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Abstract

Biological specimens are primary records of organismal ecology and history. As such,

museum collections are invaluable repositories for testing ecological and evolutionary

hypotheses across the tree of life. Digitizing and broadly sharing the phenotypic data from

these collections serves to expand the traditional reach of museums, enabling widespread

data sharing, collaboration, and education at an unprecedented scale. In recent years, μCT-

scanning has been adopted as one way for efficiently digitizing museum specimens. Here,

we describe a large repository of 3D, μCT-scanned images and surfaces of skulls from 359

extant species of bats, a highly diverse clade of modern vertebrates. This digital repository

spans much of the taxonomic, biogeographic, and morphological diversity present across

bats. All data have been published to the MorphoSource platform, an online database

explicitly designed for the archiving of 3D morphological data. We demonstrate one potential

use of this repository by testing for convergence in skull shape among one particularly

diverse group of bats, the superfamily Noctilionoidea. Beyond its intrinsic utility to bat biolo-

gists, our digital specimens represent a resource for educators and for any researchers

seeking to broadly test theories of trait evolution, functional ecology, and community

assembly.

Introduction

Organismal morphology is key to our conception of how species interact with one another

and with their environments [1–3]. Furthermore, morphology often reflects and represents

some of the clearest examples of natural selection and adaptation, both over evolutionary time-

scales and in response to global change. Given these considerations, physical repositories of

specimens, like museums of natural history, are invaluable resources for ecologists and evolu-

tionary biologists [4–5]. Analyzing the morphology of specimens collected for and preserved

within these repositories can reveal the tempo and mode of morphological evolution [6] and

species’ responses to external change [7–9], and can be a window into the scale and diversity of
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biological innovation [10–11]. By integrating data across these various collections, researchers

can highlight broad ecological and evolutionary trends throughout branches of the tree of life

and over multiple biogeographic realms.

The creation and curation of digital specimens—electronic records, visualizations, and

reproductions of physical specimens—can improve accessibility and collaboration across insti-

tutions, especially when they are open-access to the research community. Some aspects of

morphology that are difficult to investigate with fragile and rare physical specimens can be

studied using digital specimens. For instance, some internal morphological traits cannot be

measured or otherwise studied without damaging or destroying samples [12]. Digital speci-

mens can also facilitate analysis of particularly small or cryptic aspects of morphology [11, 13–

15]. Rote tasks, including measurements and character scoring, can also be automated and

scripted when digital specimens are used, streamlining data collection and accelerating the

pace of museums-based research.

In recent years, researchers have harnessed X-ray computed microtomography (μCT) scan-

ning as an approach for digitally capturing and visualizing morphology in three-dimensional

space. μCT scans are particularly useful for digitally imaging hard tissue in specimens, though

considerable advances have been made to extend the method to soft tissue scanning [16–17].

Generalized μCT scanning methods produce high-resolution images and 3D volumes and sur-

faces that can be used for a variety of derived analyses, ranging from finite element analysis

[18] to both traditional linear and geometric morphometrics [19–20]. Curating large reposito-

ries of μCT data is rapidly gaining traction, especially in cases where the original specimens are

particularly rare and valuable [21–22].

Here, we describe a digital 3D, open-access repository of extant bat skull diversity that

spans much of the phylogenetic and ecological breadth of the clade. We detail its assembly and

accessibility, and discuss some of its potential uses for the general community. Bats (Mamma-

lia: Chiroptera) are both ecologically and morphologically heterogeneous, with clear links

between both axes of diversity [23–24]. The close synergy between form and function in this

clade also spans multiple facets of their ecology and behavior. For instance, measurements of

wing shape have been linked to dispersal ability [25], nasal and auricular geometry to echolo-

cation broadcasting [11, 26], and jaw morphology to trophic ecology [27–28].

