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Abstract

Background—Cardiac Resynchronization Therapy (CRT) is one of the few effective treatments 

for heart failure patients with ventricular dyssynchrony. The pacing location of the left ventricle is 

indicated as a determinant of CRT outcome.

Objective—Patient specific computational models allow the activation pattern following CRT 

implant to be predicted and this may be used to optimize CRT lead placement.

Methods—In this study, the effects of heterogeneous cardiac substrate (scar, fast endocardial 

conduction, slow septal conduction, functional block) on accurately predicting the electrical 

activation of the LV epicardium were tested to determine the minimal detail required to create a 

rule based model of cardiac electrophysiology. Non-invasive clinical data (CT or CMR images and 

12 lead ECG) from eighteen patients from two centers were used to investigate the models.

Results—Validation with invasive electro-anatomical mapping data identified that computer 

models with fast endocardial conduction were able to predict the electrical activation with a mean 

distance errors of 9.2 ± 0.5 mm (CMR data) or (CT data) 7.5 ± 0.7 mm.
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Conclusion—This study identified a simple rule-based fast endocardial conduction model, built 

using non-invasive clinical data that can be used to rapidly and robustly predict the electrical 

activation of the heart. Pre-procedural prediction of the latest electrically activating region to 

identify the optimal LV pacing site could potentially be a useful clinical planning tool for CRT 

procedures.
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1 Introduction

Cardiac resynchronization therapy (CRT) has emerged as an effective therapy for heart 

failure patients with ventricular conduction disturbances, such as left bundle branch block 

(LBBB), resulting in a dyssynchronous ventricular activation. CRT aims to restore this 

dyssynchronous activation and the location of the left ventricular (LV) pacing lead has 

repeatedly been identified as an important contributor to patient response (Singh et al., 2011; 

Ypenburg et al., 2008).

The optimal pacing site has been proposed to be located at the latest activating regions 

(Khan et al., 2012; Saba et al., 2013; Zanon et al., 2014) and outside of scar (Khan et al., 

2009; Leyva et al., 2011; Singh et al., 2011). However, this approach has two short comings. 

Firstly, in cases where scar tissue causes a circumferential block in the activation wave, the 

latest region to activate can be located adjacent to scar. Secondly, the optimal location is 

based on the state of the patient prior to implant and is determined without consideration of 

the location of the right ventricle (RV) pacing lead, which may alter the location of the latest 

activating region (Mafi Rad et al., 2014). Recent studies have found that increased rate of 

endocardial activation patterns (Sohal et al., 2015) and reduced QRS duration (Derval et al., 

2014) result in an improved response to CRT, this could potentially provide a better cost 

function for optimizing optimal pacing location.

As the heart is paced from the RV and LV electrodes that can be positioned independently, 

arguably pacing locations need to be optimized not on the intrinsic activation pattern in the 

heart prior to CRT, but taking into account the effect of both leads on the activation pattern 

once CRT is implanted. Optimizing therapy planning using the activation pattern post 

implant requires the ability to predict how different pacing configurations will alter the 

activation pattern for given lead locations.

Computer models of cardiac electrophysiology have been developed to perform patient 

specific simulations to predict electrical activation patterns. This approach has been used for 

predicting changes in activation patterns in CRT and to investigate the optimal 

atrioventricular delay, interventricular delay and lead locations (Lee et al., 2017; Miri et al., 

2009; Reumann et al., 2007a, 2007b; Villongco et al., 2016).

The muscle fiber directions within the heart are important in determining the pattern of 

electrical activation throughout the ventricles, as the electrical activation spreads 
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predominantly along the direction of the myofibers. Measurements of the fiber angles 

(Holmes et al., 2000; Scollan et al., 1998; Seemann et al., 2006) have found the fiber 

orientation to be relatively consistent in the ventricles and well described by rule-based 

methods (Bayer et al., 2012). Therefore, in recent years, studies have adopted rule-based 

fiber methods to approximate the fiber directions in electrophysiology models of human 

hearts (Aguado-Sierra et al., 2011; Crozier et al., 2015; Kayvanpour et al., 2015; Kerckhoffs 

et al., 2012; Lee et al., 2017; Okada et al., 2017; Sermesant et al., 2012; Tobon-Gomez et al., 

2013; Villongco et al., 2016).

