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Abstract: Fabry disease (FD) is a lysosomal storage disorder (LSD) characterized by the deficiency of
α-galactosidase A (α-GalA) and the consequent accumulation of toxic metabolites such as globotriao-
sylceramide (Gb3) and globotriaosylsphingosine (lysoGb3). Early diagnosis and appropriate timely
treatment of FD patients are crucial to prevent tissue damage and organ failure which no treatment
can reverse. LSDs might profit from four main therapeutic strategies, but hitherto there is no cure.
Among the therapeutic possibilities are intravenous administered enzyme replacement therapy
(ERT), oral pharmacological chaperone therapy (PCT) or enzyme stabilizers, substrate reduction
therapy (SRT) and the more recent gene/RNA therapy. Unfortunately, FD patients can only benefit
from ERT and, since 2016, PCT, both always combined with supportive adjunctive and preventive
therapies to clinically manage FD-related chronic renal, cardiac and neurological complications.
Gene therapy for FD is currently studied and further strategies such as substrate reduction therapy
(SRT) and novel PCTs are under investigation. In this review, we discuss the molecular basis of FD,
the pathophysiology and diagnostic procedures, together with the current treatments and potential
therapeutic avenues that FD patients could benefit from in the future.

Keywords: lysosomal storage disorders; Fabry disease; α-galactosidase A; A4GALT; globotriaosylce-
ramide (Gb3); globotriaosyl-sphingosine (lysoGb3); enzyme replacement therapy; pharmacological
chaperone therapy; substrate reduction therapy

1. Introduction

In 1898, two dermatologists, Johannes Fabry in Dortmund and William Anderson in
London, reported similar patients with characteristic skin lesions, so-called angiokeratoma
corporis diffusum [1,2]. The inherited disorder became known as Anderson–Fabry disease,
nowadays generally referred to as Fabry disease (FD). A striking feature of FD (OMIM
301500) is the characteristic lipid deposits, named zebrabodies, prominently encountered in
endothelial cells but lesser also in other cell types [3]. The main component of the storage
material was identified by Sweeley and Klionsky as the globoside globotriaosylceramide
(Gb3), initially named ceramidetrihexoside (CTH) [4]. Additional accumulating glycosph-
ingolipids in FD patients such as galabiosylceramide (Gb2) and blood group B, B1 and P1

antigens can be observed, all sharing a terminal α-galactosyl moiety [3]. The molecular
basis for lipid abnormalities was firstly elucidated by Brady and coworkers, demonstrating
the deficiency of lysosomal acid α-galactosidase activity converting Gb3 to lactosylce-
ramide (LacCer) [5]. A convenient enzyme assay for diagnosis of FD was next developed
by Kint, employing an artificial chromogenic α-galactoside substrate [6]. Subsequent re-
search revealed that the reduced α-galactosidase activity in FD patients stems from the
lysosomal enzyme α-galactosidase A (α-GalA) that is encoded by the GLA gene located
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at chromosome Xq22 [3]. Of note, an ancient gene duplication has led to two relatively
homologous genes: GLA and NAGA. NAGA (also known as α-Galactosidase B (α-GalB)), lo-
cus 22q13.2, evolved into an N-acetylgalactosaminidase cleaving α-N-acetylgalactosamine
from glycoconjugates [7,8]. Mutations in NAGA cause Schindler disease and Kanzaki
disease [9]. α-GalA and α-GalB are both inhibited in enzymatic activity by galactose but
only α-GalB is inhibited by N-acetylgalactosamine [10]. The globoside Gb3 is degraded by
α-GalA, although a minor α-GalB activity towards this metabolite has been reported [11].
The α-GalA enzyme is synthesized as a 429 aa precursor that is processed to a 398 aa glyco-
protein functioning as a homodimer [11,12]. The three N-linked glycans of α-GalA acquire
mannose-6-phosphate moieties that assist the enzyme’s sorting to lysosomes by mannose-
6-phosphate receptors. The activity of α-GalA towards the lipid substrate is enhanced by
the activator protein saposin B and negatively charged lipids [3]. Close to 1000 mutations
have meanwhile been identified in the GLA gene, of which most are missense mutations.
Thanks to the work of many, particularly by Sakuraba and colleagues, the consequences at
the enzyme level of several α-GalA mutations are known [13]. However, the impact of a
large number of the presently reported α-GalA mutations remains unclear [14]. So-called
α-GalA mutations of unknown significance are often not associated with clearly reduced
α-galactosidase activity, promoting the debate as to whether they truly are causing FD [15].

2. Clinical Manifestation of FD

The classic disease manifestation of FD has been extensively described for males [3,16].
Generally, these FD hemizygotes show α-GalA mutations with no or very little residual
α-galactosidase activity. Besides the characteristic angiokeratoma, the patients develop
corneal opacity (cornea verticillata), neuropathic pain (acroparasthesias), intolerance to
heat, inability to sweat, micro-albuminuria and increased intima media thickness. Later in
life, the patients develop progressive kidney disease, cardiac symptoms and cerebrovas-
cular disease (stroke). These late-onset symptoms are indistinguishable from similar
complications of other origin commonly occurring in the general population. The renal
disease usually involves progressive proteinuria following a decline in the glomerular
filtration rate (GFR). The final outcome is end-stage renal disease requiring dialysis and
kidney transplantation. The heterogeneous cardiac complications may include progres-
sive hypertrophic cardiomyopathy, conduction defects and arrhythmia, atrial fibrillation,
valvular disease and coronary artery stenosis. Regarding cerebrovascular complications,
ischemic stroke and transient attacks occur relatively commonly. Brain MRI often reveals
asymptomatic lesions in the white matter [3].