The shapes of bat skulls and faces, in particular, are bridges between physical performance

and ecology, both externally (e.g. capturing and processing food) and internally (e.g. modulat-

ing and emitting echolocation calls). Our repository captures much of the skull shape diversity

of extant bats, as it is designed to maximize sampling across both the bat phylogeny and their

biogeographic distribution. Here, we describe the specimens currently available within this

database, and demonstrate one potential use of the surface files with a test of shape conver-

gence among an ecologically diverse clade of bats, the New World superfamily Noctilionoidea.

Our overall goals are to provide a solid foundation for any researchers interested in bat mor-

phology, its ecological consequences, and its evolutionary drivers.

Materials and methods

Specimen and collection details

We scanned adult skulls of bat specimens from the University of Michigan Museum of Zool-

ogy (UMMZ) and the American Museum of Natural History (AMNH). Sexual selection may

occur in some bat species [29–30]; as such, we generally measured females, but maximized spe-

cies-level taxonomic diversity whenever possible. We separated mandibles and crania for most

specimens, although this was not feasible for a small number of articulated specimens. We

mounted all specimens in foam to prevent movement in preparation for μCT-scanning.

Repository of 3D, μCT-scanned bat skulls
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For this database, we first prioritized scanning of all bat species that are present in the

UMMZ collections, where scans were performed and all authors were based. As such, our sam-

pling is heavily weighted towards those clades that are available within the UMMZ. We supple-

mented our database, increasing the species scanned per family, using the AMNH collections.

We also prioritized specimens represented in a recent species-level phylogeny of the order

[31]. We μCT-scanned 435 total skulls across the two museums: 230 skulls of specimens from

the UMMZ collections and 205 skulls of specimens from the AMNH.

μCT-scanning, image processing, and validation

All specimens were scanned and reconstructed using a μCT scanner (μCT100 Scanco Medical,

Bassersdorf, Switzerland) associated with the University of Michigan School of Dentistry. We

performed nearly all scans and reconstructions at a voxel size between 12 and 30 μm (with the

vast majority of scans at 20 μm), with a peak kilovoltage of 70V across the X-ray tube and a

current of 114 μA (S2 Table). Each scan was filtered with a 0.5 mm aluminum filter, and scan-

ning proceeded for 750 projections with an integration time of 750 ms. Only the dispropor-

tionately large skulls of the flying fox family Pteropodidae were scanned with significantly

different voxel sizes of 30–60 μm. Full scan details are available in the S2 Table.

We imported the resulting 16-bit DICOM stacks for each cranium and mandible into the

program ImageJ [32], where they were cropped and edited to minimize scanning artifacts and

to enhance contrast between bone and negative space. In general, editing was restricted to

minimal adjustments of brightness and contrast. We then converted all images into 8-bit TIFF

stacks for further processing and digital storage.

To generate 3D surfaces for all of the UMMZ specimens, we imported the specimen-spe-

cific TIFF stacks into the program Avizo 9.2.0 (FEI, Hillsboro, USA) for reconstruction and

segmentation. We segmented bone from other material, such as the mounting foam, using

built-in multi-thresholding and segmentation editors, and then generated three-dimensional

surfaces. All thresholded and segmented surfaces were exported as PLY files for storage and

broad compatibility with widely-used morphometric software.

As our goal is for digital specimens to be comparable with and used alongside physical spec-

imens, there may be concern about how the scanning and reconstruction process may make

digital measurements differ from traditional measurements. We compared linear caliper mea-

surements taken from the original, physical specimens with electronic measurements pro-

cessed in Avizo 9.2.0. These measurements are fully described by Dumont et al. [28], and are

abbreviated as follows: MZB (maximum zygomatic breadth), TSL (total skull length), PSW

(posterior skull width or mastoid breadth), SKH (skull height), PM1 (palate width at molar 1),

CH (condyle height), CM1 (mandibular length from condyle to molar 1), MSW (minimum

skull width), and CPH (coronoid process height).