Previous models have personalized ventricular activation and predicted activation patterns 

for CRT using invasive measures of the electrical properties of the heart, such as electro-

anatomical mapping (EAM) of the epicardium via the coronary veins or the endocardium by 

contact or non-contact mapping (Aguado-Sierra et al., 2011; Crozier et al., 2015; Lee et al., 

2017; Sermesant et al., 2012; Tobon-Gomez et al., 2013; Villongco et al., 2016). These 

studies required invasive data, collected intra-procedurally, meaning that these models are 

unable to be used for prospective prediction of the electrical activation of the heart or to 

track the response to CRT.

In recent studies, non-invasive ECG data from conventional 12 lead ECGs or from body 

surface potential mapping (with commercial versions recording up to 256 ECGs) were used 

to parameterize electrophysiology models (Giffard-Roisin et al., 2017; Kayvanpour et al., 

2015; Okada et al., 2017). In these studies, the cardiac substrate was assumed to be 

homogeneous with uniform conduction velocity (Giffard-Roisin et al., 2017) or with fast 

endocardial conductivity (Kayvanpour et al., 2015; Okada et al., 2017). These studies used 

non-invasive data to constrain the models, however these modeling frameworks required 

complex and iterative fitting to parameterize the onset site/s of the electrical activation 

(Giffard-Roisin et al., 2017; Okada et al., 2017) and the conductivities of the myocardium 

(Giffard-Roisin et al., 2017) and the fast conducting endocardium (Kayvanpour et al., 2015; 

Okada et al., 2017).

A rule-based method for defining the electrophysiology parameters would be useful in 

facilitating the development of electrophysiology models in individual patients. However, 

the material properties of the heart have been less well described, with experimental studies 

reporting a range of conduction velocities (0.07–0.75 m/s) along the fiber direction, with a 

2–7 fold increase in electrical conduction velocity along longitudinal direction in 

comparison to the transverse direction of the myofibers (Clerc, 1976; Roberts et al., 1979; 

Roth, 1997).

Experimental studies have also found heterogeneous conduction velocities throughout the 

ventricles. In addition to the three to six fold increase in the conduction velocity in the 

Purkinje system (Draper and Mya-Tu, 1959; Myerburg et al., 1978), the sub-endocardial 

layer has also been found to have a 1.5–4 fold increased electrical conduction velocity in 

comparison to the normal myocardium (Draper and Mya-Tu, 1959; Myerburg et al., 1978; 

Strik et al., 2011). In experimental studies of the canine heart, the spread of the electrical 

activation in the endocardium was found to start simultaneously across the RV and starting 

in the bottom third of the LV and spreading in an apical to basal direction in the LV 
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(Myerburg et al., 1972), while in human hearts activation in the LV began from endocardial 

areas in the lower third of the free wall, mid septal wall and in the basal area underneath the 

mitral valve (Durrer et al., 1970). A number of electrophysiology simulation studies have 

thus incorporated a fast endocardial layer representing the Purkinje network or the increased 

conduction velocity in the sub-endocardial layer (Aguado-Sierra et al., 2011; Hyde et al., 

2015; Kayvanpour et al., 2015; Okada et al., 2017).

Additional heterogeneities have been reported to influence activation. The conduction 

velocity of scarred myocardium have been found to be reduced in comparison to normal 

tissue (de Bakker et al., 1993; Peters et al., 1993). Clinical studies have also found that the 

electrical activation pattern in the LV can be classed as type I/II in patients suffering from 

LBBB, with non-contact mapping studies showing a C-shaped or U-shaped pattern of 

electrical activation where there is a region of functional block in the anterior or posterior 

regions of the LV (Auricchio et al., 2004; Jia et al., 2006). A decrease in the conduction 

velocity has also been observed in the septum in canines and humans with LBBB (Prinzen 

and Auricchio, 2008; Sohal et al., 2014; Strik et al., 2013). These heterogeneities have been 

reported across different pathologies and species, however their relative importance in 

predicting the electrical activation pattern has not been determined.

In this study we investigated the impact of scar, slow septal conduction, fast endocardial 

conduction and the presence of type I/II activation patterns on predicting cardiac 

electrophysiology for CRT patients using simple models of tissue heterogeneity. The 

simplest rule-based methods for defining the electrical heterogeneities present in the 

ventricles needed to robustly predict the activation patterns based on non-invasive imaging 

of the patient anatomy and ECG measurements was identified.