It has only more recently been appreciated that a significant portion of female FD
heterozygotes develop complications, although usually in an attenuated form compared to
male FD hemizygotes [17]. Due to X chromosome inactivation (Lyonization), wherein there
is (random) transcriptional silencing of one of the X chromosomes in each cell, FD females
are mosaic for the expression of α-GalA. Skewed X-inactivation favoring the mutant
α-galactosidase A allele in female FD heterozygotes is associated with more severe disease
manifestation [18]. In FD females, chronic renal insufficiency is rare. The manifestation
of symptoms in FD females is remarkable given the known mosaic of α-GalA-containing
and α-GalA-deficient cells in their tissues and the considerable levels of active α-GalA in
the circulation [3]. Of note, heterozygous carriers of another X-linked lysosomal storage
disorder (LSD) caused by iduronate 2-sulphatase deficiency, Hunter disease (HD), lack
symptoms [19]. Apparently, in the case of HD, but not FD, sufficient complementation
occurs in deficient cells of female heterozygotes owing to the uptake of secreted enzymes
by normal cells [20]. Importantly, atypical variants of FD have been recognized. In these
individuals, the disease is restricted to a single organ, particularly the heart and kidneys [21].
FD is now considered to be the most common LSD [16,22]. An accurate estimation of the
prevalence is complicated by the great phenotypic heterogeneity. The estimated birth
prevalence of classic FD is 0.42 per 100,000 male births in the Netherlands. The actual
total prevalence of FD is higher because of under diagnosis of female patients and atypical
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disease manifestations. Newborn screening studies based on identification of abnormalities
in the GLA gene or deficiency in α-GalA activity suggest a birth prevalence of at least 1
in 4000 in European populations [23], and higher frequencies have even been noted in
Taiwan [24].

3. Storage Cells and Secondary Storage Lipids

The clinical symptoms and signs of FD differ fundamentally from other sphingolipi-
doses such as Gaucher disease (GD), in which lipid-laden macrophages are prominent
and thought to contribute to characteristic symptoms such as hepatosplenomegaly and
pancytopenia [25]. In sharp contrast, multiple cell types accumulate lipids in classic FD
patients [26]. In the kidney, for example, lipid deposits are detected by electron microscopy
in podocytes, endothelial glomerular cells and distal tubular cells [27]. Another peculiarity
of FD is the relative mild outcome of complete α-GalA deficiency encountered in most
classic FD males. There are no infantile and severe juvenile FD phenotypes as observed for
other sphingolipidoses. Moreover, in FD, there is a remarkable discrepancy between the
onset of lipid storage and that of symptoms. Gb3 storage in classic FD males already occurs
in utero in endothelial cells and macrophages [28]. However, clinical symptoms develop
only late in life. The same discrepancy is noted in α-GalA-deficient FD mice and rats [29,30].
Lipid-laden macrophages have been observed in the liver of classic FD males. Consistent
with this, chitotriosidase, an established plasma biomarker of sphingolipid-accumulating
macrophages in GD patients, is also elevated in the plasma of classic FD males [31,32].
This is not the case in FD females, suggesting that their macrophages are complemented by
enzymes released from surrounding cells in contrast to other cell types [33].

A hallmark of FD is the marked elevation of water-soluble deacylated Gb3, also known
as globotriaosyl-sphingosine (lysoGb3) [34]. The sphingoid base lysoGb3 is formed by the
enzyme acid ceramidase from accumulating Gb3 in lysosomes [35]. LysoGb3 can leave cells
and reach the circulation, resulting in over a hundred-fold elevated plasma levels in classic
FD males. LysoGb3 is even clearly raised in the plasma of many female FD heterozygotes.
Increases in lysoGb3 were also observed in the urine of FD patients. A similar lysoGb3
abnormality was detected in FD mice [36]. Several investigators have meanwhile confirmed
the value of elevated plasma lysoGb3 as a biomarker of classic FD, including demonstration
of abnormal lysoGb3 in urine [37–40]. Prominent sources of plasma lysoGb3 are likely the
endothelium and liver, and the increased plasma lipid appears not to reflect one particular
symptom [25,41].

4. Pathophysiology

It is well established that accumulation of Gb3 during α-GalA deficiency takes place
in lysosomes, but the subsequent mechanisms causing cellular dysfunction, and ultimately
symptoms, are still poorly understood [25,42]. As with other inherited glycosphingolipi-
doses, lipid-laden lysosomes can be envisioned to cause impaired autophagic flux, includ-
ing mitophagy, contributing to the observed mitochondrial dysfunction in fibroblasts of
FD patients [43–45]. Likewise, dysfunction of the endoplasmic reticulum may occur as
suggested by the observed induction of the unfolded protein response in cells of some
FD patients [46]. Fibrosis, inflammation and oxidative stress seem to play key roles in
pathogenesis [47–50]. It has been hypothesized that lysoGb3 may also act as a pathogenic
factor in FD [25,51]. A significant correlation of lysoGb3 lifetime exposure with overall
disease severity was noted for classic male and female FD patients [41]. Indeed, lysoGb3
promotes smooth muscle cell proliferation, which fits with the increased intima media
thickness and arterial stiffness in FD [29]. Furthermore, evidence has been provided that
lysoGb3 at concentrations occurring in FD males damages nociceptive neurons, consistent
with the reported pain in the extremities of classic FD males [52]. Lifetime exposure to
lysoGb3 was found to correlate very significantly with the cold detection threshold and
thermal sensory limen of the upper limb [53]. Next, lysoGb3 is thought to contribute
to podocyte loss and glomerulus fibrosis, important aspects of the renal disease in FD
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patients [54,55]. Finally, lysoGb3, at concentrations as in FD patients, is found to inhibit
endothelial nitric oxide synthase (eNOS) and thus may contribute to the vasculopathy in
FD [56,57].

There appear to be other cellular consequences of α-GalA deficiency beyond the
lysosome. The autophagy–lysosome pathway (ALP) is an important recycling pathway
that mediates cell survival [58]. Disruption of the ALP is a common hallmark of lysosomal
storage disorders, including Fabry disorders [59–61]. Likewise, in sphingolipid disorders
such as Gaucher disease and Fabry disease, disturbed mitochondrial function and energy
balance have been noted (for an excellent review on this topic, see Ivanova et al. 2020) [45].
Moreover, infiltration of lymphocytes and macrophages in tissues of FD, including the
heart, has been observed, suggesting a role for inflammation in tissue damage. Possibly,
chronic inflammation in FD, and associated oxidative stress, promotes organ damage (for a
review, see Rozenfeld et al. [48]).

