were incubated with 2,7-

dichlorodihydrofluorescein diacetate (DCFH-DA) probe in

the dark for 30 min in line with the instructions of the

ROS detection kit (Beyotime, Shanghai, China). Then the

fluorescence intensity was observed under the fluorescent

microplate. The laser wavelength was 485 nm, and the

emission wavelength was 525 nm; ROS level (%) = fluores-

cence value of intervention group/control group 9 100%.

CAT activity was detected using visible spectrophotometry
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and CAT detection kit (A007-1-1; Jiancheng Bioengineering

Institute, Nanjing, China). MDA level was determined

using the thiobarbituric acid method and MDA detection

kit (A003-1-2; Jiancheng Bioengineering Institute). SOD

activity was detected using the hydroxylamine method and

total SOD detection kit (A001-1-2; Jiancheng Bioengineer-

ing Institute). The absorbance value at 593 nm was mea-

sured to calculate the iron ion level in line with the

instruction of Fe2+ iron ion kit (MAK025; Sigma-Aldrich).

Reverse transcription quantitative PCR

Total RNA was extracted from cardiomyocytes using TRI-

zol reagent (Invitrogen, Carlsbad, CA, USA). RNA con-

centration was measured using a spectrophotometer

(NanoVueTM; General Electric Company, Schenectady, NY,

USA). The extracted RNA was reverse transcribed into

cDNA using the kit (Invitrogen). Real-time PCR was per-

formed on ABI 7500 platform (Applied Biosystems, Carls-

bad, CA, USA; Thermo Fisher Scientific, Waltham, MA,

USA) using SYBR Green Mix (Invitrogen). The relative

expression of gene was calculated based on the 2�DDCt

method, with GAPDH as an internal reference [22]. Each

experiment was repeated three times independently. Primer

sequences were shown in Table 1.

Western blot analysis

Total protein was extracted from H9C2 cells using the total

protein extraction kit (Applygen Technologies, Beijing,

China), and protein concentration was examined using

bicinchoninic acid kit (Beyotime). An equal amount of pro-

tein (30 lg) was separated by 12% SDS/PAGE and then

transferred onto polyvinylidene fluoride membranes (Milli-

pore, Billerica, MA, USA). The membranes were blocked

with 5% skim milk for 1 h and incubated with the primary

antibodies GPX4 (1 : 1000, ab125066; Abcam, Cambridge,

MA, USA), ACSL4 (1 : 10 000, ab155282; Abcam), Nrf2

(1 : 1000, ab92946; Abcam), HO-1 (1 : 2000, ab189491;

Abcam) and b-actin (1 : 1000, ab8227; Abcam) at 4 °C
overnight. Afterward, the membranes were incubated with

horseradish peroxidase-labeled secondary antibody

(1 : 2000, ab205718; Abcam) for 1 h. The protein band was

visualized using enhanced chemiluminescence system

(Thermo Fisher Scientific). The band intensity was analyzed

using IMAGEJ software (NIH Image, Bethesda, MD, USA).

Statistical analysis

Data were analyzed and introduced using SPSS 21.0 (IBM

Corp., Armonk, NY, USA) and GRAPHPAD PRISM 8.0

(GraphPad Software, San Diego, CA, USA). Data are

expressed as mean � standard deviation. The Shapiro–
Wilk test was used to test normal distribution. The t test

was adopted for comparison between two groups. One-way

ANOVA or two-way ANOVA was used for the compar-

isons among multiple groups, following Tukey’s multiple

comparisons test. A P value <0.05 represented statistical

significance.

Results

H/R induced ferroptosis of cardiomyocytes

Ferroptosis is an iron-dependent necrosis caused by

iron overload [9,23]. Ferroptosis can occur in I/R

injury [24]. The effect of H/R on ferroptosis has

been reported [25–27], but the mechanism is still

elusive.

