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Abstract: Topical and transdermal drug delivery is an effective, safe, and preferred route of drug
administration. As such, skin permeability is one of the critical parameters that should be taken into
consideration in the process of drug discovery and development. The ex vivo human skin model is
considered as the best surrogate to evaluate in vivo skin permeability. This investigation adopted a
novel two-QSAR scheme by collectively incorporating machine learning-based hierarchical support
vector regression (HSVR) and classical partial least square (PLS) to predict the skin permeability
coefficient and to uncover the intrinsic permeation mechanism, respectively, based on ex vivo excised
human skin permeability data compiled from the literature. The derived HSVR model functioned
better than PLS as represented by the predictive performance in the training set, test set, and outlier set
in addition to various statistical estimations. HSVR also delivered consistent performance upon the
application of a mock test, which purposely mimicked the real challenges. PLS, contrarily, uncovered
the interpretable relevance between selected descriptors and skin permeability. Thus, the synergy
between interpretable PLS and predictive HSVR models can be of great use for facilitating drug
discovery and development by predicting skin permeability.

Keywords: in silico; permeability constant; hierarchical support vector regression (HSVR); partial
least square (PLS)

1. Introduction

The skin, which is the largest organ in human body [1] due to the fact that it has the
largest surface and accounts ca. 15% of adult body weight [2], provides a major barrier
against the external environment from the internal environment [3]. It is composed of
multiple layers, namely the surface epidermis, the deeper dermis, and the innermost
subcutis [4], which, in turn, have different constructs, morphology forms, and functions [5].
The hydrophobic stratum corneum (SC), which is the uppermost layer of epidermis, plays
a predominant role in barrier to skin permeation and is normally regarded as the “rate-
limiting step of permeation” [6].

Topical and transdermal drug delivery only accounts a small portion of administration
routes [7]. Nevertheless, it has become an attractive and preferred route of therapeutic
delivery partly due to its noninvasive nature and more desirable safety profiles [8,9]. For
instance, it has been proposed to use patches to deliver insulin [10] and the pandemics
COVID-19 vaccine [11]. Furthermore, it can provide extra clinical benefits as compared with
the other administration routes. For instance, it is not uncommon to observe postoperative
nausea and vomiting (PONV) after general or regional anesthesia [12] and it is normal
to treat with scopolamine (hyoscine) [13], which is associated with various undesirable
side-effects, such as xerostomia, blurriness, drowsiness, vertigo, or hallucinations in some
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cases [14]. Those anticholinergic symptoms, nevertheless, can be avoided in case of admin-
istration by transdermal patch [15]. In fact, scopolamine was the first marketed transdermal
patch [16].

Additional clinical benefits offered by topic administration can be illustrated by the
fact that topic administration can be totally exonerated from the potential adverse side-
effects associated with the first pass effect (FPE) in the liver when administrated orally as
well as the variations in gastrointestinal (GI) tracks, namely pH discrepancies, food intake,
stomach emptiness [17].

Skin permeability is a pivotal factor that should be taken into account in the pharma-
ceutical and cosmetics industries for optimization of the delivery of active substances as
well as hazard and risk evaluation [18]. Various in vitro, in vivo, and ex vivo assay systems
have been devised to assess drug retention in skin layers and skin permeability [19]. Of
various in vitro assay systems, skin from human, pig, hairless rodent, guinea pig, and
artificial membrane are acceptable by the European Medicines Agency (EMA) as a means
to evaluate the skin permeability [20]. Nevertheless, ex vivo excised human skin is still
considered as the de facto standard for in vitro permeation assessments despite the fact
that there are a number of ethical issues associated with it [21]. In vitro skin permeability is
normally defined by the permeability coefficient or constant (Kp) as follows,

Kp =
Jss

∆Cv
(1)

where Jss and ∆CV are the steady state flux (Jss) and the chemical concentration difference
(∆CV), respectively [22].

In silico modeling provides an interesting alternative to assess skin permeability since
it is less time-consuming and economically efficient in addition to the fact that there are
no ethical issues when compared with its in vivo and in vitro counterparts [23]. Most
importantly, in silico technology can be applied to the virtual compounds, viz. compounds
that have not been synthesized yet. In fact, numerous in silico models, to predict skin
permeability, have been published [24–38].

Skin permeation can take place through the transcellular route, in which the permeants
cross SC, the intercellular route, in which the permeants across the lipid matrix, and the
shunt or appendageal route, in which the diffusion goes into the hair follicles, sebaceous
gland, and sweat gland [20] as illustrated by Figure 1 of Benson [39]. Furthermore, com-
pounds with different physicochemical properties can penetrate skin layers via different
routes. For instance, very polar, mediate polar, and poor polar compounds can exhibit
different permeation behavior and a sophisticated theoretical model that can take into
account the diverse mechanisms accommodated by solutes of different polarities is needed
as suggested [24]. The ATP-binding cassette (ABC) superfamily and solute carrier (SLC)
superfamily can be expressed in human skin [40] that can further enhance and/or reduce
permeability, making the production of a sound in silico model that can take into account
all those complicated factors extremely difficult, if not impossible. Theoretical models
based on in vitro assays, except for human skin, can be of limited applicability due to poor
or little correlation between human skin and skin of the other animal species.

To date, most of the quantitative in silico models are constructed using either of two
categories, namely the linear regression or machine learning (ML) schemes [41]. The former
including partial least square (PLS) and multiple linear regression (MLR) can render the link
between adopted descriptor and biological activity [41]. Nevertheless, it is hard for linear
models to properly function when such links are very complicated as exemplified by the
varied weights between molecular polarity and skin permeability (vide supra). This difficulty
can be appropriately addressed by ML-based schemes since ML-based models generally
perform better than their linear counterparts in handling nonlinearity [42]. This “black
box” approach, conversely, makes ML models difficult relating the selected descriptors to
biological activity [41]. These seemingly contradictory features between interpretability and
predictivity can be solved by a novel two-QSAR approach [43] by incorporating the ML-
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based hierarchical support vector regression (HSVR) scheme [44] and the linear PLS scheme.
Herein, this study was aimed at predicting the Kp values based on the ex vivo human skin
permeability data for facilitating drug discovery by means of the two-QSAR scheme.