2 Methods

2.1 Study population

This study was conducted on data collected from fourteen patients who underwent a de novo 
CRT device implantation at the Maastricht University Medical Center and underwent a 

cardiac magnetic resonance (CMR) imaging before implantation. An additional four RV-

pacing patients upgrading to CRT were recruited at Guys and St Thomas’ Hospital. All 

patients had a I or II CRT indication according to the ESC guidelines (LV ejection fractions 

of < 35% with mild to severe heart failure symptoms with LBBB according to specific 

criteria or non-LBBB with a QRS duration of > 150 ms). Data was collected from patients at 

the two centers with the study protocols approved by the respective local ethics committees.

2.2 Non-invasive data

In the CMR data set, images were acquired with a 1.5–3T Philips scanner (Achieva/Ingenia/

Intera) prior to device implantation. Steady state free precession CMR sequence (slice 

thickness 6–8 mm, field of view 320–384 mm, matrix 256–560 × 256–560) was used to 

image the heart in 2-chamber, 3-chamber, 4-chamber views as well as a short axis stack 

covering the entire LV. Contrast-enhanced (CE) CMR images were also acquired with a 2D 

gradient echo inversion recovery sequence (slice thickness 7–10 mm, field of view 300–384 
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mm, matrix 240–576 × 240–576). The CMR images were manually segmented using 

customized software (CAAS MRV3.4, Pie Medical Imaging) to personalize the cardiac 

anatomy. Areas of cardiac infarct were semi-automatically segmented from the CE CMR 

images with the full-width half maximum method (Nguyen et al., 2017).

In the four CT cases, 3D whole heart CT images (slice thickness 0.5 mm, field of view 185–

280 mm x 185–280 mm x 118–191 mm, and in-plane resolution 0.36–0.54 mm) were 

acquired with a Philips iCT256 or Siemens Somatom Force scanner. RV paced patients were 

scanned and subsequently underwent a CRT upgrade procedure, where a LV lead is 

implanted into the coronary sinus (CS) for epicardial pacing. The Philips model-based 

automatic segmentation tool (Peters et al., 2007) was used to segment the ventricles and the 

main CS branch. Semi-automatic segmentation of the coronary branches was then performed 

using CRT segmentation software (Mountney et al., 2017).

Non-invasive measures of the electrical activation of the heart were obtained with 12 lead 

ECG during RV pacing. The QRS onset and duration from one of the frontal leads were used 

to estimate the start of the electrical activation and the total time of activation in the 

ventricles.

2.3 Electroanatomical mapping

At both centers, 3D EAM of the coronary veins was performed using Ensite NavX (St Jude 

Medical) intra-procedurally (Mafi Rad et al., 2014). In the de novo patient cases, an RV lead 

was implanted in the RV apex region, guided with fluoroscopy X-ray images and identified 

on the EAM. A unipolar sensing and pacing guidewire connected to the Ensite NaxX system 

was inserted into the CS and extended into the CS tributaries, to generate a 3D map of the 

CS and its tributaries as well as measuring the local activation times (LAT) of these sites 

with RV pacing. Across the 14 cases a large epicardial area of the LV free wall was mapped, 

as shown in Appendix A. The LAT, defined as the duration from onset of the QRS complex 

on the surface ECG to the steepest downslope on the intracardiac unipolar electrogram, was 

recorded throughout the procedure and was calculated as a percentage of the QRS duration. 

In the CMR data set, the EAM 3D anatomy was mapped to the segmentations of the CS 

using the fusion function of the Ensite NavX system as a post processing step by a clinician 

using the X-ray fluoroscopy images obtained during the procedure as guidance.

2.4 Electrical activation models

2.4.1 CMR cases—Patient specific electrophysiology models were created from the 14 

CMR data sets. The anatomy for each case was personalized from the segmentations. The 

location of the RV lead was identified from the EAM mapped onto the models using the 

fusion function in the Ensite NavX system. The locations where the LAT was measured with 

the guidewire were projected onto the closest point on the LV epicardial surface of the 

patient specific meshes with a root mean square error of 3.0–9.1 mm for the 14 CMR cases.

A rule-based method was used to determine the fiber orientations (Bayer et al., 2012). The 

propagation of the electrical activation from pacing at the RV apex was simulated using an 

Reaction-Eikonal model (Neic et al., 2017) using the Cardiac Arrhythmia Research Package 
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(CARP) (Niederer et al., 2011; Vigmond et al., 2003). The Eikonal conductivity term was 

fitted to match the QRS data using a grid search of low cost eikonal activation simulations. 