In this study, H9C2 cells were subjected to H/R

induction. After H/R, the cells showed increased LDH

content (P < 0.01; Fig. 1A), decreased cell viability

(P < 0.01; Fig. 1B) and increased Fe2+ content

(P < 0.01; Fig. 1C). GPX4 and ACSL4 were used as

markers of ferroptosis [21]. After H/R induction,

ACSL4 expression was increased and GPX4 expression

was decreased (P < 0.01; Fig. 1D). SOD, MDA and

CAT are oxidative stress-related factors [8,28]. The

results demonstrated that the fluorescence level of

ROS in cells was significantly increased (P < 0.01;

Fig. 1E), levels of MDA were increased, and the activ-

ities of SOD and CAT were decreased after H/R treat-

ment (P < 0.01; Fig. 1F–H). Taken together, H/R

treatment induced ferroptosis of cardiomyocytes.

ICA inhibited H/R-induced ferroptosis of

cardiomyocytes

ICA exerts a protective effect on cardiomyocyte injury

[29–31]. However, whether ICA has a protective effect

on H/R-induced ferroptosis remains unclear. The

effect of ICA on cardiomyocyte viability was detected

using CCK-8 assay. The results exhibited that 2.5–
20 lM ICA treatment did not affect H9C2 cell viability

(P < 0.01; Fig. 2A), but the protective effect of ICA

on H9C2 cells induced by H/R was dose dependent

Table 1. Primer sequences for reverse transcription quantitative

PCR. F, forward; R, reverse.

Name of primer Sequences (50–30)

Nrf2-F ATGATGGACTTGGAATTGCCACCG
Nrf2-R CTAGTTTTTCTTTGTATCTGGC
HO-1-F ATGGAGCGCCCACAGCTCGACA
HO-1-R TTACATGGCATAAATTCCCACTGC
GAPDH-F ATGGTGAAGGTCGGTGTGAACGGA
GAPDH-R TTACTCCTTGGAGGCCATGTAGGC
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(2.5–10 lM), and there was no significant difference

between the 10 lM and 20 lM groups (Fig. 2B). The

ferroptosis of H/R cells treated with 2.5–10 lM ICA

was detected. The results revealed that the contents of

LDH and Fe2+ and the expression of ACSL4 were

decreased with the increase of ICA concentration,

while the expression of GPX4 was increased with the

increase of ICA concentration (P < 0.05; Fig. 2C–E).
In addition, compared with those in the H/R + PBS

group, the ROS fluorescence intensity and MDA levels

in the H/R + ICA group were decreased (P < 0.05;

Fig. 2F,G), while the activities of SOD and CAT were

increased, which were correlated with the concentra-

tion of ICA (P < 0.05; Fig. 2H,I). In brief, ICA inhib-

ited H/R-induced ferroptosis of cardiomyocytes, and

the effect of ICA was enhanced with the increase of

ICA concentration.

ICA exerted a protective effect on H/R-induced

cardiomyocytes by inhibiting ferroptosis

To prove that ICA plays a protective role in H/R car-

diomyocytes by regulating ferroptosis, we treated H/R

cells with ferroptosis inducer erastin and ICA. Com-

pared with the H/R + ICA + PBS group, the H/

R + ICA + erastin group showed increased LDH con-

tent (P < 0.01; Fig. 3A). Moreover, the addition of

erastin increased the ROS fluorescence intensity and

MDA levels (P < 0.01; Fig. 3B,C), decreased the activ-

ities of SOD and CAT (P < 0.01; Fig. 3D,E), and

reduced the viability of H/R cells (P < 0.01; Fig. 3F).

These results suggested that induction of ferroptosis

weakened the protective effect of ICA on H/R car-

diomyocytes, and ICA played a protective role in H/R

cardiomyocytes by regulating ferroptosis.

ICA activated the Nrf2/HO-1 pathway in H/R-

induced cardiomyocytes

ICA can activate the Nrf2 pathway [32]. The Nrf2/HO-

1 signaling pathway is related to oxidative stress [33,34].