2. Materials and Methods
2.1. Data Collection

A sound predictive model can only be developed based on the data samples with good
quality [41]. An exhaustive search was conducted to retrieve skin permeability parameters
from the public domain to maximize data collection and to diversify the chemical structure.
Skin permeability, nevertheless, is sensitive to the assay conditions (vide supra). Accordingly,
Kp values, which were measured by the same assay conditions, were collected after cautious
examination to secure data consistency. The arithmetic average Kp value was taken to
ensure better assay consistency if there were two, and more than two, Kp values available
within a narrow range for a given compound. Finally, 96 compounds were compiled in this
investigation from various sources [45–65] and their corresponding logarithm Kp, viz. pKp,
values, simplified molecular input line entry system (SMILES) strings, Chemical Abstracts
Service (CAS) registry numbers, and references to the literature are listed in Table S1.

2.2. Molecular Descriptors

Full geometry optimization was carried out for all selected molecules to find the most
stable conformation by means of the density functional theory (DFT) B3LYP method and
the basis set of 6-31G (d,p) using the Gaussian package (Gaussian, Wallingford, CT). To
mimic the experimental environment, the polarizable continuum model (PCM) [66,67] was
employed to address the solvent system. The molecular electrostatic potential (MEP) [68]
was adopted to calculate atomic charges, which are associated with dipole moments (µ).
The energies of frontier orbitals, namely the highest occupied molecular orbital energy
(HOMO) and the lowest unoccupied molecular orbital energy (LUMO), µ, and the largest
absolute component of µ (|µ|max) were also obtained from the optimization calculations.

Discovery Studio (BIOVIA, San Diego, CA, USA) and E-Dragon (available at the website
http://www.vcclab.org/lab/edragon/, accessed on 20 March 2020.) were employed to
enumerate 1D-, 2D-, and 3D-descriptors that can be classified as topological, electronic,
thermodynamic, structural, spatial, and E-state indices. XLOGP3 of SwissADME (available
at the website http://www.swissadme.ch/index.php, accessed on 20 March 2020.) was
adopted to compute the logarithm of n-octanol–water partition coefficient at pH 7.4, namely
log P. The scheme modified by Muehlbacher et al. [69] was used to calculate the cross-
sectional area (CSA) due to its implication in membrane permeability [70,71]. The selected
molecules were categorized into four different ion classes by their pKa values, namely
zwitterion, base, acid, and neutral ions. [72] More specifically, compounds with only one
pKa value are termed neutral ions; compounds with no pKa values larger than 7 are coined
acidic ions; compounds with no pKa values smaller than 7 are coined basic ions; and
compounds with the strongest acidic pKa values larger than 7 and the strongest basic pKa
values smaller than 7 are called zwitterion ions.

2.3. Descriptor Selection

Initially, those descriptors missing more than one value were removed from the pool,
followed by deleting those exhibited little or no discrimination among all data samples. The
Spearman’s matrix, which calculated the correlations between descriptors, was constructed.
It has been recommended by Topliss and Edwards that those descriptors showing the values
of r2 > 0.80 should be dropped in order to decrease the chance of spurious correlations [73].
However, a more restricted value of r2 > 0.64 was adopted in this investigation.

It is not uncommon to observe that some descriptors span substantially broader
ranges than the other due to their distinct nature. As such, it is of necessity to reduce the
chances in which those descriptors with larger ranges override those with smaller ranges,
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by transferring descriptors into a more consistent range [74]. Accordingly, descriptor
normalization was carried out by centering and scaling

χ̂ij =
(

xij −
〈

xj
〉)/[ n

∑
i=1

(
xij −

〈
xj
〉)2
/
(n− 1)

]1/2

(2)

where xij stands for the j-th original descriptor of the i-th compound with an average value
of < xj> for n compounds, and χ̂ij symbolizes the normalized descriptor.

The selected descriptors play a vital role in the QSAR model performance [75]. A
two-stage scheme was employed in this investigation, in which the genetic function approx-
imation (GFA) implemented in the QSAR module of Discovery Studio was initially adopted
mainly due to its effectiveness and efficiency [76]. Further descriptor selection was executed
by the recursive feature elimination (RFE) scheme, in which the model was continually
produced by all but one descriptor. The descriptors were then ranked according to their
predictive performance and the one with the least contribution was purged first [77].

2.4. Dataset Selection

It is a common practice to recognize and remove the outliers from the sample pool for
model development [78]. Nevertheless, outliers were identified and intended to challenge
the robustness of developed models in this study [79]. As such, all selected molecules were
projected into the chemical space constituted by principal components (PCs) using the
function Diverse Molecules in the Principal Component Analysis (PCA) module of Discovery
Studio. The outliers were then discovered by inspecting molecular distribution in the
chemical space [80]. The Diverse Molecules function in the Library Analysis module of
Discovery Studio was employed to randomly partition the rest of the molecules into the
training set and test set to produce and verify the developed models, respectively, by
a ca. 4:1 ratio as advocated [80]. In addition, the chemical and biological distributions
in the training and test set were cautiously inspected since it has been suggested by
Golbraikh et al. that chemical similarity and biological similarity in both data sets should
be preserved in order to produce a sound theoretical model [81].