The Reaction-Eikonal conductivity was then input into the Reaction-Eikonal equations. This 

results in a predicted activation time error of no more than 1%. The conduction velocity was 

characterized by assuming the QRS duration was equal to the total activation time across the 

ventricles, with the computed QRS duration set to be within a tolerance of 5 ms. The 

conduction velocity in the ventricles was assumed to be transversely anisotropic, with the 

conduction velocity transverse to the fiber directions set to be 40% of the conduction 

velocity along the myofiber directions (Sermesant et al., 2012). The importance of including 

scar, slow septal conduction, fast endocardial conduction and the presence of type I/II 

activation patterns in predicting epicardial activation patterns were also explored using 

additional electrophysiology models [Fig. 1].

In the scar regions and functional block regions, the electrical activation was assumed to be 

completely blocked. While the slow septal conduction velocity was assumed to be 50% of 

the normal myocardium (Strik et al., 2013). A 1 mm thick fast endocardium layer was 

assumed to have a six-fold increased conduction velocity along the fiber direction compared 

to the normal myocardium (Draper and Mya-Tu, 1959; Myerburg et al., 1978).

2.4.2 CT cases—Four patients were receiving an upgrade from RV pacing to CRT and 

were not eligible for CMR. CT whole heart images were segmented using Philips Model 

Based Segmentation Framework and used to create patient specific models. The location of 

the RV pacing lead was identified on the CT images. The coronary venous EAM was 

recorded intra-procedurally using a unipolar sensing and pacing guidewire connected to the 

Ensite NavX system. The anatomical 3D map was registered to the segmented coronary 

sinus from the CT images using CMISS (www.cmiss.org) host mesh fitting, with clinical 

guidance based on X-ray fluoroscopy imaging to determine which branches were mapped. 

As the segmentations of the CS and the patient specific meshes were derived from the same 

CT image, the mapped coronary venous EAM were also mapped onto the meshes. The 

locations where the electrical delay was measured with the guidewire were projected onto 

the closest point on the LV epicardial surface of the patient specific meshes with a root mean 

square error of 3.1–8.6 mm for the 4 CT cases.

The LAT from RV pacing was clinically measured with EAM in the coronary sinus 

tributaries. The models were evaluated by comparing the simulated LAT with intra-

procedural clinical LAT measurements. The relative LAT error was taken as the difference 

between the model simulations and the clinical measurements. The temporal error for each 

simulation was calculated by multiplying the relative LAT error by the QRS duration for 

each case. Positive temporal error values indicate that the model activates slower than the 

clinical measurements, while negative values indicate that the model activates faster. The 

distance error measurement for each simulation was calculated as the minimum distance 

between the location of the EAM measurement projected onto the myocardium and the 

nearest tissue with an activation time that matches the measured activation time.
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3 Results

The electrical activation for each of the models was simulated for each of the 14 CMR cases 

with the conduction velocity along the fiber directions for the bulk myocardium 

characterized by the QRS duration. The propagation of the electrical activity from pacing at 

the RV for the six simple electrophysiology models (normal, with scar, with anterior or 

posterior block, with slow septal conduction and with fast endocardial conduction) were 

simulated as shown in Fig. 2. The LAT errors were computed for each model in each case as 

shown in Fig. 3.

The resulting temporal and distance errors for the six electrophysiology models are shown in 

Fig. 4. The results and analysis in the next section are from a leave-one-out cross validation, 

and the reported scores are the average of the mean temporal and distance errors. One-way 

ANOVA was used to compare the temporal and distance errors between the six simple 

electrophysiology models, and it was found that there were statistically significant 

differences in the temporal and distance errors for the models (p-value < 0.001). Tukey post-

hoc tests indicated that only 2 models had significantly different temporal means (posterior 

functional block model (–5.1 ± 1.2 ms) and the fast endocardial conduction model (–7.0 

± 1.2 ms)), compared to the rest of the models (Normal: 7.6 ± 1.2 ms, Scar: 7.4 ± 1.2 ms, 

slow septum: 8.0 ± 1.2 ms, anterior functional block: 6.6 ± 1.2 ms), however the absolute 

temporal error mean values were comparable. Tukey post-hoc test indicated that the fast 

endocardial conduction model was the only model that had a significantly reduced mean 

distance error (9.2 mm ± 0.5 mm) in comparison to the other models (15.6–16.9 mm ± 0.5 

mm) (see Appendix C).