Therefore, we speculated that ICA reduced ferroptosis

of H/R cardiomyocytes by affecting the Nrf2/HO-1 sig-

naling pathway. The expressions of Nrf2 and HO-1 were

detected. The mRNA expressions and protein levels of

Nrf2 and HO-1 were reduced notably after H/R stimu-

lation but were elevated with the increase of ICA

concentration (P < 0.05; Fig. 4A,B). These results sug-

gested that ICA treatment activated the Nrf2/HO-1

pathway in H/R-induced cardiomyocytes.

Fig. 1. H/R-induced ferroptosis of cardiomyocytes. H9C2 cells were subjected to H/R stimulation. (A) LDH content was detected using the

LDH cytotoxicity assay kit. (B) Cell viability was examined using the CCK-8 assay. (C) Fe2+ content was detected using the kit. (D)

Ferroptosis-related proteins GPX4 and ACSL4 were detected using western blot. (E) Fluorescence intensity of ROS was detected using

DCFH-DA probe. Scale bars, 25 lm. (F) The level of MDA in cells was detected by the thiobarbituric acid method and MDA assay kit. (G)

Detection of SOD activity by the hydroxylamine method and total SOD assay kit. (H) The level of CAT was detected using the visible light

method and CAT test kit. The cell experiment was repeated three times. Data were presented as mean � standard deviation. Data in (A)–

(C) and (E)–(H) were analyzed using t test, and data in (D) were analyzed using two-way ANOVA, followed by Tukey’s multiple comparison

test, **P < 0.01.
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Repression of the Nrf2/HO-1 pathway attenuated

the protective function of ICA on H/R-induced

ferroptosis

To verify the role of the Nrf2/HO-1 pathway, we con-

ducted functional rescue experiments. Znpp (an HO-1

inhibitor) was added to inactivate the Nrf2/HO-1

pathway in ICA-treated cells. Compared with the H/

R + ICA + PBS group, the H/R + ICA + Znpp group

had decreased cell viability, increased LDH content

(P < 0.01; Fig. 5A,B), increased Fe2+ content and

ACSL4 expression, and decreased GPX4 expression

(P < 0.01; Fig. 5C,D). In brief, inhibition of the Nrf2/

Fig. 3. ICA exerted a protective effect on H/R-induced cardiomyocytes by inhibiting ferroptosis. H/R-induced cardiomyocytes were treated

with 10 lM ICA and 5 lM erastin. (A) LDH content was detected. (B) Fluorescence intensity of ROS was detected using the DCFH-DA

probe. Scale bars, 25 lm. (C–E) The level of MDA and the activities of SOD and CAT were detected. (F) Cell viability was measured using

CCK-8 assay. The cell experiment was repeated three times. Data were presented as mean � standard deviation. Data in (A)–(F) were

analyzed using one-way ANOVA, followed by Tukey’s multiple comparison test, **P < 0.01.

Fig. 2. ICA inhibited H/R-induced ferroptosis of cardiomyocytes. H/R-induced cardiomyocytes were treated with ICA. (A, B) Cell viability was

measured using CCK-8 assay. (C) LDH content was detected. (D) Fe2+ content was detected. (E) Ferroptosis-related proteins GPX4 and

ACSL4 were detected using western blot. (F) Fluorescence intensity of ROS was detected using DCFH-DA probe. Scale bars, 25 lm. (G–I)

The level of MDA and the activities of SOD and CAT were detected. The cell experiment was repeated three times. Data were presented

as mean � standard deviation. Data in (A)–(D) and (F)–(I) were analyzed using one-way ANOVA, and data in (E) were analyzed using two-

way ANOVA, followed by Tukey’s multiple comparison test, *P < 0.05, **P < 0.01.
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HO-1 pathway reduced the protective effect of ICA on

ferroptosis in H/R cardiomyocytes.