5. Diagnosis

Monitoring of disease manifestations and therapeutic efficacy of FD treatment is
essential for the clinical management of FD patients. Disease onset and progression can
be determined by clinical, radiological and laboratory analysis. However, the efficacy of a
clinical treatment is sometimes challenging to assess due to high variability among patients.
In addition, some pathological consequences of FD such as advanced renal failure are
irreversible. Nevertheless, biomarkers play a very important role in disease and treatment
monitorization [62].

The diagnosis of classic FD males is straightforward: identification of GLA gene
mutations encoding an absent or evidently dysfunctional α-GalA protein. Extremely
low α-GalA activity in leukocytes, fibroblasts and dried blood spots can be conveniently
demonstrated using artificial water-soluble substrates, such as 4-methylumbelliferyl-α-
galactoside [25]. Detection of elevated concentrations of plasma and urinary Gb3 and
lysoGb3 can be used to further confirm diagnosis [29,37,62]. Sensitive LC-MS methods
for this have been developed [63–66]. Enzyme activity assays are not always informative
for FD females, particularly those with unfavorably skewed X-inactivation. Detection of
elevated lysoGb3 is very helpful then to confirm FD diagnosis in females. Problematic
is the diagnosis of atypical FD patients presenting with an uncharacteristic symptom
(e.g., albuminuria, left ventricular hypertrophy or white matter lesions) in combination with
an abnormality in the GLA gene with unknown consequences. This is often accompanied
by a relatively high residual enzyme activity in cells and no clear abnormality in plasma
or urinary Gb3 and lysoGb3 concentrations. Analysis of biopsies and demonstration of
deposits of Gb3 are considered, in problematic cases, as helpful to support diagnosis [67,68].
Biochemical monitoring of disease in FD patients increasingly relies on the measurement
of plasma lysoGb3; however, it should be kept in mind that the lipid levels do not reflect a
particular symptom [69].

6. α-GalA: Reaction Mechanism and Activity-Based Probes (ABPs)

Glycosidases are hydrolytic enzymes that ensure the cleavage of glycosidic linkages
in (oligo) saccharides and glycoconjugates, and they have been essential for the breakdown
of various glyco(sphingo)lipids such as globotriaosylceramide (Gb3), which together with
lysoGb3 is the predominant glycosphingolipid that accumulates in FD patients. α-GalA,
an exo-retaining galactosidase member of the GH27 family (cazypedia.org), is responsi-
ble for the breakdown of Gb3 into lactosylceramide (LacCer) and galactose [70]. α-GalA
cleaves the terminal α-linked galactose units from polysaccharides, glycolipids and glyco-
proteins [5]. α-GalA and its related lysosomal counterpart α-N-acetylgalactosaminidase
(NAGA), also known as α-galactosidase B (α-GalB), which cleaves terminal α-linked N-
acetylgalactosamine (α-GalNAc) moieties, are the only human retaining α-galactosidases
known [71]. Their active sites only differ in two amino acid residues, which accommodate
the C-2 substituent of the enzymatic substrate [12,71]. α-GalB can accommodate larger C-2
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substituents (Figure 1A) in contrast to α-GalA (Figure 1B) which only allows a secondary
hydroxyl at the C-2 position. Interestingly, by changing these two active site residues in
either enzyme, the substrate specificity can be interchanged [71]. In addition to the C-2
position, the substituent and conformation at the C-6 position also play an important role
in determining the reactivity of carbohydrates and the selectivity of chemical glycosylation
reactions by influencing the stability of the oxocarbenium ion [72]. Most side chains of
unbound “free” sugar molecules populate either a gauche,gauche (gg), gauche,trans (gt) or
trans,gauche (tg) conformation, in which these abbreviations refer to the stereochemical rela-
tion between the O6-C6, O5-C5 and C4-C5 bonds. This results in the gg conformation being
the most favorable for the formation of oxocarbenium ions [72]. However, this is highly
influenced by the stereochemistry of the substituent at the C4 position which is reflected
by the fact that the C6 side chains of galactose-configured molecules tend to adopt the gt
conformation since the gg conformation results in an energy penalty due to both C6 and C4
substituents having an axial orientation. Interestingly, these stereochemical preferences are
also reflected in the way glycosidases bind their substrates. In the case of α-galactosidases,
they have a preference for binding their substrates in the gt conformation, thereby avoid-
ing additional energy penalties but still maintaining the highly stabilizing effect on the
oxocarbenium ion transition state that the substrate adopts during hydrolysis [72].

Figure 1. Enzyme structure and reaction mechanism of α-N-acetylgalactosaminidase (α-GalB) and α-galactosidase A
(α-GalA). (A) Active site of α-GalB (gray) with GalNAc (blue) bound in the pocket. (B) Active site of α-GalA (blue) with
galactose (black). Larger C-2 substituents cannot be accommodated in α-GalA due to the presence of residues L206 and
E203. Structures were obtained from the Protein Data Bank (PDB) IDs 3H55, 3H54 or 3GXP and visualized using CCP4MG.
(C) Koshland double displacement mechanism of retaining α-GalA.