2.5. Hierarchical Support Vector Regression

Initially, Vapnik et al. proposed a support vector machine (SVM) for classification
and further modified SVM for regression, termed as support vector regression (SVR) [82].
SVR functions by nonlinearly transferring the input into a higher-dimension space where
linear regression is conducted [83]. Unlike traditional regression schemes, which develop
predictive models by lowering the training error, SVR, conversely, takes into considera-
tion both the training error and model complexity. Thus, it is not a surprise to observe
that SVR performs much better than the traditional regression algorithms that predomi-
nantly can be related to its valuable features, namely independence of dimension, frugal
number of freedom, excellent generalization property, universal optimum, and effortless
realization [84].

The innovative hierarchical support vector regression (HSVR) scheme was initially
derived by Leong et al. based on SVR [44]. One of the most unique and advantageous
features of HSVR is its ability to resolve the seeming conflict between a global model and
a local model, viz. the coverage of applicability domain (AD) vs. the level of predictiv-
ity [85]. More notably, the excellent performance of HSVR can be illustrated by a number
of studies [7,43,44,86–89].

The principle and realization of HSVR have been reported in detail elsewhere, and
the architecture of the HSVR scheme can be illustrated by Figure 1 of Leong et al. [44].
Principally, an SVR ensemble (SVRE) is compiled by assembling a pool of SVR models,
which are generated based on different descriptor combinations to represent various
local models with distinct ADs. The svm-train module in LIBSVM (software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm/, accessed on 2 April 2020.) was employed

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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to produce SVR models from those molecules in the training set with assorted descriptor
selections and SVR run parameters. The svm-predict module in LIBSVM was chosen to
verify the derived SVR models using the test samples. Radial basis function (RBF) was set
to be the kernel due to its simplicity and considerable functionality [90]. Both ν-SVR and
ε-SVR regression models were taken into account. The SVR runtime conditions including ε
in ε-SVR and ν in ν-SVR, the kernel width γ, and cost C were automatically investigated by
an in-house Perl script to do a systemic grid search.

The construction of SVRE was ruled by the principle of Occam’s razor, in which
simpler models are preferred to the more complex ones [91]. This parsimony principle
was also applied to the descriptor selection and construction of SVRE in that the number
of selected descriptors and the number of ensemble members were kept as minimal as
possible [92]. For instance, no three-member ensembles were to be constructed prior to the
successful development of a two-member ensemble.

2.6. Partial Least Square

Partial least square is a general regression scheme that can develop models based on
collinear descriptors. PLS can proceed the model development even in the case where
there are more descriptors than the observables that makes it different from the other linear
regression schemes [93]. The cross-validation scheme is often adopted to test the complexity
of developed PLS models in order to reduce the chance correlations [94]. The PLS model
was derived using the Partial Least Square module of Discovery Studio.

2.7. Predictive Evaluation

The prediction deviation or residual between the observed value (yi) and the predicted
value (ŷi) for the i-th molecule was evaluated by the following equation

∆i = yi − ŷi (3)

In addition, standard deviation (s), maximum residual (∆Max), root mean square error
(RMSE), and mean absolute error (MAE) in a dataset with n molecules were calculated by
the following equations

RMSE =

√
n

∑
i=1

∆2
i /n (4)

MAE =
1
n

n

∑
i=1
|∆i| (5)

The squared correlation coefficients, viz. r2 and q2 in the training set and external dataset,
respectively, were computed to evaluate the developed models by the following equation.

r2, q2 = 1−

n
∑

i=1
∆2

i

n
∑

i=1
(yi − 〈ŷ〉)2

(6)

where 〈ŷ〉 symbolizes the average predicted value of n samples in the dataset.
The 10-fold cross-validation scheme was adopted to internally validate the derived

model to produce the squared correlation coefficient q2
CV. The built models were subjected

to the Y-scrambling test for further internal validation [95], which were executed by ran-
domly reshuffling the log Kp values, followed by reapplied them to the previously built
model without modifying the descriptors. The reshuffling process was carried out 25 times
as suggested [95].
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Furthermore, various derivative versions of r2 recommended by Ojha et al. [96] were
also computed

r2
m = r2

(
1−

√
|r2 − r2

o |
)

(7)

r′2m = r2

(
1−

√∣∣∣r2 − r′2o
∣∣∣) (8)

〈
r2

m

〉
=
(

r2
m + r′2m

)/
2 (9)

∆r2
m =

∣∣∣r2
m − r′2m

∣∣∣ (10)

where the squared correlation coefficient r2
o and the slope of the regression line k were

resulted from the regression line (predicted vs. observed values) without offset at the
intersection, whereas r′2o was obtained from the regression line (observed vs. predicted
values) without offset at the intersection.

The predictivity of derived models were challenged by the external datasets to give
rise to various squared correlation coefficients, namely q2

F1, q2
F2, and q2

F3, as well as the
concordance correlation coefficient (CCC) [87] using QSARINS [97,98]

q2
F1 = 1−

nEXT
∑

i=1
∆2

i

nEXT
∑

i=1
(yi − 〈yTR〉)2

(11)

q2
F2 = 1−

nEXT
∑

i=1
∆2

i

nEXT
∑

i=1
(yi − 〈yEXT〉)2

(12)

q2
F3 = 1−

nEXT
∑

i=1
∆2

i

/
nEXT

nEXT
∑

i=1
(yi − 〈yTR〉)2

/
nTR

(13)

CCC =

2
nEXT
∑

i=1
(yi − 〈yEXT〉)(ŷi − 〈ŷEXT〉)

nEXT
∑

i=1
(yi − 〈yEXT〉)2 +

nEXT
∑

i=1
(ŷi − 〈ŷEXT〉)2 + nEXT(〈yEXT〉 − 〈ŷEXT〉)2

(14)

where 〈yTR〉 stands for the averaged observed values of nTR samples in the training set,
〈yEXT〉 and 〈ŷEXT〉 are the averaged observed and predicted values of nEXT samples in the
external set, respectively.