To further constrain the model selection, several criteria were imposed on the solution of the 

models to ensure the simulations reflect known physiological constraints. In experimental 

studies, the conduction velocity of the ventricular myocardium has been found to range 

between 0.07–0.75 m/s (Clerc, 1976; Draper and Mya-Tu, 1959; Kleber and Rudy, 2004; 

Roberts et al., 1979; Sano et al., 1959; Weidmann, 1970), the models which extended 

outside this range were excluded from consideration. Endocardial mapping in LBBB cases 

have found the latest point of activation to lie close to the lateral wall of the LV (Auricchio et 

al., 2004), thus we also excluded models where the latest site of activation was in the 

septum. The comparison of model conduction velocity and physiological constraints is 

shown in Fig. 4C. The only model which fulfilled both criteria was the model with fast 

endocardial conduction. The mean temporal error for the models with six-fold fast 

endocardial conduction in the CMR cases was −7.0 ± 0.3 ms, mean distance error was 9.2 

mm ± 0.1 mm, with mean model conduction velocity of 0.33 ± 0.08 m/s.

3.1 Sensitivity to model parameters

The sensitivity of the distance error measure to changes in the anatomy, fibre orientation, 

anisotropy ratio, and the slow septal conductivity were also investigated. It was found that 

regardless of changes in the anatomy, fibre orientation, anisotropy ratio, slow septal 

conductivity, the conclusion that fast endocardial conduction was the most important factor 

remained consistent (see Appendix B for details).
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In addition to models with a six-fold increased conduction velocity in the endocardium, 

simulations were also run for up to ten-fold (Aguado-Sierra et al., 2011) increases in the 

endocardial conduction velocity (see Appendix B3). It was found that as the fast endocardial 

conduction ratio increased from 1.0 (normal model), the distance error between the model 

simulations and the clinical measurements gradually improved. We observed that there were 

no significant differences in the mean distance errors for five-fold to ten-fold increases in the 

FEC ratio (7.9–10.0 mm ± 0.4 mm). While the myocardial conduction velocity for all the 

fast endocardial conduction models remained within the values reported in experimental 

studies.

Experimental canine and human studies have shown that the normal depolarization of the 

heart proceeds in an apical to basal direction, with the greatest concentration of arborizations 

of the Purkinje network in the lower third of the heart in the apical-basal direction 

(Myerburg et al., 1972; Spach et al., 1963). Additional simulations were carried out with 

setting the fast endocardial conduction to be in the lower third of the heart. One-way 

ANOVA was used to compare the models with varying fast endocardial conduction ratios 

and it was found that, when the fast endocardial conduction was only located on the lower 

third of the heart, there were no differences in the mean distance error measures compared to 

the normal model (see Appendix B3).

4 Cross-modality validation

A set of 4 CT patient cases was used for cross-modality validation of the rule based material 

property models (normal, with anterior or posterior block, with slow septal conduction and 

with fast endocardial conduction) (Fig. 5). No scar data was segmented, so the scar model 

was not tested with these CT data sets.

The temporal and distance error measures were calculated for the six electrophysiology 

models (Fig. 6a and b). One-way ANOVA indicated that there were no significant 

differences in the mean temporal errors (p-value > 0.05), while there were found to be 

significant differences in the mean distance errors of the six electrophysiology models (p-

value < 0.001). Tukey post-hoc tests indicated that six-fold fast endocardial conduction (7.5 

± 0.7 mm) had a significantly improved mean distance error measure compared to the other 

models (Normal: 31.4 ± 0.7 mm; with anterior (32.2 ± 0.7 mm) or posterior block (27.5 

± 0.7 mm), and with slow septal conduction (32.0 ± 0.7 mm). The model fitted conduction 

velocities were within physiologically plausible ranges (0.07–0.75 m/s) for the 4 CT data 

sets (0.43 ± 0.18 m/s) only for the fast endocardial conduction models (Fig. 6c).