Apart from the structural similarities between α-GalA and α-GalB, both enzymes
retain galactosidases, which means that cleavage of the glycosidic linkage in the enzymatic
substrate results in retention of the stereochemistry at the anomeric position of the terminal
galactose moiety [73]. This retention of stereochemistry at the anomeric position is driven
by a Koshland double displacement mechanism (Figure 1C) [74,75]. In the first step of
this mechanism, the nucleophilic residue attacks at the anomeric center of the substrate,
while the acid/base residue protonates the leaving group (LacCer in the case of α-GalA).
This first step results in the formation of a covalent intermediate via an oxocarbenium
ion-like transition state [75]. For the second step, the acid/base amino acid deprotonates a
water molecule which concomitantly performs a nucleophilic attack at the anomeric center
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of the covalently bound substrate. This second step also follows a second oxocarbenium
ion-like transition state which results in hydrolysis of the substrate with net retention
of the stereochemistry at the anomeric position. X-ray crystal structures revealed that
the roles of the nucleophile and the catalytic acid/base in α-GalA were performed by
aspartic acid residues D170 and D231, respectively [12]. In addition, the crystal structure
showed that α-GalA is a homodimeric glycoprotein and each of the monomers contains two
domains, one active site domain and one C-terminal domain containing eight antiparallel
β-strands and two sheets. Furthermore, it was found that each monomer contains three N-
glycosylation sites that are important for the transport of the enzyme towards the lysosome
mediated by the mannose-6-phosphate receptor [12].

Due to their medical implications, multiple inhibitors have been developed over the
years that affect both α-galactosidases and more specifically α-GalA. These inhibitors
can generally be divided into reversible or irreversible inhibitors. Irreversible inhibitors
bind covalently to the enzyme, thereby capitalizing on the Koshland double displacement
mechanism. Thus, these inhibitors often utilize an electrophilic trap to capture the nu-
cleophilic residue in the enzyme active site. Some of the oldest irreversible glycosidase
inhibitors, which were also designed for α-galactosidases, are fluorinated sugars such as
1 [76] (Figure 2). The fluorine atom causes an inductive effect, which makes it more difficult
for the substrate to enter the positively charged oxocarbenium ion transition state and im-
pairs its hydrolysis. Unfortunately, these fluorinated sugars showed modest to no inhibition
of α-galactosidases from green coffee bean and Aspergillus niger. Epoxides are commonly
used electrophilic traps and they were first used as α-galactosidase inhibitors in the form of
conduritol C 2 [77]. This epoxide-based inhibitor was further developed into the synthetic
form of the cyclophellitol epoxide 3 [78,79]. Unfortunately, epoxide 3 is not a selective
α-GalA inhibitor since it also inhibits β-galactosidases GLB1 and GALC [79]. In addition to
the epoxides, their nitrogen-based counterpart α-galactose-configured aziridine 4 [78] has
shown to be a potent inhibitor of α-GalA (apparent IC50 = 40 nM) [79]. However, similar
to epoxide 3, the aziridine is not selective for α-GalA and displays a decent inhibition of
GLB1 (apparent IC50 = 0.93 µM) and GALC (apparent IC50 = 1.1 µM). Both epoxide- and
aziridine-based inhibitors make use of the 4C1 → 4H3 → 1S3 conformational itineraries of
retaining α-galactosidases [75], mimicking the 4H3 transition state which is also adopted
by β-galactosidases [80]. Recently, α-Gal-cyclosulfate 5 has been synthesized as a potential
α-GalA inhibitor which mimics the initial 4C1 Michaelis complex [79]. Its chair conforma-
tion may render this inhibitor selective towards α-GalA (apparent IC50 = 25 µM) and binds
covalently to the enzyme adopting a 1S3 bound conformation [79].

Figure 2. α-GalA inhibitors and activity-based probes (ABPs). (A) Irreversible inhibitors: 2-deoxy-2-fluoro-D-galactosyl
fluoride 1, conduritol C 2, cyclophellitol epoxide 3, cyclophellitol aziridine 4 and cyclosulfate 5. (B) Reversible inhibitors:
Gal-DNJ 6; cyclosulfamidate 7. (C) ABPs: Cy5 probe 8 (blue), Bodipy-green probe 9 (green) and biotinylated probe 10 (black).
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Next to these covalent compounds, one of the first α-GalA inhibitors that is currently
used in the clinic is the reversible inhibitor 1-deoxy-galactonojirimycin (DGJ, 6) [81] which
exploits non-covalent interactions. The endocyclic nitrogen of 6 can become protonated,
forming an ion pair with a negatively charged amino acid residue in the α-GalA active site.
Iminosugar 6 is a potent α-GalA inhibitor (IC50 = 79 nM) but lacks selectivity since it also
inhibits both GLB1 and β-glucosidase GBA [79]. As a potential alternative for 7, selective
cyclosulfamidate 7 was designed [79]. The cyclosulfamidate is a reversible inhibitor that
results from the replacement of one of the endocyclic oxygens of the cyclosulfate 5 by a
nitrogen atom. This replacement severely decreases its leaving group capacity, turning cy-
closulfamidate 7 into a reversible inhibitor mimicking the Michaelis complex conformation.
Although cyclosulfamidate 7 is a more selective inhibitor, it presents a lower inhibitory
potency than iminosugar 6.

Apart from their application as irreversible inhibitors, epoxide- and aziridine-based
inhibitors have also been functionalized into activity-based probes (ABPs) for the labeling
of various glycosidases in biochemical assays [80]. Modification of aziridine 4 with acyl-
based fluorophores (8 and 9) and biotin (10) tags results in valuable biochemical tools to
study α-GalA [82]. These ABPs have shown great selectivity towards α-GalA and α-GalB
and can be used in competitive activity-based protein profiling (cABPP) assays to screen
new inhibitors or to profile enzyme activity in cell extracts. In particular, ABPs 8 and 10
have been used to study the activity of α-GalA and α-GalB from plant extracts to study the
potential enzyme production from Nicotiana Benthamiana (N. Benthamiana) [10]. In addition,
these probes have also been used to identify a novel α-galactosidase from N. Benthamiana
named α-galactosidase A1.1 [83]. This plant-derived enzyme presents significant structural
similarities with α-GalA, an improved stability over a broad pH range and a similar ability
to hydrolyze both Gb3 and LysoGb3, representing a potential therapeutic alternative for
ERT-based FD management.