Discussion

Myocardial I/R remains a serious complication of

reperfusion therapy [35], which is related to a variety

of pathophysiological characteristics, including car-

diomyocyte ferroptosis [12]. ICA functions as a

promising agent for alleviating MI/R injury [17]. This

study demonstrated that ICA suppresses ferroptosis of

H/R-induced cardiomyocytes, thereby alleviating MI/

R injury.

Because I/R injury is essentially concerned with

oxidative damage, which is also one of the major

causes of ferroptosis, accumulating studies have linked

ferroptosis with I/R injury [12]. Targeting ferroptosis

represents a promising strategy for the protection of I/

R-induced cardiomyopathy [13]. Still, the effect and

mechanism of H/R on ferroptosis are unclear. In this

study, H9C2 cells were subjected to H/R induction.

During I/R, the integrity of myocardial membrane is

Fig. 4. ICA activated the Nrf2/HO-1 pathway in H/R-induced cardiomyocytes. (A, B) The expressions of key factors of the Nrf2/HO-1

signaling pathway, Nrf2 and HO-1, were detected using reverse transcription quantitative PCR and western blot. The cell experiment was

repeated three times. Data were presented as mean � standard deviation and analyzed using two-way ANOVA, followed by Tukey’s

multiple comparison test, *P < 0.05, **P < 0.01.

Fig. 5. Inhibition of the Nrf2/HO-1

pathway reduced the protective effect of

ICA on H/R-induced ferroptosis of

cardiomyocytes. H/R-induced

cardiomyocytes were treated with 10 lM

ICA and 3 mM Znpp. (A) Cell viability was

measured using CCK-8 assay. (B) LDH

content in cells was detected. (C) Fe2+

content in cells was detected. (D)

Ferroptosis-related proteins GPX4 and

ACSL4 were detected using western blot.

The cell experiment was repeated three

times. Data were presented as

mean � standard deviation. Data in (A)–(C)

were analyzed using one-way ANOVA, and

data in (D) were analyzed using two-way

ANOVA, followed by Tukey’s multiple

comparison test, **P < 0.01.
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lost, and myocardial enzymes including LDH are

released into plasma; consequently, the enzyme level

can be used as an indicator of myocardial injury [36].

Consistently, we showed that after H/R induction, the

cells had increased LDH content, decreased cell viabil-

ity and increased Fe2+ content. GPX4 is a crucial regu-

lator of ferroptosis that protects cells by neutralizing

lipid peroxides [37]. Direct repression of GPx4 or indi-

rect repression by consumption of its substrate glu-

tathione or glutathione components (such as cysteine)

can induce ferroptosis [38]. ACSL4 is a critical enzyme

that modulates lipid composition, contributing to the

initiation of ferroptosis [39]. We showed that after H/

R induction, ACSL4 expression in H9C2 cells was

increased and GPX4 expression was decreased. Fer-

roptosis is identified to be associated with an oxidative

stress-induced cell death [40]. Excessive ROS results in

oxidative stress and the subsequent generation of free

radicals, which may damage DNA, proteins and lipids;

ROS-induced lipid peroxidation contributes to ferrop-

tosis [23]. MDA is a product of lipid peroxidation and

used as a marker of oxidative stress [41]. Oxidative

stress is an imbalance between the generation of ROS

and the activity of antioxidants, and the general

endogenous antioxidant system is composed of enzy-

matic antioxidants, such as SOD and CAT [42]. The

levels of ROS and MDA in H9C2 cells were increased,

and the activities of SOD and CAT were decreased

after H/R treatment. Taken together, H/R treatment

induced oxidative stress and ferroptosis of cardiomy-

ocytes.

ICA bears wide pharmacological activities, including

anti-inflammation and antioxidative stress [43], and

importantly, it is identified to possess cardioprotective

effects against MI/R injury [14,30]. However, whether

ICA shows a protective effect on H/R-induced ferrop-

tosis remains unclear. In this study, the protective

function of ICA on H9C2 cells induced by H/R was

dose dependent (2.5–10 lM). Hence we detected the

ferroptosis of H/R cells treated with 2.5–10 lM ICA.