Most significantly, only models that can meet the most stringent criteria altogether
asserted by Golbraikh et al. [81], Ojha et al. [96], Roy et al. [99], and Chirico and Gramat-
ica [100].

Moreover, various modified squared correlation coefficients r2 were also computed

r2, q2
cv, q2, q2

F1, q2
F2, q2

F3 ≥ 0.70 (15)∣∣∣r2 − q2
cv

∣∣∣ < 0.10 (16)(
r2 − r2

o

)
/r2 < 0.10 and 0.85 ≤ k ≤ 1.15 (17)∣∣∣r2

0 − r′20
∣∣∣ < 0.30 (18)
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r2
m ≥ 0.65 (19)〈

r2
m

〉
≥ 0.65 and ∆r2

m < 0.20 (20)

CCC ≥ 0.85 (21)

where r2 in Equations (17)−(20) represents r2 in the training set and q2 in the external set.

3. Results
3.1. Data Partition

Of all selected molecules, 73 and 18 molecules were arbitrarily designated as the
training samples and the test samples, respectively, yielding an approximate 4:1 ratio as
suggested [80]. Figure 1 exhibits the projection of all selected molecules. As displayed,
both data sets showed great degrees of similarity in chemical space, which was constructed
by the span of the first three PCs that characterized 99.44% of the variance in the original
data. In addition, the great levels of the biological and chemical similarity between the
training samples and test samples can also be exemplified by those graphs in Figure S1,
which features the histograms of log Kp, molecular weight (MW), molecular volume (Vm),
n-octanol−water partition coefficient (log P), number of hydrogen-bond acceptors (HBA),
and number of hydrogen-bond acceptors (HBD) in the form of density for those samples
in the training set and test set. Accordingly, the nondiscriminatory data partition can be
further assured [101].

Conversely, those designated outliers are distinctly positioned from tall the other
samples, namely the training and test samples, as exhibited in Figure 1. The biological and
chemical dissimilarity between the outliers and the others can be further manifested by the
histograms shown in Figure S1. In fact, the dissemblance between outliers and the others
can be realized by the fact that the outliers consisted of a greater number of rotatable bond
(Nrot ≥ 8) or a greater number of oxygen (NO ≥ 11).
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3.2. HSVR

Of all derived SVR models based on different descriptor combinations as well as run-
time parameters, three SVR models, termed as SVR A, SVR B, and SVR C, were assembled
to constitute the SVR ensemble, whose predictions, in turn, were treated as the input of
another SVR to build the HSVR model. Table S2 records the optimal runtime parameters of
SVR A, SVR B, SVR C, and HSVR.

It is of interest to note SVR A, SVR B, and SVR C simultaneously adopted two descrip-
tors with different selections as listed in Table 1. HSVR generally produced the medium
prediction errors as compared with SVR A, SVR B, and SVR C (Table S1). Additionally, it
can be detected from Figures 2 and 3, which exhibit the scatter plots of observed vs. pre-
dicted log Kp values in the training set and test set, respectively, that the lengths between
the predictions by HSVR and regression line were between those yielded by those SVR
models in the ensemble.

Table 1. Descriptor selected as the input of SVR models in the ensemble, the correlation coefficient (r)
with log Kp, and their descriptions.

Descriptor SVR A SVR B SVR C r Description

log P x † x x 0.42 Logarithm of the n-octanol−water
partition coefficient

Vm x −0.43 Molecular volume
0χ x −0.48 Molecular connectivity index of

order zero
Jurs_PPSA_1 x −0.43 Partial positive surface area

† Selected.
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PLS regressions of the data, 95% confidence intervals for the HSVR and PLS regressions, and 95%
confidence intervals for the prediction, respectively.

However, it is not uncommon to find that HSVR produced the smallest residuals for
some predictions. For instance, the prediction of 51 (benzoic acid) by HSVR gave rise to an
absolute residual of 0.05, whereas SVR A, SVR B, and SVR C yielded the absolute residuals
of 0.11, 0.13, and 0.14, respectively. It can be concluded from those statistical parameters
listed in Tables 2 and 3 that HSVR functioned better than those SVR models in the ensemble
in the training set and test set. Furthermore, HSVR delivered the highest r2 (0.93) and
q2

CV (0.90) and the lowest ∆Max (1.11), MAE (0.21), and RMSE (0.32) in the training set,
suggesting the superior performance of HSVR in the training set. It is of interest to note
that HSVR delivered a marginal difference between r2 and q2

CV (0.03), whereas the smallest
difference between both parameters was produced by SVR B with a value of 0.14 for all SVR
models in the ensemble, denoting that HSVR was well trained and those SVR models in
the ensemble were less well trained. However, little chance correlation was associated with
all SVR models as assured by their nearly zero values of

〈
r2

s
〉

(0.01) upon the Y-scrambling
test [95].

Table 2. Statistic evaluations, namely squared correlation coefficient (r2), 10-fold cross-validation
squared correlation coefficient (q2

CV), maximum error (∆Max), mean absolute error (MAE), standard
deviation (s), root mean square (RMSE), and

〈
r2

s
〉

evaluated by SVR A, SVR B, SVR C, HSVR, and
PLS in the training set.

SVR A SVR B SVR C HSVR PLS

r2 0.90 0.89 0.82 0.93 0.80
q2

cv 0.57 0.75 0.60 0.90 0.90
∆Max 1.17 1.17 1.86 1.11 1.27
MAE 0.29 0.27 0.48 0.21 0.41

s 0.23 0.29 0.49 0.24 0.33
RMSE 0.37 0.39 0.68 0.32 0.53〈

r2
s
〉

0.01 0.01 0.01 0.01 0.01
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Table 3. Statistic evaluations, namely q2, q2
F1, q2

F2, q2
F3, CCC, ∆Max, MAE, s, and RMSE evaluated by

SVR A, SVR B, SVR C, HSVR, and PLS in the test set.