7. Present α-GalA-Centered Therapy Approaches

Until a few decades ago, there was no effective treatment available for inherited lyso-
somal storage diseases (LSDs). The management of most LSDs consisted only of supportive
care. For some of the disorders, particularly mucopolysaccharidosis I-H (MPS I-H) and
globoid cell leukodystrophy, bone marrow transplantation was performed [84,85]. A break-
through regarding treatment of LSDs was accomplished by Roscoe Brady, who pioneered,
with colleagues at the National Institutes of Health (NIH) in Bethesda, the development
of an effective enzyme supplementation for non-neuronopathic type 1 Gaucher disease
patients [86,87]. Currently, LSDs treatment capitalizes on four main therapeutic strategies
(Figure 3). Intravenous supplementation of administered enzyme replacement therapy
(ERT) increases the enzyme levels in the body, while oral pharmacological chaperones
(PCT) have shown to promote the correct folding of amenable mutated glycosidases and
retrieve residual activity levels. Substrate reduction therapy (SRT) aims to inhibit the
biosynthesis of the accumulated metabolites. More recently, gene/RNA therapy allows
the insertion of the gene encoding the deficient enzyme in patient cells. Unfortunately, FD
patients can presently benefit only from ERT and, since 2016, PCT, both always combined
with supportive adjunctive and preventive care.

Enzyme replacement therapy (ERT) is based on chronic two-weekly infusion of (now
recombinant) glucocerebrosidase targeted to macrophages by the presence of terminal man-
nose residues in its N-linked glycans (Figure 3A). The success of the intervention prompted
the development of similar ERT approaches for other LSDs, including FD. For this pur-
pose, two different recombinant α-GalA preparations were independently developed in
academic centers and subsequently pharmaceutical companies [88,89]. On 3 August 2001,
both enzymes for ERT of FD were approved as the first orphan drugs in Europe: agalsidase
alfa (Replagal®, Shire HGT [90]) and agalsidase beta (Fabrazyme®, Sanofi Genzyme [90]).
The production of the two enzymes is fundamentally different: agalsidase alfa is produced
by gene promotor activation in fibroblasts and agalsidase beta by conventional cDNA



Biomolecules 2021, 11, 271 8 of 20

technology in CHO cells. This difference seemed highly relevant since mRNA editing
had been reported for α-GalA. Theoretically, mRNA editing of agalsidase alfa, but not of
agalsidase beta, would cause an amino acid difference at position 396 of both enzymes.
Detailed analysis of the amino acid composition of both enzymes revealed that α-GalA
mRNA is not edited [91]. Both recombinant enzymes, differing slightly in glycan compo-
sition, were found to be comparable when tested on in vitro specific activity and uptake
by cultured fibroblasts [91,92]. Recent studies with different cultured cells revealed that
uptake of recombinant α-GalA (clathrin- and caveolae-dependent endocytosis) might be
cell type-specific [93]. Of note, in a human podocyte cell line, three endocytic receptors,
IGF2R/M6P, megalin and sortilin, were reported to be involved in α-Gal A uptake [94].
Attention has been focused on improving the tissue distribution of therapeutic enzymes by
the generation of α-GalA glycoforms. Elegant chemoenzymatic synthesis was employed
by Fairbanks and colleagues to replace the glycans of recombinant α-GalA by synthetized
mannose-6-phosphate-rich structures [95]. More recently, engineered CHO cell lines were
used to generate specific α-GalA glycoforms [96]. Bolus injection in FD mice revealed the
impact of glycan composition on the biodistribution of α-GalA. Unexpectedly, an α-2-3
sialylated (SA) glycoform of α-GalA was found to exhibit improved circulation and biodis-
tribution [96]. It should, however, be kept in mind that translating the outcome of a bolus
injection administered via the tail vein in mice to the biodistribution in FD patients is tricky.

Figure 3. Therapeutic strategies for treatment of Fabry disease. (A) Enzyme replacement therapy (ERT). (B) Pharmacological
chaperone therapy (PCT). (C) Substrate reduction therapy (SRT). (D) Gene therapy.

Both agalsidases alfa and beta are now approved in many countries throughout the
world, but agalsidase alfa is still not approved by the US Food and Drug Administra-
tion (FDA). A recombinant α-GalA named Pegunigalsidase-alfa (PRX-102, prh-α-GalA
from Protalix) that is produced in tobacco cells and has been chemically modified with
polyethyleneglycol (PEG) is currently being investigated in clinical trials [97]. Such chem-
ical modification offers protein stabilization, increased half-life and an improved biodis-
tribution profile [98]. The registered ERTs (agalsidase beta at a standard dose of 1 mg/kg
bw/2 wks and agalsidase alfa at a standard dose of 0.2 mg/kg bw/2 wks, similar in costs)
were both found to result in clearance of storage material in heart and kidney biopsies.
Based on this, ERT was hoped to protect kidney and cardiac function, but more recent data
indicate that new clinical events (such as development of end-stage renal failure, myocar-
dial infarction, ventricular fibrillation or cerebrovascular events) may occur in FD patients
during ERT. Male sex, classical phenotype and increasing age at treatment initiation are
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risk factors for progression of disease while on ERT. Other risk factors are reduced renal
function, proteinuria, cardiac hypertrophy and fibrosis, hypertension and occurrence of
events before the start of ERT. An earlier start of ERT, especially in male patients with
classic FD, is thought to improve the treatment outcome [68,99].