Testing for skull shape convergence

One potential use of this database is in phylogenetic analyses of skull shape. To demonstrate

this possibility, we performed a test of skull shape convergence among New World noctilio-

noid bats. Noctilionoids span the full breadth of bat trophic diversity, and the clade is also

where the links between skull shape and function have been best characterized [27–28]. One

highly specialized trophic behavior among noctilionoids, nectarivory, arose independently

within noctilionoids at least twice [33–35]. This leads to the possibility that skull shapes among

nectarivores are convergent, where similar morphologies have also independently arisen

across lineages.

Repository of 3D, μCT-scanned bat skulls
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To test this hypothesis, we selected a small subset of 30 specimens that represented both lin-

eages of noctilionoid nectarivores, the subfamilies Lonchophyllinae and Glossophaginae [35],

as well as three other major categories: insectivory, frugivory, and sanguivory. We used the tro-

phic classifications of Rojas et al. [36] for these analyses, and focused on the crania for each

specimen. Species included for this analysis are highlighted in the S1 Table.

We then quantified shape for these 30 cranial specimens using landmark-based geometric

morphometrics and the R package geomorph [37]. Using the program Checkpoint (Stratovan,

Davis, USA), we placed a series of 29 fixed landmarks on each cranium, as well as 15 equidis-

tant semilandmarks along the sagittal crest. These 44 landmarks are adapted from and

described in full by Santana & Lofgren [26]. All subsequent analyses were performed in geo-
morph, unless otherwise noted. We then imported these landmarks into geomorph and esti-

mated any missing landmarks (e.g. on damaged specimens) by using a thin-plate spline to

extrapolate from complete datasets [38]. To align these raw shape data into a common coordi-

nate system, we used a generalized Procrustes analysis, scaled by centroid size, where semi-

landmarks were allowed to slide along the sagittal crest using the Procrustes distance criterion

[39–40].

To test for convergence, we used the C1 statistic described by Stayton [41] and as imple-

mented in the supplementary code of Zelditch et al. [42]. C1 estimates the proportion of maxi-

mum, ancestral interspecific, morphological distances that have since been minimized by

putatively convergent evolution among a set of specified taxa. Significance of C1 is estimated

by simulating morphological evolution under Brownian motion, estimating a simulated C1,

and comparing it to the empirical estimate. We calculated C1 for the non-monophyletic tro-

phic categories of insectivory, frugivory, and nectarivory among our 30 crania. We also tested

convergence between sanguivory, the most derived of bat trophic ecologies, and each of the

other three trophic guilds. For all these tests, we calculated significance by simulating shape

evolution under Brownian motion 100 times, estimating C1 for each of these simulations, and

calculating the proportion that exceeded our empirical estimate.

MorphoSource storage

We archived all data on MorphoSource (http://www.morphosource.org/), an online data

archive that sorts 3D datasets into individual projects for rapid dissemination and ease of shar-

ing with collaborators and practitioners. These data were all archived under a Creative Com-

mons license (CC-BY-NC), making them open-access to the community. Each specimen was

vouchered and represented by a compressed folder of TIFF images and, for the UMMZ speci-

mens, an associated PLY surface file.

Results

Repository details

Our database includes species from 14 of the 20 extant [23–24] families of bats (Fig 1). 5 of the

missing families are either currently monotypic (Craseonycteridae, Mystacinidae) or monoge-

neric with low and particularly undersampled diversity in our source collections (Myzopodi-

dae, Furipteridae, Rhinopomatidae). The sixth missing family, Cistugidae, is not included to

avoid taxonomic misidentification: this family’s species are included in the genus Myotis (Fam-

ily Vespertilionidae) on many databases, including iDigBio, despite recent elevation to family

status [43]. Due to the potential for these species to both be mislabeled and misidentified as

extremely similar Myotis conspecifics, we have avoided including this family until we can vali-

date them with more specimens. Among sampled families, the Old World Rhinolophidae and

Repository of 3D, μCT-scanned bat skulls
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Hipposideridae (superfamily Rhinolophoidea) are among the most poorly sampled in relation

to their relatively high extant diversities (Fig 1).