SVR A SVR B SVR C HSVR PLS

q2 0.83 0.88 0.42 0.84 0.58
0.76 0.86 0.39 0.83 0.42

q2
F2 0.76 0.86 0.38 0.83 0.41

q2
F3 0.86 0.92 0.64 0.90 0.66

CCC 0.90 0.93 0.50 0.92 0.75
∆Max 0.84 0.83 1.59 0.66 1.78
MAE 0.37 0.25 0.53 0.31 0.50

s 0.24 0.23 0.48 0.20 0.49
RMSE 0.44 0.34 0.71 0.37 0.69

SVR B and HSVR showed excellent performance in the test set as manifested by those
statistical metrics listed in Table 3 as well as little performance difference between the
training set and test set. For instance, SVR B and HSVR produced various q2 parameters
of 0.88–0.93 and 0.84–0.92, respectively. In fact, SVR B marginally executed better than
HSVR in every aspect except ∆Max (0.83 vs. 0.66). Conversely, SVR C displayed substantial
performance deteriorations from the training set to the test set as exemplified by the
significant differences between r2 (0.82) in the training set and q2 (0.38−0.50) in the test set.

Figure 4 shows the scatter plot of the observed log Kp vs. the log Kp values predicted
by the derived models in the outlier and the corresponding statistic metrics are listed in
Table 4. It can be a misconception to assume that SVR B functioned better than HSVR in
the outlier set by the parameter q2 (0.93 vs. 0.86). Nevertheless, the other statistic metrics,
namely q2

F1 − q2
F3 and CCC, indicate otherwise. In fact, those SVR models in the ensemble

unanimously generated extraordinary absolute deviations when applied to sucrose (96)
with the values of 4.78, 2.21, and 2.88, whereas HSVR only delivered a negligible value
of 0.04 for the same compound (Table S1). Consequently, none of the SVR models in the
ensemble generated positive q2

F3. HSVR, conversely, gave rise to positive statistics metrics,
the least difference between r2 and various q2 values, and the smallest ∆Max. MAE, s, and
RMSE, suggesting that HSVR was very insensitive to the outliers that, in turn, made HSVR
the most practically favorable due to its robust nature [79]. Accordingly, it is of necessity to
construct an HSVR model that can be predictive as well as robust for various chemotypes
of molecules.

Table 4. Statistic evaluations, namely q2, q2
F1, q2

F2, q2
F3, CCC, ∆Max, MAE, s, and RMSE evaluated by

SVR A, SVR B, SVR C, HSVR, and PLS in the outlier set.

SVR A SVR B SVR C HSVR PLS

q2 0.64 0.93 0.10 0.86 0.74
q2

F1 −1.60 0.41 −0.11 0.85 −0.59
q2

F2 −2.00 0.32 −0.28 0.83 −0.84
q2

F3 −3.79 −0.08 −1.04 0.73 −1.93
CCC 0.50 0.58 −0.09 0.91 0.64
∆Max 4.78 2.21 2.88 0.82 4.33
MAE 1.77 1.02 1.45 0.55 1.24

s 2.12 0.77 0.98 0.32 1.80
RMSE 2.59 1.23 1.69 0.62 2.03
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Figure 4. Observed log Kp vs. the log Kp predicted by SVR A (solid square), SVR B (open circle), SVR
C (gray diamond), HSVR (green triangle), and PLS (red inverted triangle) for the molecules in the
outlier set. The green and red solid lines, dashed lines, and dotted lines correspond to the HSVR and
PLS regressions of the data, 95% confidence intervals for the HSVR and PLS regressions, and 95%
confidence intervals for the prediction, respectively.

3.3. PLS

The linear PLS model was derived by simultaneously compiling those descriptors
selected by the SVR models in the SVRE (Table 1). The prediction results of the samples in
the training set, test set, and outlier set are listed in Table S1, and the associated statistical
evaluations in three data sets are summarized in Tables 2–4, respectively.

log Kp = −2.62974 + 1.26972 × log P − 0.55661 × Vm − 0.554268 × 0χ

−0.076344 × Jurs_PPSA_1 (22)

The PLS model yielded an r2 value of 0.80 in the training set, which is slightly smaller
than those produced by SVR A, SVR B, SVR C, and HSVR. Nevertheless, it can be observed
from Figure 3 that most of the points predicted by PLS generally had the largest distances
from the regression line as compared with SVR A, SVR B, SVR C, and HSVR.

However, PLS produced a q2 value of 0.74 in the outlier set, which is better than those
obtained by SVR A and SVR C (0.64 and 0.10). The CCC value calculated by PLS is even
better than all those SVR models in the ensemble. The prediction of sucrose by PLS also
presented an exceptionally large absolute error with a value of 4.33, which is similar to the
observation found in SVR A, SVR B, and SVR C (vide supra). In addition, PLS also produced
negative q2

F1 − q2
F3 values in the outlier set. As such, it can be asserted by all parameters

listed in Table 4 that HSVR outperformed PLS in the outlier set as well.

3.4. Predictive Assessment

It can be discovered from Figure 5, which exhibits the scatter plot of the residuals vs.
the log Kp values predicted by both theoretical models for the molecules in those three data
sets, namely training set, test set, and outlier set, that the residuals generated by HSVR
were generally equally situated on both sides of x-axis along with the prediction range
in those three datasets, depicting the fact that little systematic errors were related with
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HSVR. As such, HSVR yielded the mean errors of −0.01, 0.05, and −0.26 in the training
set, test set, and outlier set, respectively. PLS, similarly, produced small average errors in
the training and test (0.00 and 0.03). However, the prediction of sucrose by PLS led to an
unusual average error of 1.02 in the outlier set that can be further manifested by the PLS
regression line shown in Figure 4 since the distinction between the PLS regression line and
the ideal regression was pronounced, suggesting that a systematic error was associated
with PLS in the outlier set.
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Figure 5. Residual vs. the log Kp values predicted by HSVR (green) and PLS (red) in the training set
(square), test set (circle), and outlier set (triangle).