The impact of ERT on plasma lysoGb3 levels in FD patients has been, and still is,
widely monitored [25]. Plasma lysoGb3 in classic FD patients was found to decrease
rapidly after the start of ERT with several regimens in an enzyme dose-dependent man-
ner [100]. After 3 months of treatment, plasma lysoGb3 levels tended to become stable
but complete corrections were rare. On the other hand, a reduction in ERT was found
to lead to increases in Gb3/lysoGb3 levels in most FD patients investigated [101]. Some
classic FD males showed, after a few months of ERT at a similar enzyme dose, a relapse
in plasma lysoGb3 levels, which prompted the analysis of a possible antibody response
to the therapeutic enzyme. Indeed, the occurrence of antibodies is observed in about 70%
of classic FD males receiving ERT [102,103]. Most classic FD males completely lack the
α-GalA protein and an immunological response to the infused foreign therapeutic protein
is not surprising. The antibodies formed in classic FD male patients receiving agalsidase
alfa or beta comparably bind to both recombinant enzymes in vitro and neutralize en-
zyme activity in vitro [103]. The correction of plasma lysoGb3 during ERT is much less
prominent in FD males with antibodies than those without [103]. Similarly, urinary Gb3
levels also hardly correct in FD males with antibodies [103]. The clinical consequences of
neutralizing antibodies were unclear for many years. Bénichou et al. observed significantly
impaired Gb3 clearance in skin biopsies of patients treated with ERT showing high anti-
body titers [104]. A five-year study with 68 male FD patients treated with ERT showed that
40% presented serum-mediated antibody inhibition of enzyme, which was associated with
increased lyso-Gb3, higher risks for FD-associated symptoms and impaired cardiac and
renal function [25]. The cause(s) for the limited response to ERT is (are) not known. Likely,
the induction of (neutralizing) antibodies against a therapeutic protein in classic FD males
contributes to this. Inadequate ERT biodistribution has also been highlighted, with few
enzymes reaching podocytes and cardiac myocytes [28,29].

A seminal work by Ishii and colleagues revealed that specific mutant forms of α-GalA
that misfold in the endoplasmic reticulum and are subsequently prematurely degraded can
be partly rescued by galactose and more potently by 1-deoxygalactonojirimycin [105–107].
These findings prompted the development of 1-deoxygalactonojirimycin as a pharmacolog-
ical chaperone named Migalastat (Galafold®, Amicus Therapeutics), which was approved
in 2016 in Europe and Canada (USA approval was delayed to 2018) as an alternative thera-
peutic approach, representing the only oral treatment for FD (Figure 3B) [108]. This small
iminosugar reversibly binds to the enzymatic active site in the endoplasmic reticulum
(ER) and stabilizes, at low concentrations, particular mutant forms of α-GalA (known as
amenable mutant forms), promoting the proper folding of the enzyme, maturation and its
trafficking to lysosomes [106,109]. The more acidic lysosomal pH (compared with a neutral
pH in the ER) and the high concentration of the Gb3 metabolite in the lysosome displace
the reversible small chaperone from the active site and the active enzyme is then able to
hydrolyze the accumulated substrates at the lysosomal interface. However, this therapeutic
strategy is limited to a specific number of mutations. It is estimated that only 35–50% of
FD patients present a migalastat-amenable mutation [110,111]. Interestingly, several recent
studies on FD patients with amenable mutations suggest that switching from ERT with agal-
sidase alfa or beta to migalastat can be a valid, safe and well-tolerated strategy [111–113].
A more recent strategy involves the joint administration of a recombinant enzyme and
a pharmacological chaperone [112–115], aiming to stabilize the recombinant enzyme in
circulation with the final goal of increasing the concentration of the enzyme that may
reach the affected tissues, and allowing the use of lower enzyme doses and prolonged
intervals between IV administrations, which should ultimately decrease the side effects
and treatment cost and, more importantly, improve the quality of life of FD patients [116].
In particular, migalastat presents a synergetic effect in cultured fibroblasts from FD pa-
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tients and increases the tissue uptake of recombinant human α-GalA in FD mice [113,115].
A conceptually new class of enzyme stabilizers, cyclophellitol cyclosulfamidates, have
recently been described to stabilize algasidase beta and increase α-GalA activity in FD
fibroblasts, assisting the functional correction of lysoGb3 metabolite accumulation [79].
Positive allosteric modulators are also under investigation which could afford safer daily
dose regimens by avoiding the use of active site binders with a potential inhibitory effect.
In particular, in silico docking leads to the identification of 2,6-dithiopurine, an allosteric
ligand that stabilizes lysosomal α-GalA in vitro and rescues a particular mutant form,
A230T, which is a non-amenable mutation for PCT 1-deoxygalactonojirimycin [117].

Extensive research efforts have been made towards a better FD therapy over the
past twenty years, and clinical trials have resulted in FDA- and/or EMA-approved ERT
and PCT. Importantly, new research in the field moves towards SRT and gene/RNA
therapy to fill the gap of this yet not curable disease. Substrate reduction therapy (SRT)
relies on small molecules capable of inhibiting the biosynthesis of the metabolites that
accumulate in the lysosome (Figure 3C). SRT using GlcCer synthase (GCS) inhibitors such
as miglustat and eliglustat is already on the market for the treatment of Gaucher disease
type I, and miglustat is approved for Niemann–Pick Type C, a rare progressive genetic
disorder characterized by the deficient transport of cholesterol and lipids inside cells.
Both drugs inhibit GCS, which blocks the first step in glycosphingolipid biosynthesis [118].
In particular, venglustat/ibiglustat [119] and lucerastat [120] are currently under evaluation
as oral GCS inhibitors for FD (NCT02228460 and NCT02930655 are the respective clinical
trials). Efforts and directions towards SRT for FD with specific inhibition of A4GALT,
the responsible glycosyltransferase for the synthesis of Gb3, will be further discussed in
this review.

Gene therapy is based on the insertion of a correcting gene, encoding the deficient
enzyme, in patient cells (Figure 3D). The correcting gene is usually delivered through a
vector such as adeno-associated virus (AAV), lentivirus, retrovirus or a non-viral-based
system that can then alter the DNA or RNA transcript used for the synthesis of the enzyme
of interest. By inserting the nonmutant GLA gene, gene therapy aims to correct the enzyme
deficiency and reduce the accumulation of Gb3 and lysoGb3 and eventually prevent organ
damage in FD patients. A first-in-human clinical study for the treatment with autologous
stem cell transplantation using CD34+ cells transduced with the lentiviral vector containing
the human GLA gene started in Canada in 2016 (NCT02800070). Avobrio is also currently
running a phase II clinical trial (NCT03454893) to study the efficacy and safety of a gene
therapy (AVR-RD-01) for the treatment of classic FD patients. Recently, two new gene
therapies (ST-920 and FLT190) making use of an AAV vector encoding human α-GalA
cDNA with specific liver expression cassettes have been described to increase plasma
and tissue α-GalA activities in an FD mouse model and are in phase I/II clinical trials
(NCT04046224 and NCT04040049) [121–123]. Messenger RNA (mRNA) is also emerging
as a new class of therapy for the treatment of rare monogenic disorders. In particular,
the efficacy of a messenger mRNA encoding the α-GalA enzyme has been reported in FD
α-GalA knockout mice through an IV bolus administration of α-GalA mRNA encapsulated
in lipid nanoparticles (0.05–0.5 mg/kg) [124]. Of note, gene therapeutic correction has to
be accomplished in the CNS for most LSDs, but not necessarily in FD. Cerebrovascular
dysfunction in FD patients resulting in neurological deficits stems largely from stenosis of
small vessels and enlargement of large vessels may result in neurological deficits [125].