Most species are represented by a single digital specimen, though some have multiple digital

representatives in the database due to physical damage on the original specimens, or for testing

intraspecific variability (see S2 Table). In total, we have 359 unique species in our repository,

spanning roughly 30% of extant diversity [24, 31] (Fig 1). We note that bat taxonomy, as is

true of many clades, has constantly evolved over the course of specimen collection at both

institutions. As such, species names for some specimens are not always consistent across data-

bases. The hierarchy of genera, species, and subspecies are notably in flux for many bat taxa we

include here. Our count of 359 species reflects taxonomy as defined by our our species-level

molecular phylogeny [31]. However, if we use iDigBio taxonomy, which is automatically asso-

ciated with MorphoSource, we count 344 species, as many putative species are considered sub-

species according to this taxonomy. We make note of these discrepancies and changes to

taxonomy in the S2 Table.

Fig 1. Sampling of each extant bat family within this repository. On the left, all twenty extant families of bats are displayed [24] along the phylogenetic backbone of

the order [31]. On the right, estimated total richness (background, white bars) and the repository richness (filled, dark grey sections) are depicted for each family. Note

that the axis for species richness is broken between 200 and 400 due to the high richness of extant vespertilionids.

https://doi.org/10.1371/journal.pone.0203022.g001

Repository of 3D, μCT-scanned bat skulls
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These species span all biogeographic realms as defined by Olson et al. [44], and also cover

all major trophic classifications of extant bats, including insectivory, nectarivory, frugivory,

sanguivory, carnivory, and piscivory [23, 45]. Skulls of bats with different trophic behavior are

notably distinct across the phylogeny (Fig 2).

Scanning output details and measurement comparisons

File size and image count vary depending on length of an individual cranium or mandible and

voxel size, but most surfaces are approximately 500MB with between 400–1000 individual

images in their associated TIFF stack. We illustrate one example of individual TIFF files

(“slices” of the overall scan) and their associated PLY surface, with our landmarking scheme

used to test convergence, in Fig 3. For this database, we chose to include surfaces as PLY files,

Fig 2. Phylogeny of species included in this repository. The phylogeny of bats included in this repository, with the most well-sampled families labeled. We include

some examples of cranial surfaces from this repository for these labeled clades, to showcase the breadth of morphological disparity contained in this database, and its

link to trophic diversity. Skulls are not to scale, as these species are of considerably different sizes. Species are listed as follows from top to bottom, with their associated

specimen identification information from the University of Michigan’s Museum of Zoology (UMMZ) or the American Museum of Natural History (AMNH): Pteropus
hypomelanus (UMMZ 130417; frugivore), Hipposideros abae (AMNH 49120; insectivore), Desmodus rotundus (UMMZ 116246; sanguivore), Glossophaga leachii
(AMNH 185970; nectarivore), Molossus molossus (AMNH 78895; insectivore), Myotis macrotarsus (UMMZ 160308; insectivore).

https://doi.org/10.1371/journal.pone.0203022.g002

Repository of 3D, μCT-scanned bat skulls
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as they can easily be imported into software designed for linear morphometrics or geometric

morphometrics (e.g. the package geomorph used in this study). Researchers can create their

own surface files in other formats from the original TIFF stack, especially if they desire higher

resolution or surface fidelity than is feasible for bulk online storage.

We estimate how a basic morphometric analysis may differ based on usage of digital or

physical specimens by comparing a set of nine previously-described linear measurements [28]

taken using caliper measurements on physical specimens with those taken in digital space

using Avizo 9.2.0. Across 20 different specimens, all of different species, we find physical and

digital measurements differ by less than 2% for all measurements, on average (Fig 4, S3 Table).

Convergence in skull shape

Of the largest three trophic categories of insectivory (12 species), frugivory (6 species), and

nectarivory (9 species), only nectarivores are significantly convergent based on the C1 statistic

(Table 1), despite being non-monophyletic and belonging to two separate subfamilies [35].