5 Discussion

In this study we developed a model that robustly simulates the electrical activation across the 

heart using non-invasive data. Rule-based methods for defining the electrical properties of 

the heart were investigated for 14 CMR cases and an additional 4 CT patient cases. The 

importance of the inclusion of scar, functional block, slow septal conduction and fast 

endocardial conduction in simulating the electrical activity across the heart was studied.
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Our results indicate that fast endocardial conduction is the most important factor in 

constraining the model to physiologically plausible parameters consistent with experimental 

studies (latest electrical activation in a non-septal region with conduction velocities of 0.07–

0.75 m/s) and resulting in sub-10 mm errors on average. This mean distance error needs to 

be considered in the clinical context. For CRT pacing lead optimization, the activation 

patterns needs to identify the optimal AHA segment. Endocardially and epicardially each 

AHA segment in the eighteen models had a mean size of 31.0 ± 4.6 mm x 14.4 ± 1.4 mm 

and 45.2 ± 4.3 mm x 30.2 ± 4.0 mm, respectively. The mean distance errors of the CMR 

cases (9.2 ± 0.5 mm) and the CT cases (7.5 ± 0.7 mm) are well within the sensitivity to 

identify the optimal AHA segment.

The underlying mechanism behind fast endocardial conduction is still unknown, with either 

retrograde activation of the Purkinje network or intrinsic properties of the endocardial layer 

hypothesized as reasons for an increase in the endocardial conductivity (Akar et al., 2004; 

Berruezo et al., 2004; Hyde et al., 2015; Strik et al., 2012; Taccardi et al., 2008). 

Experimental studies have found a transmural gradient in cellular properties across the 

ventricles, with increases in the cell areas (Stoker et al., 1982), gap junction density 

(Glukhov et al., 2012), and sodium channel densities (Gaborit et al., 2007) corresponding to 

increased conduction velocity in the endocardium in comparison to the epicardium. 

However, these experimentally observed changes in the endocardial cells are unable to fully 

explain the reported 1.5–4-fold increase in the conduction velocity (Draper and Mya-Tu, 

1959; Myerburg et al., 1978; Strik et al., 2011).

An alternative explanation for fast endocardial conduction is retrograde activation of the 

Purkinje network, which has been observed during RV pacing (Damato et al., 1970). In 

experimental studies, Purkinje fibers arborizations have primarily been found in the lower 

third of the ventricles (Myerburg et al., 1972; Spach et al., 1963), though endocardial 

breakthrough sites have also been identified further up near the base of the left ventricle 

(Durrer et al., 1970). Simulations were run for fast endocardial conduction in the RV and the 

lower third of the LV, however it was found that the mean distance error had no significant 

improvements in comparison to the normal model, regardless of the increase in endocardial 

conduction velocity, unlike the models with a fast endocardial layer extending fully up the 

ventricles where the mean distant error improved as the fast endocardial conduction ration 

increased (Appendix B).

To date, there is a lack of evidence to clearly differentiate between the two mechanisms for 

fast endocardial conduction. In animal studies, the Purkinje network has been found to have 

a three to six fold increase in the conduction velocity in comparison to the myocardial tissue 

(Draper and Mya-Tu, 1959; Myerburg et al., 1978; Sano et al., 1959), while the superficial 

layers of the sub-endocardial ventricular muscle was found to have a 1.5–4 fold increase 

(Draper and Mya-Tu, 1959; Myerburg et al., 1978; Strik et al., 2011). Our simulations were 

also unable to distiguish between the two mechanisms, with five-fold to ten-fold increases in 

the fast endocardial conduction yielding similar temporal and distance errors for models 

where the fast endocardial conduction layer was defined as extending from the apex to base 

of the ventricles.

Lee et al. Page 9

Med Image Anal. Author manuscript; available in PMC 2019 September 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Other simulation studies of cardiac electrophysiology have specifically included in a 

Purkinje network represented as a 1D cable network (Romero et al., 2010; Vigmond and 

Stuyvers, 2016) or as activation sites (Kerckhoffs et al., 2012; Tobon-Gomez et al., 2013) 

based on experimental studies (Durrer et al., 1970; Usyk et al., 2002). The Purkinje system 

anatomy is individual specific, however in-vivo Purkinje fibers are unable to be imaged with 

current methods. Electrophysiology simulation studies have used manually delineated 

models of the Purkinje network (Romero et al., 2010) or randomly generating activation 

onset sites on the endocardial surface (Tobon-Gomez et al., 2013), while patient-specific 

modeling of the Purkinje network has relied on complex iterative methods and invasive 

electro-anatomical data (Cárdenes et al., 2015; Vergara et al., 2014). The aim of this study 

was to investigate simple rule-based methods that can be parameterized from non-invasive 

clinical measurements, so we have assumed that a fast endocardial layer approximates either 

the Purkinje network or the rapid conduction of the sub-endocardial layer. Further 

investigation into the importance of Purkinje network activation in comparison to this 

approximation remains to be done.