8. A4GALT: Reaction Mechanism and Enzymatic Products

α-1,4-Galactosyltransferase (A4GALT, Gb3 synthase) is the enzyme responsible for
the synthesis of Gb3 from LacCer and UDP-galactose catalyzing the formation of an
α-glycosidic 1,4 linkage between the anomeric center of the UDP-Gal donor and the LacCer
acceptor. This retaining galactosyltransferase is a member of the GT32 family of glyco-
syltransferases (EC 2.4.1.228, www.cazy.org, accessed on 08-02-2021). In line with many
glycosyltransferases, structural and mechanistic information regarding A4GALT is scarce

www.cazy.org
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and the exact mechanism is still a matter of debate, making the rational design of inhibitors
a very a challenging process. While no crystal structure of A4GALT has been obtained hith-
erto, the bacterial homologue LgtC (~20% homology) from Neisseria meningitidis has shown
the presence of a critical carboxylate residue (Asp190) in its active site, potentially situated
on the beta face of UDP-Gal and in the vicinity of the lactosylceramide acceptor [126,127].
This carboxylate pointed to the hypothesis of a double displacement mechanism similar to
the one employed by retaining glycosidases (Figures 4 and 5A). However, this amino acid
is 8.9 Å away from the donor UDP-Gal and a conformational change would be necessary
during catalysis to allow an appropriate positioning. The alternative hypothesis invokes
an SNi-like mechanism (Figure 5B) in which both the incoming nucleophile and leaving
UDP group find occupancy in the enzyme active site at the same time [128,129]. Structural
studies also showed the presence of a Mn2+ cation within the active site of the enzyme.
This metal ion interacts with an Asp-X-Asp (DXD) motif and with the diphosphate leaving
group of the UDP-Gal donor. Coordination of Mn2+ to the diphosphate leaving group
assists the departure of the leaving group (UDP) by stabilizing the negative charge [127].
Unveiling the A4GALT mechanism is of great interest for FD, for which clinical targeting is
hampered by a complete lack of effective inhibitors.

Figure 4. Active site of bacterial A4GALT homologue LgtC. Enzyme active site containing donor
analogue UDP-2FGal (black) and acceptor analogue 4′-deoxylactose (green) bound in the pocket.
The Mn2+ cation (pink) coordinates with the diphosphate group of UDP-Gal and the DXD motif
(yellow) to assist in catalysis. Residue D190 (purple) is positioned 8.9 Å away from the UDP-Gal
donor and is visualized for clarity. Structure was obtained from the Protein Data Bank (PDB) ID
1GA8 and visualized using CCP4MG.
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Figure 5. Proposed A4GALT mechanisms. (A) Koshland double displacement mechanism of retaining glycosyltransferases
(GTs). (B) Front-face (SNi-like) mechanism of retaining GTs.

Current treatment of FD focused on restoring α-GalA activity through ERT or PCT
has shown, as previously discussed, limited clinical efficacy. An attractive therapeutic
alternative would be the use of SRT which, for instance, has predominantly been success-
ful for the treatment of Gaucher disease [130]. FDA-approved miglustat and eliglustat
inhibit GCS, thereby reducing glucosylceramide levels. Of note, the reduction in GlcCer
levels would also indirectly reduce the amount of Gb3 formed by A4GALT. However,
when compared to GBA activity in Gaucher patients, male patients suffering from FD
have extremely low to non-existent activity of α-GalA [131], meaning that full inhibition of
GCS would be required. Complete inactivation of GCS could bring serious health risks
since glucosylceramide is a key intermediate for the synthesis of other glycosphingolipids
(GSLs) essential for various cellular processes such as cell signaling, membrane stability
and immunogenicity [132].

Selective inhibition of A4GALT would, in principle, not interfere with the synthesis of
other related GSLs. A4GALT is responsible for the synthesis of Gb3, also known as CD77 or
the Pk antigen, and the P1 antigen [133,134]. Both glycosphingolipids, Pk and P1, are blood
group antigens belonging to the P1PK system. While Pk is a highly frequent antigen on red
blood cells (over 99.9% of humans), P1 is present only in a small fraction of the population.
The P1 antigen is formed through the coupling between neolactotetraosylceramide (para-
globoside) and the UDP-gal donor [135]. Pk and P1 are both expressed on the surface of
human red blood cells. Recently, it has been shown that the p.Q211E variant of A4GALT is
also able to synthesize NOR antigens, which are rare glycosphingolipids with a terminal
Gal(α1–4)GalNAc moiety present in erythrocytes of patients with NOR polyagglutination
syndrome [135,136] (Figure 6A). Importantly, the existence of some individuals with a
genetic deficiency in A4GALT without obvious clinical consequences suggests that selective
inhibition of this enzyme could be well tolerated by FD patients [137,138].