Interestingly, grouping nectarivores with the sanguivorous vampire bats also results in a signif-

icant C1 statistic, despite qualitative differences in skull shape (Fig 2). However, this is not true

of other groupings with sanguivores. It is unclear whether this interguild skull shape conver-

gence reflects a possible ancestral state for vampire bats, or similar biomechanical require-

ments for predominantly liquid diets. We hope that this brief example illustrates how this rich

Fig 3. Examples of TIFF slices, a representative PLY surface, and a landmarked sample. For a specimen of Artibeus aztecus (UMMZ 110526), we have included two

examples of individual TIFF files (left), and two analogous views of the PLY surface file (right) with labels for the fixed landmarking scheme of Santana & Lofgren [26]

that we used to test for convergence in our example analysis. Full details on these landmarks can be found in that original publication. This species is generally

considered a frugivore, with opportunistic consumption of insects [36].

https://doi.org/10.1371/journal.pone.0203022.g003
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dataset of complex shape data can be used to illuminate issues in both ecology and evolution,

as well as highlight new avenues to pursue.

In Table 1, we list the largest trophic guilds of noctilionoids, as classified by Rojas et al. [36],

and the C1 statistic and significance for testing skull shape convergence. Among the three larg-

est guilds (excluding vampires), only nectarivores are significantly convergent based on this

statistic. According to this statistic, nectarivores are also significantly convergent with vampire

bats (3 species).

Discussion

We created and shared a digital repository of 3D μCT morphological data for 359 species of

extant bats. The data are publicly and freely available through the MorphoSource portal

Fig 4. Relationships between measurements taken from digital and physical specimens. For each of 9 linear measurements, we

present the relationship between measurements taken using calipers on physical specimens versus measurements taken on the

surface of digital specimens, across 20 different bat species. A dashed 1:1 line is included for each measurement. Differences between

the two methods are minimal and appear random with respect to species, with all R2 values rounding to 0.99 and 1.00 depending on

precision (all p< 0.05).

https://doi.org/10.1371/journal.pone.0203022.g004

Repository of 3D, μCT-scanned bat skulls
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(Project #386), for immediate use or collaboration by any researchers. Several limitations of

our repository should be acknowledged. While we only include skeletal data at this time, dif-

fusible iodine-based contrast-enhanced μCT (diceCT) scans have highlighted the functional

diversity of soft tissue like muscle and cartilage in bats [46], and can be integrated into this

repository. Higher-resolution scanning, in general, in conjunction with soft tissue data can

illuminate aspects of morphology that are not as clear at our current resolution, such as the

turbinates [14]. We also recognize that our database is disproportionately biased towards New

World bats, due to their representation within the UMMZ collections, where we processed all

of our scans. Old World rhinolophoids and the cosmopolitan, insectivorous vespertilionoids,

which together comprise the vast majority of unsampled species (Fig 1), are a natural target for

future sampling and addition to this database by researchers from other institutions around

the world.

We emphasize that digital databases should not be viewed as permanent replacement for

primary, vouchered materials. Museum collections, despite often being critically underfunded

and underappreciated, play important roles in society, policy, and education [47–49]. Digital

specimens will not replace museums and their collections. Instead, we believe that digital

repositories can actually highlight the extent to which museums are critical to modern

research, and thus should be viewed as natural extensions of an institution’s mission of pro-

moting specimen collection. For example, digital specimens can be used to pilot initial studies,

before undertaking a more expansive project housed within the physical collections or with

long-term loans. Other researchers have started referring to digital specimens as “cybertypes,”

analogous to the holotypes of more traditional museums-based research [50].

Accessibility to and usage of museum collections will also be improved by further digitiza-

tion of specimens. Groups and individuals at institutions without affiliated museums, or who

lack resources to travel can also benefit from access to a freely available database like ours. The

carbon footprint of specimens-based research can even be reduced across the board by mini-

mizing the travel and transport costs associated with physical specimens. Digital specimens

can streamline and improve many typical protocols and studies of museum specimens. CT

software like Avizo can accommodate specimens with sizes and shapes that preclude accurate

or precise caliper measurements. For instance, users can easily incorporate curvature and volu-

metric calculations alongside more standard point-to-point measurements or maximum dis-

tances along anatomical axes. Volumetric data could be used for comparative studies on the

evolution of internal cavities related to sensory behavior, where physical specimens may be

challenging to use without damaging or destroying them.