In contrast to clinical studies where the scar plays a significant role in response to CRT, our 

study has shown that scar was not the main determinant of activation times. However, the 

conclusions in this study need to be taken in the context of the aims of this paper, which 

were to investigate the relative importance of various factors effecting the electrical substrate 

of the ventricles. Scar, in addition to its effects on the electrical properties, has also been 

found to effect the mechanical properties of the cardiac tissues, with a higher density of 

collagen fibers in scarred tissue leading to an increase in the mechanical stiffness and 

decreased contractility (Jugdutt et al., 1996). Although in this study, we have found that scar 

is not important, it is in the context of the electrophysiology pattern, while the mechanical 

response of the heart is not modeled. In addition, in the study simulations a major effect of 

the scar would only be seen if it is completely transmural, otherwise the simulated electrical 

activation would simply go around the scar. So in a clinical context, it would be important to 

know where the scar is, but in the simulation of the electrical activation pattern, it is less 

important than including the fast endocardial conduction.

6 Limitations

The electrical activation in the heart has been shown to spread primarily along the fiber 

directions, so the myofiber orientations have a significant effect on the electrophysiology in 

the heart (Clerc, 1976; Roberts et al., 1979; Roth, 1997). In recent years, there has been 

increasing interest in personalizing the fiber orientation of the heart with in-vivo (Dou et al., 

2003; Gamper et al., 2007; Geerts et al., 2002; Nguyen et al., 2014; Nielles-Vallespin et al., 

2013; Toussaint et al., 2010, 2013; Wei et al., 2015) or ex-vivo (Helm et al., 2005; Holmes et 

al., 2000; Rohmer et al., 2007) diffusion tensor MRI (DTMRI). Though DTMRI is a 

promising technology for personalizing the fiber orientations in the heart, current challenges 

regarding the signal-to-noise ratio, long image acquisition times, low resolution and motion 

artifacts need to be overcome prior to using this method to personalize the fiber orientations 

in electrophysiology models of the heart. In previous computer modeling studies on rat 

(Bishop et al., 2009) and canine (Bayer et al., 2012) models, DTMRI-based and rule-based 

methods for determining the fiber orientation yielded similar electrical activation patterns. In 
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this manuscript, we have thus assumed that the fiber orientations can be described 

adequately with rule-based methods.

Activation time measurements were only recorded on the free wall of the LV epicardium 

from within the coronary veins. This places inherent limitations on the locations that 

activation times can be measured. To confirm that measurements were made from across the 

epicardium, we have mapped recording sites onto an AHA plot (see Appendix A) and found 

multiple measurements points from all LV epicardium regions. The model was therefore 

only evaluated against epicardial activation time measurements. While complete activation 

time mapping would be ideal, patient measurements must be clinically tractable. We focused 

our measurements on the epicardium as this is the location of conventional CRT pacing and 

we would like to predict the latest epicardial activation time, using simulations, to identify 

potential optimal CRT pacing lead locations.

Another limitation of the models is that the regions of the heart were categorized into normal 

bulk myocardium, scar, functional block, slow septal conduction and fast endocardial 

conduction layers, with the electrical modeling parameters assumed to be homogeneous 

within each region. The conduction velocity in each region was set to be zero (scar or 

functional block) or scaled to be relative to the bulk myocardial tissue. However, regional 

heterogeneities have been found even across normal cardiac tissue, with varying properties 

across the heart transmurally, apical-basally and between the ventricles. In addition the 

infarcted regions were segmented based on MRI images, with no consideration of the 

heterogeneities across the border zone of the scar data. These additional heterogeneities 

could affect the conduction velocities across the heart. However, the degree of heterogeneity 

in the cardiac substrate is still unknown, particularly in diseased hearts. The myocardial 

conduction velocity was parameterized based on the QRS duration, a singular measure from 

the non-invasive 12 lead ECG traces. Other information can be derived from the ECG traces, 

such as the electrical axis which describes the main direction of the electrical depolarization 

in the heart. This information could potentially be used to further personalize the non-bulk 

myocardial conductivities in the heart model, such as differentiation of the RV and LV 

endocardial conduction velocities (Kayvanpour et al., 2015). However, the accuracy and 

robustness of these methods would still need to be investigated in future studies.