Gb3 is the main receptor for Shiga toxins which are released by shigella species and
Shiga-like toxins produced by certain strains of Escherichia coli (E. coli) called Shiga-like
toxin-producing E. coli (STEC), also referred to as verocytotoxin (VT)-producing E. coli
(VTEC) [139]. The bacteria usually enter the body via contaminated food or water and
can cause serious health problems such as hemorrhagic colitis, which can eventually
progress towards hemolytic–uremic syndrome (HUS) [140]. The most common toxins
are Shiga toxin 1 (stx1) and Shiga toxin 2 (stx2) and both utilize Gb3 as their cell surface
receptor with a similar intracellular mechanism of action [141]. Interestingly, similar to
A4GALT knockout mice that are insensitive towards Shiga toxins, increased levels of Gb3
in FD mice also protect the mice against Shiga toxins. However, after administration of
recombinant human α-GalA and restoring normal Gb3 levels, FD mice became susceptible
to the bacterial toxin [142].
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Figure 6. A4GALT glycosphingolipid (GSL) products and Gb3 modulators. (A) Structures of glycosphingolipids produced
by A4GALT. (B) AdaGalCer 11 and AdaGlcCer 12 and their effect on GSL production.

Recently, genome-wide CRISPR-Cas9 knockout screens in Shiga toxins revealed that
the lysosomal-associated protein transmembrane 4 alpha (LAPTM4A) is a key player in
the biosynthesis of Gb3 [143,144], and LAPTM4A knockout cells showed to be resistant
towards Shiga toxins by impairing the binding of the toxins to the cell surface due to the
lack of Gb3 [143]. However, the absence of LAPTM4A did not affect A4GALT levels or
its proper localization with A4GALT in the Golgi complex. Further analysis showed that
the second luminal domain of LAPTM4A plays a key role in the interaction with A4GALT
and the eventual synthesis of Gb3 [144]. Moreover, it was shown that replacing only the
second luminal domain of LAPTM4A in the homologous LAPTM4B also restores Gb3
synthesis [144]. The fact that A4GALT activity in vitro, with an artificial lipid substrate
(NBD-LacCer), is not dependent on the presence of LAPTM4A suggests that this protein
could be involved in the presentation of the lipid substrate (LacCer) from membranes
to the enzyme [144]. However, additional studies towards the structure and function of
LAPTM4A are necessary to fully understand its exact role in Gb3 metabolism. Importantly,
due to the relation between LAPTM4A and A4GALT and the resulting influence on cel-
lular Gb3 levels, LAPTM4A or their protein–protein interaction could also be a potential
therapeutic target for the treatment of FD.

9. A4GALT Inhibitors and Future Directions

Lowering Gb3 levels remains an important, though challenging, therapeutic strategy
for FD. Despite the important role of GTs in various biochemical processes, these enzymes
have been relatively unexplored compared to GHs and their respective inhibitors. In gen-
eral, GT inhibitors are predominantly developed via a rational design approach based on
donor or acceptor analogues or by high-throughput screening (HTS) [145]. The first and
most logical therapeutic target for SRT in FD is A4GALT. However, no inhibitors have seen
the light and only adamantyl-functionalized galactosylceramide (adaGalCer) has shown
competition with the LacCer substrate and inhibits Gb3 synthesis in cells [146]. One main
reason for the slower development of A4GALT inhibitors may be the lack of structural and
mechanistic information concerning the enzyme.

Adamantyl galactosylceramide (adaGalCer) and glucosylceramide (adaGlcCer) are
A4GALT acceptor analogues with a modified ceramide fatty acid tail functionalized with an
adamantane (Figure 6B). These compounds alter GSL metabolism. In particular, adaGalCer
acts as a substrate for A4GALT and is able to lower Gb3 levels at an IC50 concentration of
40 µM in FD cells [146]. Of note, enzymatic galactosylation of the inhibitor results in the
formation of the adaGb2 product with unknown physiological consequences. However,
this artificial more apolar metabolite was 10-fold more effectively excreted to the medium
than Gb3 in cells, suggesting a better elimination and a potential solution to Gb3 accu-
mulation. On the other hand, adaGlcCer is converted to adaLacCer and inhibits LacCer
synthesis.

A second rational strategy for development of A4GALT inhibitors could be the syn-
thesis of UDP-Gal mimics. Following the success of GH inhibitors, fluorinated donors
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with a fluorine at their C2 or C5 position functionalized with a UDP group at the anomeric
position have been developed as slow inhibitors of retaining glycosyltransferases [147–149].
UDP-carba-Gal analogues, in which the pyranose oxygen atom is replaced by a carbon
atom, have also been developed as GT inhibitors and, in general, are very stable competitive
inhibitors [150]. In addition, iminosugar donors have been described as GT inhibitors and
show electronic and structural similarity by mimicking the positive charge in the oxocarbe-
nium ion transition state [151]. C-glycosides, in which the exocyclic oxygen is replaced by
a carbon, also function as donor mimics without being prone to hydrolysis by GHs [152],
and a C1-C2 alkene-based analogue conformationally mimicking the oxocarbenium ion
transition state resulted in a low-affinity β-galactosyltransferase inhibitor [153]. Different
modifications at the nucleotide base have been exploited as well [154]. For instance, attach-
ment of a 5-formylthien-2-yl group to the 5′ position of the base resulted in a nanomolar
inhibitor of several different GalTs by blocking the movement of a key mobile loop in the
enzyme structure [155]. Of note, the selectivity of UDP-based inhibitors is questionable
since a particular UDP-sugar donor functions as a substrate for multiple GTs.

Importantly, the identification of new A4GALT inhibitors could provide important
structural and mechanistic insights. Proteomics combined with crystallographic studies
using mechanism-based inhibitors could shed some light on the presence or absence of a
covalent enzyme inhibitor intermediate and determine if the enzyme actually catalyzes
the glycosylation via a double displacement mechanism or a SNi-like concerted front-face
mechanism. For these inhibitors to become a reality, future research towards effective
A4GALT biochemical assays and new HTS methodologies to potentiate the discovery of
new binders, together with A4GALT crystallographic studies, appears essential.

10. Concluding Remarks

The detailed knowledge on the molecular basis of FD has not yet resulted in a very
effective treatment. Ongoing research on modified enzymes without immunological re-
sponses and the design of new treatment modalities, such as gene therapy, enzyme stabiliz-
ers or SRT targeting A4GALT in a selective and controlled manner, hold promise to reach
major improvements in this direction.
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