The validation results are listed in Table 5 when HSVR and PLS were subjected to
those criteria displayed in Equations (13)–(19). It is obvious to discover that HSVR not only
produced the largest statistic parameters but also completely satisfied the most stringent
requirements, whereas PLS showed substantial variations among those statistic parameters
and failed to fulfill all of the criteria. Accordingly, it can be unequivocally concluded that
the performance of HSVR is superior to that of PLS.

3.5. Mock Test

To imitate their applications in the real world, the derived HSVR and PLS models were
applied to those compounds assayed by Soriano-Meseguer et al. [102], of which, 23 were
also included in this investigation, providing a good way to calibrate the challenge system.
Nevertheless, Soriano-Meseguer et al. measured the effective permeability coefficient (Pe)
based on the skin-PAMPA system. The discrepancies in the assay system and measurement
can create data heterogenicity once the assay results from the skin-PAMPA system are
pooled into the data collection [41]. Subsequently, the relationship between both different
assay systems (log Pe vs. log Kp) was initially constructed and examined based on those
23 common compounds and the resulted scatter plot is shown in Figure 6. It can be
discovered that both assay systems were reasonably correlated with each other with an
r value of 0.78, suggesting that it is plausible to adopt the data measured by Soriano-
Meseguer et al. to challenge the derived HSVR and PLS models.
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Table 5. Validation verification of HSVR and PLS based on prediction performance evaluated in the
training set, test set, and outlier set.

Training Set Test Set Outlier Set

HSVR PLS HSVR PLS HSVR PLS
0.93 0.80 0.84 0.45 0.86 0.51

k 1.01 1.00 0.97 0.94 1.08 0.66
r′20 0.92 0.76 0.83 0.57 0.85 0.72
r2

m 0.91 0.80 0.80 0.37 0.81 0.38
r′2m 0.85 0.64 0.75 0.52 0.80 0.63〈
r2

m
〉

0.88 0.72 0.77 0.45 0.80 0.51
∆r2

m 0.06 0.16 0.05 0.15 0.01 0.24
Equation (13) x † x x x
Equation (14) x N/A ‡ N/A N/A N/A
Equation (15) x x x x
Equation (16) x x x x x x
Equation (17) x x x x
Equation (18) x x x x
Equation (19) x x x x

† Fulfilled; ‡ Not applicable.
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solid line, dashed line, and dotted lines correspond to the mock test regression of the observed
data, 95% confidence interval for the mock test regression, and 95% confidence interval for the
observation, respectively.
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The predicted results of those 23 novel compounds in the mock tests are listed in
Table S3 and displayed in Figure 7. It can be observed that HSVR gave rise to an r value
of 0.71 between observed log Pe and predicted log Kp, suggesting that HSVR can almost
replicate the experimental measurements. PLS, conversely, yielded an extremely small
value of 0.38, denoting the fact that PLS cannot reproduce the assay data. Accordingly, it
can be asserted that HSVR outperformed PLS in the mock test.
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3.6. Comparison with Skin Permeation Calculator

The US Center for Disease Control and Prevention (CDC) has developed Skin Per-
meation Calculator (SPC) (available at the website: https://www.cdc.gov/niosh/topics/
skin/skinpermcalc.html, accessed on 9 September 2021) to predict skin permeation. It is
of interest to compare SPC with PLS and HSVR by applying SPC to all of compounds
enrolled in this investigation. The predicted results by SPC are listed in Table S1 and the
statistic evaluations are listed in Table 6. Of all 96 compounds selected in this study, only
77 compounds, or 80%, could be predicted by SPC, suggesting that the applicability of SPC
is limited when compared with PLS and HSVR.

https://www.cdc.gov/niosh/topics/skin/skinpermcalc.html
https://www.cdc.gov/niosh/topics/skin/skinpermcalc.html
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Table 6. Statistical evaluations, namely, squared correlation coefficient (r2), maximal absolute residual
(∆Max), mean of absolute error (MAE), standard deviation (s), and root mean square error (RMSE),
evaluated by HSVR, PLS, and SPC based on 78 compounds.

HSVR PLS SPC

r2 0.91 0.82 0.66
∆Max 1.11 1.31 1.84
MAE 0.26 0.39 0.54

s 0.25 0.33 0.48
RMSE 0.36 0.51 0.73

Furthermore, SPC showed the worst performance as manifested by those statistical
parameters listed in Table 6. PLS executed better than SPC, which can be plausibly at-
tributed to the better descriptor selection as well as better descriptor enumeration. HSVR
unequivocally performed better than PLS, indicating the superior architecture of HSVR
scheme. In addition, those metrics calculated by HSVR in Table 6 did not vary a lot from
those in different data sets (Tables 2–4), suggesting the performance stability of HSVR in
different compounds.

4. Discussion

Skin permeation can take place through a series of processes, in which molecules must
penetrate through various skin layers before they can reach the body circulation system
(vide supra). As such, skin permeability is governed by various factors, of which log P
and molecular weight (MW) are the two most frequently adopted descriptors that can be
manifested by the predictive model developed by Potts and Guy [24], in which only both
descriptors were used.

In fact, the significance of log P in skin permeability can be realized by the fact that all
of the SVR models in the ensemble unanimously adopted this descriptor and can be further
supported by the largest absolute weight (1.27) given by PLS (Equation (22)) among all of
the selected descriptors. Furthermore, it has been observed by Potts and Guy that log Kp
linearly increases with the increase of log P. Nevertheless, the correlation between log P
and log Kp was only 0.42 for all of the molecules selected in this study (Table 1), which,
actually, is similar to the value observed by Chen et al. (r = 0.467) [32]. This inconsistency
is plausibly attributed to the fact that Potts and Guy selected the compounds of log P < 4
only, whereas this study and Chen et al. included some compounds of log P ≥ 4. More
importantly, it can be observed from Figure 8, which displays the average log Kp for each
histogram bin of log P for all selected molecules, that log Kp increased with log P initially
and then decreased once log P ≥ 4, leading to an apparently bi-linearity between log Kp
and log P.