7 Clinical implications

In this study, we have developed and validated a novel approach to generate a realistic 

endocardial and epicardial electroanatomic activation map using only non-invasive 

modalities which are commonly used in standard clinical care (CMR/CT and 12-lead ECG). 

This approach was shown to work across 2 imaging modalities (CMR/CT). As only non-

invasive data is required to predict the electrical activation of the ventricles, these 

simulations can be run prior to CRT implantation. In contrast to previous work relying on 

bidomain or monodomain models, our simulations used Eikonal equations to approximate 

the spread of the electrical activation across the heart, which requires a fraction of the 

computational costs (Neic et al., 2017). In this study, each simulation of the heart electrical 

activation took < 30 s on a standard desktop computer. While body surface potential 

mapping is a commercially available non-invasive technique that can be also be used to map 
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the electrical activation of the heart, its cost remains a barrier to widespread clinical 

adoption. Our method presented here is fast, cheap and uses non-invasive clinical images 

and data acquired as part of standard clinical practice allowing for easy integration into 

standard clinical workflows to prospectively predict the latest point of electrical activation in 

the heart prior to device implantation for CRT patients.

8 Conclusion

The combination of a rule-based method for the fiber orientation (Bayer et al., 2012) with a 

rule-based description of the heterogeneous material properties of the electrical system in 

the heart allows for electrophysiology models to be developed with minimal non-invasive 

data (medical images such as CT or MRI and 12 lead ECG to determine the QRS duration) 

prior to device implantation. There is evidence that the optimal LV pacing site for CRT lies 

in the latest electrically activating region (Zanon et al., 2014). A model that incorporates a 

fast endocardial conduction layer is able predict the electrical activation to sub-10 mm 

accuracy. These model can potentially be a useful clinical planning tool to prospectively 

predict the latest point of electrical activation in the heart prior to device implantation (Table 

A9).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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DT MRI diffusion tensor magnetic resonance imaging
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Fig. 1. 
Six electrophysiology models were investigated with the inclusion of scar, functional block 

in the anterior or posterior regions of the LV, slow septal conduction, and fast endocardial 

conduction used to determine the importance of these factors in accurately simulating the 

electrical propagation across the ventricles.
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Fig. 2. 
RV pacing with a six-fold increase in the ventricular endocardium was simulated for the 

14CMR cases, with the electrical activation time normalized as a percentage of the QRS 

duration. The latest activated site is highlighted with a white dot.
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Fig. 3. 
The simulated local activation time normalized as a percentage of the QRS duration (LAT) 

was compared against the clinical LAT for each of the measured sites in the coronary sinus 

venous branches for the model with fast endocardial conduction.
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Fig. 4. 
Simulations were run for the 14 CMR cases, with a basic model, inclusion of scar (for cases 

9–14), slow septum, fast endocardial conduction, anterior or posterior functional block. 

Boxplots of the (a) temporal error, (b) distance error, and (c) conduction velocities are 

shown for each model. The conduction velocities which are between the physiologically 

plausible range (0.07–0.75 m/s) are highlighted in green.
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Fig. 5. 
(a) CT images were acquired for 4 CRT upgrade patients and were automatically segmented 

using the Philips model based tool. (b) The EAM from Ensite NavX (white) was mapped to 

the coronary sinus semi-automatically segmented from the CT images (black). (c) The 

electrical activation across the ventricles from RV pacing was simulated. (d) The EAM local 

activation times were mapped onto the model (spheres) and the RMS distance error of the 

mapped EAM sites onto the models is stated for each case. (e) The LAT as a percentage of 

the QRS duration was compared between the clinical measurements and the model 

simulations with a six-fold increased conduction velocity in the ventricular endocardium.
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Fig. 6. 
Simulations were run for the 4 CT cases, with a basic model, slow septum, fast endocardial 

conduction, anterior or posterior functional block. Boxplots of the (a) temporal error, (b) 

distance error, and (c) conduction velocities are shown for each model. The conduction 

velocities which are between the physiologically plausible range (0.07–0.75 m/s) are 

highlighted in green.
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