Digital specimens also have clear utility as teaching tools that can promote discussions

about a variety of ecological and evolutionary processes to students of all levels. With freely

available specimens, instructors can design curricula around specimens that are fragile, rare,

or otherwise unavailable for use in physical form. Finally, we emphasize that all repositories,

including ours, can only be improved through collaboration with other researchers and

Table 1. C1 statistic for skull shape among major trophic categories of noctilionoid bats.

guild(s) C1 statistic p-value

insectivory 0.015 1

frugivory 0.029 0.7

nectarivory 0.207 < 0.001

insectivory + sanguivory 0.016 1

frugivory + sanguivory 0.1 0.08

nectarivory + sanguivory 0.129 < 0.001

https://doi.org/10.1371/journal.pone.0203022.t001

Repository of 3D, μCT-scanned bat skulls

PLOS ONE | https://doi.org/10.1371/journal.pone.0203022 September 18, 2018 9 / 13

https://doi.org/10.1371/journal.pone.0203022.t001
https://doi.org/10.1371/journal.pone.0203022


institutions. Unlike with genetic data and GenBank, high-resolution morphological data are

not currently widely archived and shared online. The sheer quantity of data produced by these

analyses, interoperability, and accessibility to researchers have made this a particularly chal-

lenging endeavor [51]. However, just as the availability of genetic data through GenBank cata-

lyzed rapid innovation in phylogenetic research, we believe that widespread community

adoption of MorphoSource’s open-access model for sharing digital specimens will lead to simi-

lar advances in morphological research [52]. Our hope is that by building this digital library of

phenotypes, we will facilitate increased cooperation among researchers and collections around

the world, promote shared standards for similar databases, and expand the scope of possible

research on form and function across the tree of life.

Supporting information

S1 Table. Species used for testing cranial shape convergence. The 30 species used to test for

cranial shape convergence among the major trophic guilds of noctilionoid bats, and their fami-

lies, and subfamilies, as described by Rojas et al. (2018). Metadata for these species is included

in the full S2 Table of repository details.

(XLSX)

S2 Table. Repository specimen details. A full table describing the 435 specimens contained in

this repository at the time of manuscript submission, taxonomy information, sex, and associ-

ated identifiers from their parent institutions. We also note where GenBank taxonomy (our

primary classification system) diverges from that of iDigBio, which is automatically associated

with all MorphoSource data. Finally, we note the cases where scans were not performed at our

standard 20 μm.

(XLSX)

S3 Table. Percentage difference between physical and digital measurements. 20 UMMZ

specimens of bats, their taxonomic and museum identification information, and differences in

9 linear measurements taken from physical and digital specimens. The measurements are

described in full by Dumont et al. (2012), and are abbreviated MZB (maximum zygomatic

breadth), TSL (total skull length), PSW (posterior skull width or mastoid breadth), SKH (skull

height), PM1 (palate width at molar 1), CH (condyle height), CM1 (mandibular length from

condyle to molar 1), MSW (minimum skull width), and CPH (coronoid process height). For

each specimen and measurement, we calculated the percentage that digital measurements in

Avizo differ from physical measurements taken using calipers. These data are also displayed in

Fig 4.

(XLSX)

S1 Video. Acerodon jubatus cranium volumetric data. A short video clip of a Pteropus vam-
pyrus (an obligate frugivore) cranium rotating in 3D space. Colors and translucence represent

relative density of bone material, with warmer colors and more opaque regions being more

dense.

(MPG)

S2 Video. Desmodus rotundus cranium volumetric data. A short video clip of a Desmodus
rotundus (the common vampire bat) cranium rotating in 3D space. Colors and translucence

represent relative density of bone material, with warmer colors and more opaque regions

being more dense.

(MPG)
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