This intricate reliance can be realized by the fact that it is easier for the more hy-
drophobic permeants to approach the skin lipid bilayer, which is hydrophobic per se [20].
Conversely, it will be harder for those too hydrophobic permeants to escape skin lipid
bilayer or even retain in the skin layers without significant penetration. As such, the
collective r is reduced once both the positive and negative r values are taken into account. It
is plausible to expect that such bi-linearity cannot be properly addressed by linear models,
whereas this nonlinearity can be appropriately handled by ML schemes provided that the
other descriptors are properly selected.

Potts and Guy have adopted the descriptor MW to render the size impact on the skin
permeability [24]. In fact, most published in silico models also have selected MW as the
size-related descriptor. Nevertheless, none of the SVR models in the ensemble included
MW and yet SVR A enrolled the descriptor molecular volume (Vm). This divergence can
be justified by the fact that MW was highly correlated with Vm with an r value of 0.96 for
all of the molecules compiled in this study, suggesting that it is plausible to replace MW
by Vm as a size-related descriptor. This justification, actually, is also consistent with the
postulation made by Wilschut et al. that the molecular size can be better denoted by Vm
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when taking into account the electron-density distributions [103]. For instance, the steric
isomers have the same MW, whereas their Vm values are different, indicating that MW
cannot show the distinction between both steric isomers and Vm is a better way to render
the size factor. As such, the empirical observation unequivocally indicated that models with
the selection of Vm performed better than those with the selection of MW (data not shown)
that, additionally, can be partially attributed to the fact that Vm was enumerated based the
geometry that was fully optimized by the more sophisticated DFT with the selection of a
descent basis set along with the consideration of a solvent effect.
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Figure 8. Histogram of average log Kp versus the distribution of log P.

The PLS placed a negative weight to Vm (Equation (22)) that is similar to the other
published models, which unanimously gave negative coefficients to MW. The reverse
relation between molecular size and skin permeability can be plausibly explained by the
fact that molecular size is the most critical factor in demining the solute flux amounts
through the epidermis since smaller solute molecules tend to have higher possibilities
to enter the SC pores and, consequently, across the SC pores and lipid lamellar layers
faster [104].

It is unusual to observe that SVR B adopted the descriptor 0χ, which depicts the
molecular connectivity index of order zero, since none of the published in silico models has
selected this descriptor. Nevertheless, it can be observed from Figure 9, which exhibits Vm
versus 0χ, that Vm and 0χ were extremely correlated with each other (r = 0.98), suggesting
that 0χ can be another descriptor to describe the size factor in skin permeability. The
over-training issue was not applicable in this study since SVR A and SVR B recruited Vm
and 0χ, respectively, viz. no simultaneous selection of both descriptors by any SVR model
in the ensemble. The significance of 0χ in skin permeability can be manifested by the
weight given by PLS, which is very similar to the one associated with Vm (−0.554268 vs.
−0.55661). More importantly, the empirical operations have disclosed that HSVR based on
this descriptor combination executed better than the others (data not shown) plausibly as a
result of the descriptor–descriptor interaction [7]. Any other linear or nonlinear ML-based
QSAR methods, contrarily, cannot properly address such paradoxical descriptor selections.



Pharmaceutics 2022, 14, 961 17 of 24

Pharmaceutics 2022, 14, 961 18 of 25 
 

 

 
Figure 9. A plot of Vm versus 0χ. 

It is of interest to note the selection of partial positive surface area (Jurs_PPSA_1) by 
SVR C since it has never been included by any published in silico models. Nevertheless, 
it has been observed that polar surface area (PSA) plays a significant role in distinguishing 
between the substrates and non-substrates of P-glycoprotein (P-gp) [87]. It has been found 
that P-gp can be expressed in the human skin [105]. In contrast to the intestine and blood–
brain barrier (BBB), the efflux transporter P-gp in the skin plays an influx role by trans-
porting substrates from the surface into the dermis [106]. As such, the descriptor 
Jurs_PPSA_1, which is a modified version of PSA, was adopted in this study with better 
model performance (data not shown). Compounds selected in this study were further 
classified as P-gp substrates and non-P-gp substrates using admetSAR (available at 
http://lmmd.ecust.edu.cn/admetsar2/, accessed on 17 September 2021.) to investigate the 
Jurs_PPSA_1 impact on the skin permeability. The results are shown in Figure 10, which 
displays the plot of log Kp versus Jurs_PPSA_1 for those P-gp substrates and non-P-gp 
substrates along with their associated regression lines. It can be observed that 
Jurs_PPSA_1 was substantially associated with log Kp with an r value of 0.96 for P-gp 
substrates, whereas there was a negative correlation between log Kp and Jurs_PPSA_1 for 
non-P-gp substrates, suggesting that PSA can facilitate the influx of P-gp substrate that, 
in turn, can enhance the skin permeation consequently. 

0 2 4 6 8 10 12 14 16 18 20 22

V m

0

50

100

150

200

250

300

oχ

r  = 0.98
p  < 0.01

Figure 9. A plot of Vm versus 0χ.