The results revealed that the contents of LDH and

Fe2+ and the expression of ACSL4 were decreased

with the increase of ICA concentration, while the

expression of GPX4 was increased with the increase of

ICA concentration. In addition, compared with the H/

R + PBS-treated cells, the H/R + ICA-treated cells

had decreased levels of ROS and MDA and increased

activities of SOD and CAT. In brief, ICA inhibited H/

R-induced ferroptosis of cardiomyocytes, and the

effect of ICA was enhanced with the increase of ICA

concentration. Then we treated H/R-induced cells with

ferroptosis inducer erastin and ICA. After the addition

of erastin, the LDH content of H/R-induced cells was

increased, the levels of ROS and MDA were increased,

the activities of SOD and CAT were suppressed, and

the cell viability was notably reduced. These results

suggested that ICA protects H/R-induced cardiomy-

ocytes by inhibiting ferroptosis. Consistently, ICA pre-

vents lipopolysaccharide-induced cell death in

synoviocytes by suppressing ferroptosis [44].

Thereafter, we explored the signaling pathway of

ICA inhibiting ferroptosis. Accumulating studies have

indicated that ICA plays a role in the process of dis-

eases by activating the Nrf2 signaling [32,45,46]. For

example, ICA attenuates oxidative stress in human

lung epithelial cells by activating the Nrf2 signaling

[47]. Nrf2 represents the critical mediator of the

endogenously induced defense system, which translo-

cates to the nucleus and binds to specific DNA sites in

response to oxidative stress, thereby initiating the tran-

scription of cytoprotective genes such as HO-1 [32].

Nrf2 activation confers cardiac protection by up-

regulating antioxidant and anti-inflammatory mecha-

nisms [48]. Enhancing Nrf2 expression alleviates

myocardial oxidative stress in a diabetic heart and

attenuates MI/R injury [49]. Moreover, Nrf2 is a miti-

gator of lipid peroxidation and ferroptosis, and aber-

rant NRF2 signaling leads to the diseases concerned

with increased lipid peroxidation and ferroptosis [50].

HO-1 can degrade heme into carbon monoxide, bili-

verdin and ferrous iron, and provides cardioprotection

via antiapoptotic and antioxidant effects [51]. HO-1 is

implicated in ferroptosis via its correlation with iron

and antioxidant effects [52]. Therefore, we speculated

that ICA reduced ferroptosis of H/R-induced car-

diomyocytes by affecting the Nrf2/HO-1 pathway. The

expressions of Nrf2 and HO-1 were reduced notably

after H/R stimulation but were increased with the ele-

vation of ICA concentration. Functional rescue experi-

ment confirmed that inhibition of Nrf2/HO-1 signaling

reduced the protective effect of ICA on ferroptosis of

H/R-induced cardiomyocytes. ICA prevents extracellu-

lar matrix generation and oxidative stress in experi-

mental diabetic kidney disease via Nrf2 activation [53].

In brief, ICA treatment activated the Nrf2/HO-1 sig-

naling, thereby inhibiting ferroptosis of H/R-induced

cardiomyocytes.

In summary, ICA represses H/R-induced cardiomy-

ocyte oxidation and ferroptosis by activating the Nrf2/

HO-1 pathway. The main innovation of this study is

the effect and mechanism of ICA on H/R-induced fer-

roptosis in cardiomyocytes. This study verified the role

of only Nrf2/HO-1 signaling in ICA; whether there are

other signaling pathways involved in ICA protection

was unclear. In addition, whether ICA could affect

other factors, such as miRNA or mRNA, needs
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further exploration. In the future, we will verify the

specific mechanism of other signaling pathways and

whether the function of ICA can be used as the entry

point of H/R cardiomyocytes, to provide some theo-

retical support for the MI/R injury.
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