It is of interest to note the selection of partial positive surface area (Jurs_PPSA_1) by
SVR C since it has never been included by any published in silico models. Nevertheless, it
has been observed that polar surface area (PSA) plays a significant role in distinguishing
between the substrates and non-substrates of P-glycoprotein (P-gp) [87]. It has been found
that P-gp can be expressed in the human skin [105]. In contrast to the intestine and
blood–brain barrier (BBB), the efflux transporter P-gp in the skin plays an influx role by
transporting substrates from the surface into the dermis [106]. As such, the descriptor
Jurs_PPSA_1, which is a modified version of PSA, was adopted in this study with better
model performance (data not shown). Compounds selected in this study were further
classified as P-gp substrates and non-P-gp substrates using admetSAR (available at http:
//lmmd.ecust.edu.cn/admetsar2/, accessed on 17 September 2021.) to investigate the
Jurs_PPSA_1 impact on the skin permeability. The results are shown in Figure 10, which
displays the plot of log Kp versus Jurs_PPSA_1 for those P-gp substrates and non-P-gp
substrates along with their associated regression lines. It can be observed that Jurs_PPSA_1
was substantially associated with log Kp with an r value of 0.96 for P-gp substrates, whereas
there was a negative correlation between log Kp and Jurs_PPSA_1 for non-P-gp substrates,
suggesting that PSA can facilitate the influx of P-gp substrate that, in turn, can enhance the
skin permeation consequently.

http://lmmd.ecust.edu.cn/admetsar2/
http://lmmd.ecust.edu.cn/admetsar2/
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P-gp substrates (blue circle). The solid red and blue lines represent the P-gp regression data and
non-substrate regression data, respectively.

PSA can also represent molecular polarity [87]. Abraham et al. has adopted a molecu-
lar polarity-related descriptor to describe its impact on skin permeability [29]. The negative
coefficient of Jurs_PPSA_1 given by PLS (−0.076344) as well as the negative weight associ-
ated with the polar descriptor in the model developed by Abraham et al. unequivocally
indicate the reverse relationship between PSA/polarity and skin permeability. Additionally,
larger PSA or dipole will result in stronger interactions between solute and solute as well
as between solute and solvent, increasing higher desolvation energy when they approach
the skin lipid bilayer [7].

The rather small r value (−0.34) between log Kp and Jurs_PPSA_1 for non-P-gp
substrates can be presumably attributed to the different permeation routes for molecules
with different polarities (vide supra) as well the nature of solute−solute and solute−solvent
interactions. As such, Jurs_PPSA_1 plays a profound role in skin permeation since it
can simultaneously enhance and reduce skin permeation depending on the nature of the
permeant and such a contradictory feature cannot be properly depicted by any traditional
linear model. HSVR, conversely, can correctly render such complicated relationship.

It has been observed the neutral compounds are more permeable in the human colon
carcinoma cell layer (Caco-2) and parallel artificial membrane permeability assay (PAMPA)
system [7,89]. It is of interest to investigate that if neutral compounds have higher per-
meability values in the ex vivo skin permeability model as compared with the other ion
classes. All of the molecules enlisted in this study were categorized into four ion classes
according to their pKa values. It can be found from Figure 11, which demonstrates the
box plot of the log Kp minimum, maximum, mean, median, the 25th percentile, and the
75th percentile for each ion class, that the log Kp values of neutral compounds are larger
than the other ion classes, whereas that of basic compounds are statistically lower than the
others, suggesting that neutral compounds are more permeable, which is consistent with
the observation made by the Caco-2 and PAMPA systems, and basic compounds are less
likely to penetrate through skin.
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Figure 11. Box plot of log Kp values for four ion classes, where the boxes characterize the distribution
of log Kp from the 25th to the 75th percentile, the black and red lines delineate the median and
mean values, the whiskers denote the minimum and maximum values, and the asterisk specifies the
significant difference between neutral and the other ion classes (p < 0.05).

5. Conclusions

Topical and transdermal drug delivery is an effective, safe, and preferred route of drug
administration. Skin permeability plays a pivotal role in drug discovery and development.
This investigation used a novel two-QSAR scheme by collectively incorporating hierarchical
support vector regression as well as partial least square to predict log Kp values based
on the ex vivo skin permeability values compiled from the literature. The built HSVR
model exhibited exceptional performance in three data sets, namely the training set, test
set, and outlier set, whereas PLS modestly functioned in those three data sets. Various
statistical evaluations and validation assessments asserted the accuracy and predictivity
of HSVR. The mock test further asserted the practical application of HSVR, whereas PLS
failed to deliver the satisfactory performance for the mock test. It is plausible to assure that
the unique architectures of HSVR that can concurrently retain the advantageous features
of a local model and a global model, namely broader applicability domain as well as
greater predictivity, respectively, make substantial contribution to its superior performance,
generalization ability, and robustness. PLS, which is a linear model, managed to reveal the
interpretable relevance between selected descriptors and permeability that otherwise cannot
be done any “black box” approaches. Both models also displayed good performance in
qualitative prediction. Accordingly, the synergy between predictive HSVR and interpretable
PLS can be useful to predict the skin permeability and to render the mechanisms associated
with skin permeation, respectively. More importantly, this investigation has paved the way
to predict the in vivo human skin permeability of hit and lead compounds in the future.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14050961/s1. Table S1. Selected compounds for
this study; their names, SMILES strings, CAS numbers, and observed log Kp values; their predicted
values by SVR A, SVR B, SVR C, HSVR, PLS, and CDC SPC; data partitions; and references; Table S2.
Optimal runtime parameters for the SVR models; Table S3. Compound source for the mock test, their
names, IUPAC names, CAS numbers, SMILES strings, observed log Pe values, observed log Kp values,
and predicted values by SVR A, SVR B, SVR C, and HSVR. Figure S1. Histogram representation of
the distributions of various descriptors for all molecules in the training set, test set, and outlier set.
(A) log Kp, (B) molecular weight (MW), (C) molecular volume (Vm), (D) n-octanol–water partition
coefficient (log P), (E) number of hydrogen bond acceptor (HBA), and (F) number of hydrogen bond
donor (HBD) in the training set, test set, and outlier set.
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